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Abstract:
This paper deals with the problem of leak detection in Water Distribution Networks (WDN). A
leak detection method based on the water demand analysis of District Metered Areas (DMAs) is
proposed. Historical leak-free data of water demand flow is used to extract minimum, maximum
values, and statistical distributions of differences (errors) between demand flow and predicted
values at different time hours of the day. The concept of sensor fusion is applied to reduce
measurement uncertainties. For this, a virtual measurement is generated that considers each
hour of the day a feature and, combined, develops a more accurate error analysis capable of
detecting leaks and estimating the leak size magnitude. Furthermore, to increase the accuracy of
the leak detection method, prediction errors are analyzed in a moving time window. Finally, the
performance of the proposed leak detection method is assessed by using actual data of different
real DMAs of the Barcelona WDN.
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1. INTRODUCTION

Pipeline systems are essential in modern society because
of the substance they distribute, such as oil, gas, refined
products, etc. One system, in particular, is crucial for
the survival of society, which is the water distribution
systems in cities. Water leaks are a significant problem in
these systems that cause substantial economic losses and
environmental issues. Several factors can cause a system
leak, such as weak joints, water hammers, construction
or excavation of utilities, seasonal temperature changes,
heavy traffic, and other things. When a leak occurs, it can
cause several difficulties with contamination (Xu et al.,
2014) and health problems (Ali and Choi, 2020) and the
loss of water at a time when the world’s demand for water
is only increasing (Leflaive, 2012). Due to the importance
of detecting and locating leaks in the system, different
methods are studied.

It is possible to divide the methods into three cate-
gories: acoustic instrumentation, transient-based, and hy-
draulic sensors data. The first one is based on collect-
ing data from acoustic sensors (Shimanskiy et al., 2003),
cameras (Fahmy and Moselhi, 2010), ground-penetrating
radar (GPR) (Stampolidis et al., 2003), and fiber optic
(Sadeghioon et al., 2014). The main problem with this

category is installation and maintenance costs and high
power consumption.

The second category is related to the information of the
transient hydraulic flow parameters collected from the
sensor and compared with the steady-state equation, an
example of the method is shown in (Covas and Ramos,
2010). Thus allowing the detection of anomalies in the
system.

The last category is based on hydraulic sensor data and
can be referred to as real-time leak detection methods. The
main idea is to use information from different sensors, like
flow, temperature, pressure measurements, or qualitative
parameters such as turbid, to build historical data to
predict future parameter values by data mining models.
Some hydraulic sensor data analysis examples can be
found on (Verde et al., 2016) that can detect and isolate
single leaks in a pipeline with a branch junction by
measuring flow and pressure at the ends of the line. In
(Shekofteh et al., 2020) that apply the artificial neural
network (ANN) technique, graph theory combined with
pressure sensors. In (Soldevila et al., 2021) uses flow
sensor analyses integrated with an ad hoc statistical test
to validate the leak detection, and (Laucelli et al., 2016)
uses evolutionary polynomial regression (EPR) online data
recorded by low-cost pressure/flow devices. Among those



methods, a classification based on the analysis of the
Minimum Night Flow (MNF) that uses the minimal inlet
flow information that usually happens during the night-
between 2:00 and 6:00- (Marzola et al., 2021), (Cantos
et al., 2020).

A critical circumstance of leak detection on WDN is
that many are not equipped to monitor these networks’
flow/pressure measurements. Therefore, the only reliable
information comes from water inlet points, such as tanks
and reservoirs volumes. Therefore, usually the company
applies an annual water balance that evaluates the amount
of lost water in the network established in the International
Water Association (IWA) (Farley, 2003). (Lambert, 2002)
the information of the water inflow and the meter readings
collected, usually in four or six months.

Another critical factor is the knowledge of estimating
the current volume of leakage in the WDN. This aspect
is vital for the management of the system, allowing the
water distribution company to have the necessary control
to keep the leakage at a specific level. In addition, the
leak estimation in the system can be used in future
investigations to identify the location of the leakage (Alves
et al., 2021), (Laucelli et al., 2016), (Soldevila et al., 2016).

This work presents a new leak detection and leak estima-
tion methodology using flow measurement historical data
and real-time sensor data available on the inlet network.
The method uses sensor fusion calculations with a demand
forecast model to identify a leak in the system and provide
an estimated leak size.

The remaining of the paper is outlined as follows: In
Section 2, a discussion of the proposed leak detection
method is detailed. Then, the performance of the proposed
method is evaluated using a real DMA of Barcelona WDN
in Section 3. Finally, Section 4 concludes the paper.

2. PROPOSED METHOD

The proposed method to leak detection descends from the
base of sensor fusion theory using the inlet flow measure-
ment of the WDN to generate a virtual measurement. The
technique can analyze if there is a leak in the system during
all-day hours. Because of that, the leak detection will be
faster than a method based on MNF that uses flow during
night hours. Figure 1 shows the schema of the proposed
method, which can be divided into two phases. First, the
offline phase is the calibration of the parameters. Further-
more, the second online phase is where the evaluation of
leak presence in the network is analyzed. We will explain
the methodology in detail in the following.

2.1 Methodology description

The fundamental aspect of offline and online phases repre-
sents the WDN inlet flow, approximating the current and
historical input flow. Therefore, the demand forecast in
WDN is out of the scope of this work. However, it can
be assumed that a demand forecast method calibrated
being historical data of the WDN (Donkor et al., 2014) is
available with the WDN input flow y(k) at the instantLI-1
k:
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Fig. 1. Overview of the proposed method

y(k) = ŷ(k) + e(k) (1)

where k = 0, 1, 2, 3, ... denotes the discrete time corre-
sponding to time 0, Ts, 2Ts, 3Ts, ..., being Ts the sample
time of demand forecasting model, ŷ(k) is the demand
forecast and e(k) is the error that for this study is consid-
ered adjusted by a normal distribution (Gaussian) (Malik,
2016) represented by the notation N (µ, σ2) with mean µ
and standard deviation σ. The incoming demand is more
accurate in some periods of the days, thus a periodic
variation in time T will be considered:

e(k) ∼ N (0, σ2) with σ2 = σ2(k + T ) = σ2(k) (2)

Let us consider l(k) as the leak indicator, in the presence
of a leak, l(k) > 0. Thus, Equation (1) can be rewritten as

y(k) = ŷ(k) + e(k) + l(k) (3)

An approximation of the leak size l̂(k) can be given by
the difference between the actual and the estimated inlet
flow, with a leak estimation error equal to the demand
forecasting error.

l̂(k) = y(k)− ŷ(k) = l(k) + e(k) (4)

It is possible to generate different leak estimations using
a time window, W , taking into account the current inlet
flow value and the previous values using the following
equations:



l̂(k) = y(k)− ŷ(k)

l̂(k + 1) = y(k + 1)− ŷ(k + 1)

...

l̂(k −W + 1) = y(k −W + 1)− ŷ(k −W + 1)

(5)

Notice that leak estimations l̂(k − i) with i = 0, ...,W − 1
have zero mean Gaussian errors with variance σ2(k − i).
Considering slow leak variation in time windowW , we get:

l(k) ≈ l(k) =

W−1∑
i=0

l(k − i)
W

(6)

an average leak estimation l̂(k) can be computed at instant
k applying the maximum Likelihood estimation method
to the joint probability distribution of the W estimations
fused in l(k). This joint probability distribution function
will be denoted as p(l̂(k), ..., l̂(k − W + 1)|l(k), σ2

W ) and
can be expressed as

p(l̂(k), ..., l̂(k −W + 1)|l(k), σ2
W ) =

W−1∏
i=0

1

σ(k − i)
√

2π
e

−(l̂(k−i)−l(k))2

2σ2(k−i)
(7)

where σ2
W is the variance of the fused value l(k)).

The likelihood function L is defined as the logarithm of
p(l̂(k), ..., l̂(k −W + 1)|l(k), σ2

W ), given by:

L(l̂(k), ..., l̂(k −W + 1)|l(k), σ2
W ) =

−W
2

log(2π)−W
W−1∑
i=0

log σ(k − i)−
W−1∑
i=0

(l̂(k − i)− l(k))2

2σ2(k − i)
(8)

Maximizing the value of L(l̂1, l̂2, ..., l̂W |l(k), σ2
W ), equal-

ing to zero the derivative of p(l̂1, l̂2, ..., l̂W |l(k), σ2
W ) with

respect to l(k), obtains the new virtual fused estimate
measurement l̂(k):

l̂(k) =

∑W−1
i=0

l̂(k−i)
σ2(k−i)∑W−1

i=0
1

σ2(k−i)

(9)

that presents a zero mean estimation error

eW (k) = l(k)− l̂(k) (10)

with variance

σ2
W =

1∑W−1
i=0

1
σ2(k−i)

(11)

The leak detection problem can be formulated as a change
detection problem because, in a non-leak scenario, l̂(k) will
lead to small values but different from zero due to demand
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Fig. 2. Historical leak-free inlet flow in Barcelona

estimation errors, and in a leak scenario, its value will
increase.

In the offline phase, the computation of the threshold ∆W

using historical free leak data will determine a value of
l̂(k) above which we can assume that a leak is present
in the system. This threshold can be computed applying
Equation (9) to historical free leak data, considering the
worst-case scenario ∆W will be equal to the maximum
value of l̂(k) computed for the whole historical non-leak
data.

Given ∆W , to reduce the number of false alarms, a nd
value can be stipulated, being the several following leak
estimations bigger than the threshold that is necessary to
trigger the leak detection.

In the online phase, the process of fused estimate leak
size can be done, and the leak detection method can be
computed by:

{
l̂(k − i) > ∆W ⇒ Leak , ∀ i=1,..,nd
Otherwise⇒ No Leak

(12)

3. CASE STUDY

The method presented was applied to a DMA of the
Barcelona WDN. In particular, the set of historical inlet
flows free-leak data depicted in Figure 2 was available. For
the leak detection analysis, different leak scenarios have
been created considering the constant size of the leaks. In
all studies, the sample time, Ts, is one hour, and the period
T equals 24 (1 day).

The demand forecast was considered only the periodicity
of the demand extracted from the historical data to
construct an estimate of the current water demand, as
proposed in (Donkor et al., 2014). So, given a set of
historical inlet flow free-leak data of Nd days sampled at
Ts =1 hour, the demand forecast model will consist of 24
values (features) ŷh with h = 1, .., 24 organized by the 1st
feature equal to demand forecast at 1 AM, and the 24th is
equal to 00 AM. These values are computed from historical
data as follows.

ŷh =
1

Nd

Nd−1∑
d=0

y(h+ 24d) h = 1, ..., 24 (13)

The first analysis made was concerning the election of the
best amount of features, the leak detection proposed in



the previous section considers inlet flow values from all
the hours of the day (i.e., all the features), while most leak
detection methods are based on Minimum Flow Analysis
that only consider the flow at some hours during the
night. So a general analysis was made considering time
window W = T = 24 (i.e., one day) and maximum error
threshold for fault detection (12) using a different number
of features. In addition, simple thresholds δh h = 1, ..., 24
are computed as the maximum error of hourly demand
estimations ŷh computed by (13) considering the historical
leak-free data. These thresholds show the lowest leak value
detectable only considering hourly measurements. The
following equation was used to generate δh:

δh = max
d=0,...,Nd−1

|yh(h+ 24d)− ŷh| (14)

This analysis is represented in upper Figure 3, which
represents the hourly demand estimation (13) in blue and
the upper red line the prediction ±δh threshold. On the
other hand, in the lower Figure 3 represents hourly error
variance σ2

h. Note that the biggest variance σ2
h happens

between 8 AM to 3 PM; this is already expected because
they are the times of the biggest water consumption in
cities. Consequently, we have a larger δh in those hours.
With the same analysis, the smallest variance occurs
during the night between 2 AM and 5 AM, as it is the last
water consumption period, having the smaller δh. Remark
that in the worst case of leak detection, a leak is produced
in the hours with high σ2

h.

Continuing the analysis to know how the data is affected
by the number of features selected, they were stocked by
the best variations in ascending order, i.e., the feature
with the smallest variance is now the 1st feature, and the
biggest is the 24th feature, showing in upper Figure 4 .
In order to know how it would affect the threshold ∆W ,
lower Figure 4 depicts the twenty-four errors that can be
computed ef |24(k) with f = 1, ..., 24 using error Equation
(10) but considering leak estimation in Equation (9) only
with f features, being e24|24(k) = ew(k). With every error
obtained applying to leak-free data it can be computed
a maximum error ∆f |24, being the ∆24|24 = ∆W . In the
analysis of the ∆f |24, it is noted that this value decreases
smoothly when the number of features is bigger than five.

The second analyzes were regarding the performance of the
leak detection method. Then, artificial data considering
observed demand variance and introducing different leak
sizes at different time instants have been generated. To
analyze this, the following parameters, were considered:

• True Positive Rate (TPR) is the percentage of leaks
that are correctly identified as such.
• False Positive Rate (FPR) is the percentage of leak-
free data that triggered the leak detection method.
• Difference Time Detection (DTD) is the time (in
hours) from the leak appearance to the leak detection.

Tables 1, 2, 3 and 4 were created for the analysis of these
parameters. The first choice of the features was 4, which
are the first four features with the lower variance that
included in the hours of the Minimum Night Flow Anal-
ysis. The second resource option was to use all available
resources, which means the number of Features f equals
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24. The importance of nd was also examined, with Table
1 and Table 2 considering nd equal to 1 and Table 3 and
Table 4 considering nd equal to 3.

Table 1. Leak detection performance consider-
ing nd = 1. Considering f = 4.

Leak magnitude (l/s) FPR= 0.009
TPR (%) DTD(hour)

0.5 17.7 162.872
1 90.3 111.374

1.5 100 36.888
2 100 18.998

Regarding nd, a small increase in the detection time is
noted when using nd = 3 because more measures are
needed to activate the detection. On the other hand, the



Table 2. Leak detection performance consider-
ing nd = 1. Considering f = 24.

Leak magnitude (l/s) FPR= 0.004
TPR (%) DTD(hour)

0.5 36.4 154.212
1 99.5 52.608

1.5 100 18.997
2 100 14.599

Table 3. Leak detection performance consider-
ing nd = 3. Considering f = 4.

Leak magnitude (l/s) FPR= 0.005
TPR (%) DTD(hour)

0.5 8.7 160.332
1 78.3 125.795

1.5 100 44.439
2 100 21.243

Table 4. Leak detection performance consider-
ing nd = 3. Considering f = 24.

Leak magnitude (l/s) FPR= 0.001
TPR (%) DTD(hour)

0.5 21.6 162.781
1 99.5 69.084

1.5 100 21.904
2 100 16.640

number of FPR is significantly lower: more than 50%
reduction when f = 4. In addition, it can be noted that it
is already possible to detect leaks with a size of 0.5l/s but
with a small TPR. Besides, it has 100% detection when
the leak size is greater than or equal to 1.5l/s.

For each network, it is necessary to do this type of analysis
to know the value of the parameters to choose because
each one has different behavior. The parameters must be
selected according to each water distribution company’s
priorities. For example, it is also possible to manipulate
data by dividing it into working and unworked days.
However, it is necessary to have a wide range of data
without leakage for this type of manipulation. For this data
presented in Figure 2, it is not worth separating them, as
the amount of information is not sufficient.

Table 5 was developed to compare the proposed method’s
efficiency with a method using only MNF. As already men-
tioned, this study is used more frequently for leak detection
because, at this time of the day has the lowest water
consumption and, consequently, the smallest variance. The
same case study of the previous analysis was applied,
only using the measurements from 2 am to 6 am. The
leak estimation error (4) was applied in the leak detection
method (12) with nd = 1. The FPR index was a reference
to the threshold selection to improve the comparison. In
this case, the FPR index of Table 1 was picked because it
is an equivalent analysis that uses the four best features
during the day that occurs during the night.

The study using only the MNF measurement shows that
for an FPR result equal to 0.010%, the TPR is inferior
to the result in Table 1 and the time detection is more
significant because of the time delay of monitoring, that if
a leak is not detected during the night or the leak started
during the day, it is necessary to wait 24 hours to obtain
new measurement information.

Table 5. Leak detection performance using
MNF measurement

Leak magnitude (l/s) FPR= 0.010
TPR (%) DTD(hour)

0.5 12.6 153.465
1 41.1 145.955

1.5 82.5 115.881
2 99.3 64.333
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Fig. 5. Inlet flow with a leak,start on the 14th day at 12PM

Fig. 6. Error analysis

Figure 5 shows the model of artificial data created with
14 days without a leak, and 14 days with a leak of 2l/s,
the marker “x” and the red line show the exact instant
that the leak was produced, in this case at 12 PM, remark
that visually it is difficult to identify the leak. Figure
6 shows the error calculated with Equation (9) to the
case simulation in Figure 5 . The analysis shows the
leak detection when the error crosses the threshold. A
second study can be done regarding the average error after
detection, which is around 2l/s that is the leak magnitude.

4. CONCLUSION

The detection of leaks in WDNs is an essential issue for
modern society to prevent losses of hydraulic resources
and protect the healthy population from the water con-
tamination that can occur in a leak situation. This paper
demonstrated a new method of detection and estimation



of leak size magnitude only using the information of inlet
flow measurement, which is obtained with the flow sen-
sors usually installed in the system, making possible the
method implementation in most WDNs.

The method uses historical free leak data of the network
to calculate a demand forecast combined with the sensor
fusion theory to develop a leak detection that can analyze
all measurements collected during the day, being an im-
provement due to most leak detection methods only using
the analysis of the night flow. The leak detection method
can be divided into two-phase, online and offline. The of-
fline phase uses the historical data to generate a threshold
that defines the regular operation of the system. In the
online phase, the information of inlet flow measurement is
processed and classified into regular or fault operations.

The case study presented was the real system in Barcelona,
where three months of free historic data were provided.
First, several analyzes were carried out with them: the
study of the demand forecast and its variance in the
respective hours of the day the study of the evolution of the
threshold regarding the number of features. Then, different
scenarios were generated with different magnitudes of
leakage, ranging from 0.5 to 2 l/s, and the True Positive
Rate, False Positive Rate, and Difference Time Detection
were analyzed. In two scenarios, one using only nighttime
measurements and the other using all available features,
it is noted that when the leak is small, with the leak size
value being similar to the threshold, it is not possible to
detect 100%, still having a better result when it is used all
available measurements.

As stated in the result analysis, a study to determine
how many features are necessary must be done for all
WDN implementing this method. With that in mind,
future work is studying the best method to define the
number of features automatically. Furthermore, following
the method improvement that can be performed, systems
with multiple leaks can be investigated.
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