Ordinal Inverse Reinforcement Learning Applied to
Robot Learning with Small Data

Adria Colomé!, and Carme Torras!

Abstract— Over the last decade, the ability to teach actions
to robots in a user-friendly way has gained relevance, and a
practical way of teaching robots a new task is to use Inverse
Reinforcement Learning (IRL). In IRL, an expert teacher shows
the robot a desired behaviour and an agent builds a model of the
reward. The agent can also infer a policy that performs in an
optimal way within the limitations of the knowledge provided to
it. However, most IRL approaches assume an (almost) optimal
performance of the teaching agent, which might become unprac-
tical if the teacher is not actually an expert. In addition, most IRL
focus on discrete state-action spaces that limit their applicability
to certain real-world problems such as within the context of
direct Policy Search (PS) reinforcement learning. Therefore,
in this paper we introduce Ordinal Inverse Reinforcement
Learning (OrdIRL) for continuous state variables, in which
the teacher can qualitatively evaluate robot performance by
selecting one among the predefined performance levels (e.g.
{bad, medium, good} for three tiers of performance). Once the
OrdIRL has fit an ordinal distribution to the data, we propose
to use Bayesian Optimization (BO) to either gain knowledge on
the inferred model (exploration) or find a policy or action that
maximizes the expected reward given the prior knowledge on
the reward (exploitation). In the case of large-dimensional state-
action spaces, we use Dimensionality Reduction (DR) techniques
and perform the BO in the latent space. Experimental results
on simulation and with a robot arm show how this approach
allows for learning the reward function with small data.

I. INTRODUCTION

Nowadays the scientific community is aiming at bringing
robots to human daily environments. This rises several
challenges. Among them, robots should be able to be taught to
perform certain tasks, without the need of an expert. Ideally,
a lay person would indicate the robot a task to perform
and provide some demonstrations for the robot to have an
initial understanding of the task, from where to improve with
Reinforcement Learning (RL). This kind of approach would
require the robot to use proper functional models to encode the
task at hand, and also a way to evaluate performance after an
execution in order to improve its behaviour through experience
and repetition. In controlled environments, a roboticist can
define such performance function (reward) to evaluate the
outcome of each execution. But in a real scenario, the robot
must learn such reward function from the demonstrator.
This learning of the reward function is known as Inverse
Reinforcement Learning (IRL).

This work was developed in the context of the project CLOTHILDE ("CLOTH
manlpulation Learning from DEmonstrations"), which has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Advanced Grant agreement No 741930).

Institut de Robotica i Informatica Industrial (IRI), CSIC-UPC, Spain
[acolome, torras]@iri.upc.edu

In general IRL [1], a task is taught to the robot by an
expert demonstator, and the demonstrations are assumed
to be optimal (or close to optimal). Most applications of
IRL consider a discrete action-space state in which, given
a state (and possibly a transition model), each action (or
sequence of actions) taken might have a different reward.
When state spaces are continuous spaces, such as the case
of policy search reinforcement learning [2], the parameters
representing the action taken become the policy, and the
IRL problem becomes that of finding the mapping from
the parameter space to the reward value of each sample.
An optimal policy or a manifold of optimal behaviour are
learned thanks to the demonstrations provided. While many
works in literature deal with IRL in discrete spaces, research
on IRL in continuous spaces is limited. In [3], movement
primitives were used to encode the state space from which to
find an optimal policy given expert demonstrations, [4] also
uses continuous state-action spaces and optimizes the relative
entropy between the empirical distribution with optimal
demonstrations vs a learned one. In [5] Gaussian Processes
(GPs) were used to fit the reward function and maximize the
likelihood between the GP and data. Other recent IRL methods
focus on mathematical guarantees of the continuous IRL
problem in smaller dimensions [6]. However, all these works
assume the availability of (almost) optimal demonstrated data.

Still, human demonstrations are not always perfect. Or
they can also be suboptimal. In this sense, approaches like
preference-based RL [7], [8] rank the demonstrations and
fit a reward function that preserves the ordinality between
the demonstrations. Nevertheless, in the case of a human
teaching a number of demonstrations to a robot, it can be
hard to precisely order them all by performance. In this paper,
we propose to categorize the performance of demonstrations
and/or posterior executions of a task by ordered tiers of
performance in an ordinal probability distribution. Such
qualitative feedback is the kind of evaluation any human
can provide, without needing neither to compare to every
other execution, nor to provide a numerical evaluation. Some
works in the human-cognitive field [9] already point to the
existence of an ordinal encoding of data in the human brain, as
it minimizes the synapse connections necessary to store data.
Moreover, such feedback is much richer than classifying
executions in just two categories, success or failure. The
idea behind this proposed methodology is that an instructor
teaching a robot might fail in some tries, and him/her should
not repeat those demonstrations that are not (almost) optimal
when learning a reward function, but rather being able
to tell the robot its performance was bad and take great

advantage from it when inferring the reward function. And
not restraining to either good or bad performance, but any
number of ordered tiers of performance from which a human
demonstrator can distinguish on eye-sight.

Furthermore, in this paper we propose to combine such
ordinal IRL (OrdIRL) learning method with an end-to-
end framework to learn tasks from scratch. We assume a
number of demonstrations, tagged with their qualitative tier
of performance. We fit those demonstrations with a parametric
model and then perform, if necessary, DR to project it to a
much smaller dimensional space, from where we can build
the reward function. After fitting the framework with initial
data, we can make the robot perform new executions at
those points which we expect to be the most informative
for improving our knowledge of the reward function, or at
those places where we expect task performance to be the
highest, by using Bayesian optimization (BO). Additionally,
with a BO approach, we are capable of finding the underlying
reward function or high-performing samples in very few data
collection executions.

In particular, in this paper we will fit a parametric linear
model for robot trajectories as Movement Primitive (MP) and
then Gaussian Process Latent Variable Models (GPLVM) to
project the MP parameteres onto a submanifold with a much
smaller dimension. Then, with IRL, we will fit the reward
function using ordinal regression and a Gaussian Process
functional model. Once we have built the model, the robot
will perform new executions at parameter points given by the
Upper Confidence Bound (UCB) method for BO, which will
allow the robot to improve both the knowledge of the reward
function and the robot’s performance at the task.

The paper is organized as follows: Sec. II introduces
the concepts and techniques that provide the necessary
background to then propose our methodology in Sec. III. Two
simulated and one real execution experiments are presented
in IV. The paper closes with a discussion in Sec. V.

II. PRELIMINARIES
A. Gaussian Process Latent Variable Models

Gaussian Processes (GPs) [10] are the infinite-dimensional
generalization of multivariate Gaussian distributions. They are
defined as infinite-dimension stochastic processes such that,
for any finite set of input locations x;, ..., x,, the random
variables f(x1), ..., f(x,) have joint Gaussian distributions.
A GP is completely defined by its mean function m(x) and
its covariance function k(x,x’), often referred to as kernel,
that must be symmetric and positive semi-definite. Usually
GPs are expressed as

f(x) ~ GP(m(x), k(x,x)).

GPs can be used for regression models of the form y =
f(x) + €, with € an i.i.d. Gaussian noise, as they provide
closed formulae to predict new values of the response variable
y*, given new input location values x*.

Based on such formulation, Gaussian Process Latent
Variable Models (GPLVMs) [11] and its variations [12]
emerged as feature extraction methods that can be used as

multiple-output GP regression models. In this way, these
models, under a DR perspective, associate and learn low-
dimensional representations of higher-dimensional observed
data, assuming that observed variables are determined by the
latent ones. GPLVMs provide, as a result of an optimization,
a mapping from the latent space to the observation space,
with a set of latent variables representing the observed values.
While GPLVMs are capable of very efficient encoding of
data in a smaller dimensional space compared to other DR
methods, they do not provide a direct mapping from the
original space to the latent space (see Fig. 1).

B. Ordinal Distributions and Regression

In classifying data, probability distributions such as the
Bernouilli distribution or the Categorical distribution [13] are
often used in reinforcement learning, either from a classical
RL perspective [14] or in Deep RL [15]. The categorical
distribution has many applications for classifying in machine
learning. However, categories or labels of data can also have
inherent rankings, such as the grade levels often used in
exams (A > B > C > ...). The same kind of rankings exists
on qualitative evaluations human commonly do (very good,
bad, etc.). In order to fit data labelled with this kind of ranked
information, the ordinal distribution is used.

Gaussian Processes can be used to fit an Ordinal distri-
bution. To do so, the likelihood of a GP for an ordinal
distribution can be defined as in [16], representing the
probability of each modelled category given the GP as:

p(Zi=0]fi)=¢ (aO;fi) (D

p(Zz‘=k|fi)=¢<) (al~C — fz) 2)
p(Zi=C| f;) = <z>(“"1 f’), 3)

where p(Z;) is the random variable of the class label, f; is
the GP prior evaluated on the input of the ¢-th data point, and
ay, are the boundaries of each category. ¢ is the cumulative
density function of a Gaussian. This likelihood function,
a generalization of the probit likelihood function, can be
differentiable and used to fit a GP to ordinal data. However,
given the complexity of the ordinal likelihood prior for a GP,
a variational GP is used instead [17].

C. Bayesian Optimization

Bayesian Optimization [18] is a very common approach to
find the extrema of black-box functions, i.e., finding optimal
values of functions we do not have an analytical expression
of, but which can be evaluated at given inputs. In general,
BO techniques present two elements: a stochastic surrogate
model of the function to optimize, and an acquisition function
that uses the surrogate model to assess which point in the
search space is likely to have the best reward or will provide
the most information gain on the surrogate model.

In our case, we will use a BO method called Upper
Confidence Bound and the obtained surrogate model will
be our estimation of the reward function based on the ordinal

OrdGP

Fig. 1: Schematic view of the variables and their interrelations.
A trajectory T can be executed and its qualitative performance
(ordinal variable o) can be observed. This observation is a
projection from an unknown true reward r. The trajectory T
can be converted to a weight vector w. The weight vectors
are used as input to find a latent space representation of
data points, z, from which the weight vectors w = I1(z) can
be inferred. Also, our IRL inference model is built to find
an estimation of the reward, 7(z). A prediction function can
also estimate w from z.

data feedback. The acquisition function is defined as in
[19], with the term x weighting the tradeoff between the
expected function value p(x) and the uncertainty at such
point, represented by its standard deviation o (x).

UCB(x) = pu(x) + ko(x). “4)

The acquisition function in Eq.(4) therefore leverages the
sum of the surrogate mean value, plus « times its standard
deviation. This function is then maximized in order to find
the best point for which to next evaluate the function and
obtain a new sample:

Xsample = ArgMax, o UCB (X) 5)

III. METHODOLOGY

Let us assume that we have a set of demonstrated data in
the shape of motion parameters wy, for each demonstration
k = {1,..., K}, with K being the number of provided samples
with their qualitative ordinal feedback o = {01, ..., 0%}, that
is a projection of the true unknown reward function:

QLR 7 (6)
wkﬁrk»%ok (7)

where Obs is the observed qualitative reward.

In this work, our aim is three-fold: 1) find a stochastic
approximation 7 of the true reward function r given the
Data = {(w1,01), ..., (WKk,0K)}, 2) find samples the robot
can execute autonomously with the supervision of the teacher
so that they bring the best knowledge possible to 7 when
qualitatively evaluated, and 3) within the same architecture,
generate samples that will likely yield the best 7.

Given the data, we can fit a variational GP with an ordinal
likelihood function as in Eq.(1). Then, the GP can be used
to improve the model as explained in the following section.

A. Bayesian Optimization for improving the model

After an initial guess of the reward function has been
defined, the system can ask for more samples. The idea
behind this is that, either if we want the robot to improve
its performance on the task or we want it to better learn
the reward function, randomly-generated samples might not
provide enough information to our system. Therefore, we use
BO in order to find the points in the latent space that will
provide the most information. Among the BO methods [20],
we use UCB (see Sec. II-C). In the acquisition function of
UCB, there is a parameter ~ that sets the relative importance
between the mean and the variance (or how imprecise is the
prediction of the GP at that point). In this paper, we propose
to tune this x factor depending on whether we want the new
samples to explore the IRL model (improve it) or exploit it
(use the IRL model to improve the behaviour at the task).

In a purely-exploiting UCB method, the agent would take
x = 0 and find the point with the best expected outcome.
However, this would only be useful in a one-shot sample,
as few information would be provided to the model for
future sampling. On the other hand, setting x = o0 would
be equivalent to removing p from Eq.(4), thus resulting in
sampling on the maximum variance, which is the maximum
Shannon entropy* sample for a Gaussian. In practice, we will
use neither of these extreme values, as we want to allow for
some exploration when exploiting and favour higher reward
regions when exploring:

Exploiting the model means we will use the standard UCB
method and set k = 2, meaning we will add two standard
deviations to the mean in order to find the next sampling
point. This value of x showed to be a good tradeoff in our
previous works [21]. Exploring the model results in a new
that modulates the relation between the effects of exploration
(find best-performing sample) and exploitation (find sample
that provides the most information to the IRL model). In
order to find a middle-ground between x = 0 and k = o0, we
propose to create a function x(z, Data) that favours regions
with fewer samples. From the data, we evaluate the span S
of the searching box in the latent space used for BO, that
includes the difference of upper and lower bounds for each
dimension. Then, we use a factor A € (0,0.5) indicating
a width of the interval around a given point z, which will
be In(z) = (z—A-5/2,z+ A-5/2). Now, the expected
amount of samples in this interval if the sample distribution
was uniform, is Esgmpies[Ir(2)] = ANs, N, being the total
number of samples. Therefore, if n(7)(z)) is the amount of
actual samples in such interval, we define:

Esamples [I)\(Z)]
————,10 .
n(Ix(2))
This function will provide a higher value of k(z) when
the sample density is much smaller than expected, as well

K = min (2 . (8)

*The Shannon entropy of a probability distribution p(z) is H(z) =
— {p(z)logp(x)dx and, for a Gaussian distribution, is H(z) =
%(10g(27r02) + 1). In the case of a multivariate normal distribution, it
is also H(z) = A+ %log(det(Z)), with A a constant. In both cases, the
maximum entropy point is that with the highest variance/covariance.

Algorithm 1 Active sampling of the model

Input: Initial reward model 7y ~ GP(Data)
Number of new samples to generate K"¢".
Latent Space projection II.
Output: Updated model # ~ GP(Data)
1: Initialize 7 = 7
2: for s=1: K" do
3 x = FindKfactor(r, Data)
4: Find z, = argmax,UCB(#, z)
5: Execute policy II(z;), obtain category feedback o
6 Append(Data, (zs, 05))
7: Update model with new data # ~ GP(Data)
8: end for

as a smaller value when there are already many samples in
that region. In the case when the samples in [)(z) are the
amount expected, x = 2 which is the value for exploitation.

Also note that, for certain values of A and samples close
to the sampling bounds, I(z) will become the intersection
between itself and the sampling bounds, and the values in
Eq.(8) will change.

B. Higher Dimensional Problems

In order to improve the fitting of the reward model, we will
use BO. In particular, UCB. However, BO may struggle when
searching for optimal solutions in high-dimensional spaces.
In the case of parametrized robot motion policies, it is often
common to use parametrizations of a large dimensionality
(larger than one hundred for several degrees of freedom).
Therefore, given the impossibility to perform optimization
in such large-dimensional spaces, we perform DR on the
parameter space in order to have a more tractable dimension.

While linear DR techniques such as PCA can be useful,
their linearity may often require a larger latent space di-
mension in order not to lose too much information on the
latent space projection. Therefore, we used GPLVM (see
Sec.II-A) to project the policy parameters to a much smaller
dimensional space. Algorithm 1 shows the procedure to update
an initial ordinal GP model of the reward, given that the policy
parameters w are assumed to be dependent on a latent space
variable z, from which we can reconstruct w.

IV. EXPERIMENTAL RESULTS

In this section, we will perform three experiments. The
first experiment is a simple, two-dimensional toy example. As
such, we will not use DR techniques nor motion primitives.
The second experiment will consist in processing a dataset
of time-dependent synthetic data with a designed reward
function, and in the third experiment we will test the method
on a real robot folding a cloth garment on a table. For the
second and third experiments, we will use a linear model:

yi =Tl w+ey, 9)

as a motion characterization, where \II,T is a set of equally-
spaced in time Gaussian kernels, €, is the error fitting the
linear model, and w is a trajectory weight obtained by least

squares, similarly as in a Probabilistic Movement Primitive
[22], and GPLVM as a DR technique. This will result in
a 3-layer motion representation. Each trajectory maps to a
trajectory weight vector, that maps (through GPLVM) to a
latent space. From such latent space, the estimated reward
can be evaluated, and compared to the reward value obtained
with the true function evaluated on the reprojection of the
latent space to the MP parameters and the whole trajectory.

In all experiments, we will use a Variational GP model
[10] with an ordinal likelihood as in Sec.II-B to fit the data
to a model 7. We used a Matern32 kernel and set the Sigma
(noise) value to o = 0.25, which is a fourth of the span of
each category. We used Automatic Relevance Determination
(ARD) for the lengthscales of the kernel, i.e.: a different
lengthscale for each dimension, and initialized at one tenth
of the span of each dimension. Moreover, we define the tiers
of performance as integer values (0,1, 2,...), and therefore
set the class boundary parameters a; in Eq. (1) to be the
mid values on them (0.5, 1.5, ...). The scale of the ordinal
distribution tiers is not relevant for the problem, as the reward
function for a reinforcement learning problem is usually a
relative measure between samples.

A. Low-dimensional toy task

As a first test to evaluate the OrdIRL method without DR,
we used a simple one-dimensional problem with a continuous
action variable. The problem consists in setting the pitch
parameter of a projectile motion, given a fixed initial velocity,
in order to land at a certain point considering a constant initial
speed. Each sample x has an associated reward depending
on the distance of the landing point to a target, of which we
extract the observed ordinal feedback o as

o(r) = {M 'CJ’

Tmax — Tmin

(10)

where rnin and rm.x were predefined bounds on the error
values.

This problem is of interest because it has two optimal
values: for a certain angle «, the landing point is the same as
for 3 = 5 —a. In Fig. 2 we observe a set of 20 initial samples
and the ordinal GP trained with them (upper left) with C' = 3
categories. However, no samples of the top category were
provided. The value function used to generate samples can be
seen in the upper right plot, where, after a common sample at
0.36 the x = 2 exploitation policy focuses on that region of
the sampling space as its expected reward is already higher
than the UCB where the other optimal value is. Meanwhile,
the variable x method distributes the samples more evenly
and is capable of finding both optimal regions in two samples.
Note that another issue encountered when fitting GPs with an
ordinal likelihood function is that, as the changes from one
class to another are rather abrupt, the variance in the bounds
separating one class from another grows, forcing the UCB
method to focus sampling on the edges of the classes. This
causes a premature convergence on the exploitation policy
that concentrates the samples on the same point, but it is
mitigated by the variable x policy.

2.0

1.5

1.0

0.5

0.2 04 0.6 038 1.0

Pitch angle [rad]

1.2

0.0 0.2 04 0.6 08 1.0

Pitch angle [rad]

P
3 o
N
PN Pl
o -;! " P
put 1Y Y | ol
22 i 7
m v
@
1
0
00 0.2 04 06 08 1.0 1.2 1.4 1.6

Pitch angle [rad]

0.4 0.6 0.8 1.0

Pitch angle [rad]

1.2

Fig. 2: Samples used for testing the method in one dimension with N = 20 initial samples. Upper left, we see the initial model
and its samples (black markers), on the upper right plot, we see a later iteration of the method with UCB for exploitation
(k = 2, in blue) and exploration (with variable k in red), where we can distinguish how the red sample favours unexplored
areas, while the blue sample focuses on places with more expected reward, despite having other samples close. The lower
plots show the final reward model by using the exploration r (left) and exploitation r (right), both after 10 added samples.

B. High-dimensional illustrative task

We used a set of 3-D trajectories synthetically generated
that present a high variability in some areas and very low
variability in others, as seen in Fig 3. As ground truth reward,
we used the sum of the squared distances to two via-points
(0.65 at t = 30% and —0.5 at the end for all DoFs). We
generated 15 random trajectories as initialization. For each
trajectory T, we evaluated the ground truth reward r and
obtained its observed category as in Eq. (10). Then trajectories
were mapped into weight vectors wj, as in Eq. (9). Once
having these weight vectors, we used a standard GPLVM
(with a Matern32 kernel) to map these onto a variable z in the
latent manifold. Starting with this initial model, we performed
both exploration and exploitation following our method. For
exploitation, we used x = 2 and measured the average value
of the new samples generated, whereas for measuring the
performance of exploration, we generated 10000 samples z
in the latent space and evaluated their reward in two fashions:
First, the IRL mapping from the latent space to the estimated
reward, and second, projecting z; upwards (see Fig. 1) and
evaluating the known true reward. We use their difference as
the Mean Squared Error (MSE) for a given model.

The results in Table I show that the greedier x policy

generates better samples on average, as one could expect.
Also, if we take a look at the IRL model MSE in Fig. 4, we

0.5

0.0

Component

0 20 40 60 80
Trajectory percentage

100

Fig. 3: Sample trajectories (for one of the DoFs) used for
testing the method.

can see that the eploration policy with variable « is capable
of reducing the error on the reward model faster.

C. Robot execution

In order to test the method in a real scenario, we set up
a proof of concept experiment in which a robotic arm (a
Barrett’s WAM robot) would partially fold a hand towel on
a table (see Fig. 5). The aim of the experiment is then to
have the robot learn the reward function while it finds a
good policy. In order to assess how good the folding was, we

1.5
&l
=
o
E 2 Categories
2 1o -
4 3 Categories
= 5 Categories
w \
o 1
= 0.5]
L
[N
LY
0.0
V] 5 10 15 20
BO samples

Fig. 4: MSE of the fitting of the reward. The continuous lines
represent the variable k policy, while dashed lines represent
exploitation policy (k = 2)

Categories | 2 3 5
Explore -1.079 -1.208 -0.832
Exploit -0.931 -1.081 -0.664

TABLE I: Mean reward of the samples used

provided a qualitative feedback of each execution to the robot,
with three tiers of performance: The top tier (2) corresponds
to the fold of the cloth garment being in a delimited region
marked with a number 2, as in Fig.5. The intermediate level
of performance (1) would represent the fold being in a region
adjacent to the previous one, in either sides, marked with a
1. The lower tier of performance would correspond to the
robot placing the cloth fold too far from the preferred area.

We kinesthetically taught the robot 20x 6-dimensional
cartesian trajectories of around 5s duration. We recorded
the data and aligned trajectories in time. Then we used a
linear model as in Eq. (9). We used 12 kernels per degree
of freedom, adding up to a 72-dimensional parametric policy.
The policy was then projected to a 3-dimensional latent space
with GPLVM (see Sec. II-A). We then fit an OrdGP model to
the unknown reward function using a Matern32 kernel with
ARD and, as in the previous experiments, we fixed o = 0.25.
Then, using UCB we calculated batches of 5 different new
samples to execute, evaluated their level of performance, and
added to the model. In order to evaluate the experiment,
given that the true reward function was unknown, we used an
exploitation x = 2 and measured the mean observed reward
on the executions of each batch. In Table II, we see that
the demonstrations had an average of 7 = 0.85 (out of the
maximum of 2), and this value increased in each batch of
samples until, at the fourth iteration, the 5 samples generated
performed the task successfully.

Iter. 3 Iter. 4
1.60 + 0.49 2

Iter. 2
1.40 + 0.80

Tter. 1
1.20 +£0.40

Iter. 0
0.85+0.73

TABLE II: Mean reward of the samples at each iteration +
their standard deviation. Note that Iteration 0 consists of 20
training samples, while the rest of the iterations consist of 5
new samples obtained through UCB.

Fig. 5: Setup for the robotic experiment.

D. Robustness wrt. noise

In order to assess the robustness of the method, we will use
the same kind of data as in experiment IV-A and check the
model fitting error for a different amount of samples provided,
as well as by adding noise to the samples. Moreover, we
will compare the results of the OrdIRL with the Trajectory-
ranked Reward EXtrapolation (T-REX) method in [8]. In order
to implement T-REX in a small data framework, we used
Gaussian processes instead of neural networks and the loss
function defined in [8], adapted for single-shot evaluations:

L(w)=— Z lo

0;<0;

exp(ry(@) L r
exp(r;(x)) + exp(ri(z))

1D
where r; is the GP-predicted mean reward, given its parame-
ters w at input point z. The term Aw”w is a regularization
term for which we used A = 1072, We then optimized the
GP’s parameters w using the same kernel function as for
OrdIRL, but minimizing the loss defined in (11). Note that
those samples {7, j} so that {o; = 0;} are not considered in
the loss function. In Fig. 6, we see an example of how the
two methods fit a certain dataset consisting of 20 samples. In
it, we see how the OrdIRL presents a smoother profile in both
the mean and variance. The T-REX adapted to GPs with small
data preserves the preferences in-between the parameters but
overfits a bit on the samples, generating undesired oscillations
on the mean and a high variance in-between samples.

To test the robustness of the method, we added noise to
the measurements. When evaluating the true reward of each
sample and converting it to a category, we added noise with
different variance to the true reward before converting it to
an ordinal category. In Fig. 7 we see the fitting results for a
different set of input samples by adding noise with a variance
of 0.25 to the reward, also yielding a better fitting with the
OrdIRL method. Table III shows the Root Mean Squared
Error (RMSE) of an uniform sampling on the input span and
95% confidence interval (with 5 randomized samplings of
the input samples) in fitting the true reward function with
both methods, depending on the variance of the added noise.
Note that the RMSE of OrdIRL is overall smaller.

noise var: 0 0.25 0.5
OrdIRL 0.226 + 0.091 | 0.336 +0.113 | 0.359 + 0.069
T-REX 0.302 + 0.108 | 0.409 + 0.100 | 0.450 + 0.085

TABLE III: Mean fitting error wrt. noise variance

Reward

F?ietch am;'ie [rad]w
Fig. 6: Comparison of the fitting of ordinal data with OrdIRL
(blue) and T-REX (red). The ground truth reward is shown
in black, with its associated categories in gray.

V. CONCLUSIONS

In this paper, we have presented an IRL method that
can find the underlying reward function of a task, given
an ordinal assessment of the quality of the demonstrated
motions. The method is capable of finding such IRL function
in a continuous state-action space, and with a limited amount
of samples. We tested our method in three experimental
scenarios of increasing complexity, and the method was able
to effectively build the reward function and/or find a good
policy in them. We also compared the proposed method
to a preference-based one and ours showed to work better
in a small data scenario. This kind of methods are user-
friendly and can open the door for a wider population being
able to teach new tasks to robots, thanks to the use of an
ordinal distribution that matches the qualitative performance
tiers in demonstrations/executions. Moreover, the method
takes benefit of wrong demonstrations without the need of
discarding data, thus being sample-efficient, and thanks to
DR techniques, we can still perform efficient optimization in
large-dimensional spaces. However, using DR for projecting
the data onto a much smaller dimensional space also limits
the exploration capabilities, as the exploration in the latent
space is still within a sub-manifold of the policy parameters
(w in this paper). A further analysis of this limitation is to
be done in a future work by, for example, perturbing II(z)
in the higher-dimensional space, and then recalculating the
GPLVM. Other further developments on the topic include
exploring feature-dependencies in the policies.

REFERENCES

[1] P. Doshi, “A survey of inverse reinforcement learning: Challenges,
methods and progress,” Artificial Intelligence, vol. 297, 2021.

[2] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and trends in Robotics, vol. 297, pp.
1-142, 2013.

[3] N. Aghasadeghi and T. Bretl, “Maximum entropy inverse reinforcement
learning in continuous state spaces with path integrals,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2011, pp. 1561-1566.

Reward

F?ietch am;?e [rav:i]10
Fig. 7: Comparison of the fitting of ordinal data with OrdIRL
(blue) and T-REX (red) with added 0.25 noise.

[4] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse
reinforcement learning,” in Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), 2011, pp. 182-189.

[5] S. Levine and V. Koltun, “Continuous inverse optimal control with
locally optimal examples,” in Int. Conf. on Machine Learning (ICML),
2012, p. 475-482.

[6] G. Dexter, K. Bello, and J. Honorio, “Inverse reinforcement learn-
ing in the continuous setting with formal guarantees,” ArXiv, vol.
abs/2102.07937, 2021.

[71 L. El Asri, M. Geist, R. Laroche, and O. Pietquin, “Score-based
inverse reinforcement learning,” in Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS), 2016, p. 457-465.

[8] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating beyond

suboptimal demonstrations via inverse reinforcement learning from

observations,” in Int. Conf. on Machine Learning, 2019, pp. 783-792.

A. Pitti and et al, “In search of a neural model for serial order: A brain

theory for memory development and higher level cognition,” /IEEE

Transactions on Cognitive and Developmental Systems, vol. 14, no. 2,

pp- 279-291, 2022.

[10] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for
machine learning,” in Summer School on Machine Learning. The
MIT Press, 2006.

[11] N. Lawrence and A. Hyvérinen, “Probabilistic non-linear principal
component analysis with gaussian process latent variable models.”
Journal of Machine Learning Research, vol. 6, no. 11, 2005.

[12] P. Li and S. Chen, “A review on gaussian process latent variable
models,” in CAAI Transactions on Intelligence Technology,, vol. 1,
2016, pp. 366-376.

[13] Y. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate
Analysis Theory and Practice. Springer Science Business, 1975.

[14] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional
perspective on reinforcement learning,” in Int. Conf. on Machine
Learning (ICML), vol. 70, 2017, p. 449-458.

[15] G. Barth-Maron and et al, “Distributional policy gradients,” in Int.
Conf. on Learning Representations, 2018.

[16] W. Chu and Z. Ghahramani, “Gaussian processes for ordinal regression,”
Machine Learning Research, vol. 6, no. 5, pp. 1019-1041, 2005.

[17] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable variational
gaussian processs classification,” in Artificial Intelligence and Statistics,
2015, pp. 351-360.

[18] N. Koganti, T. Tamei, K. Ikeda, and T. Shibata, “Bayesian nonpara-
metric learning of cloth models for real-time state estimation,” IEEE
Transactions on Robotics, vol. 33, no. 4, pp. 916-931, 2017.

[19] P. Hennig and C. J. Schuler, “Entropy search for information-efficient
global optimization,” Journal of Machine Learning Research, vol. 13,
no. 57, pp. 1809-1837, 2012.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2016.

[21] J. A. Delgado-Guerrero, A. Colomé, and C. Torras, “Contextual policy
search for micro-data robot motion learning through covariate gaussian
process latent variable models,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2020, pp. 5511-5517.

[22] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Int. Conf. on Neural Information Processing
Systems, 2013, p. 2616-2624.

[9

—

	Introduction
	Preliminaries
	Gaussian Process Latent Variable Models
	Ordinal Distributions and Regression
	Bayesian Optimization

	Methodology
	Bayesian Optimization for improving the model
	Higher Dimensional Problems

	Experimental Results
	Low-dimensional toy task
	High-dimensional illustrative task
	Robot execution
	Robustness wrt. noise

	Conclusions
	References

