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Abstract This paper proposes a distance-based formulation to solve the inverse

kinematics of what is known as the generalized Lobster’s arm: a 6R serial chain

in which all consecutive revolute axes intersect. Since the solution of the inverse

kinematics of a general 6R serial chain comes down to finding the roots of a 16th-

degree polynomial, one might think that this polynomial also contains the solutions

to the inverse kinematics of 6R serial chains with special geometric parameters as

a mere particular case. Nevertheless, under certain geometric circumstances various

problems can appear. Some are of numerical nature, but others are fundamental

problems of the used method. For that reason, it is still useful to study 6R chains

with special geometric parameters, especially when the new formulation leads to

a simpler solution, gives new insights, and provides new connections with other

problems, as is the case in this paper.

1 Introduction

In 1841, in a communication addressed to the Philosophical Society of Cambridge,

Robert Willis (1800-1875) showed that the joints of a common crab’s claw work in

the same way as those of what we would today classify as a 5R kinematic chain [1].

Willis’ description appeared later summarized at the end of his influential book

“Principles of Mechanism” [2, pp. 461-463]. This description was accompanied by

the drawing in Fig. 1. He observed that the crab’s claw is composed of six rigid

bodies (denoted by �, �,�, �, � , and � in the drawing) connected in series through

five revolute joints (denoted by 1, 2, 3, 4 and 5 in the drawing). What makes the

arrangement of these five joint axes remarkable is that any two consecutive rotation

axes in the chain intersect.
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Fig. 1 Willis’ drawing of the common crab’s claw

used to explain how its joint axes are arranged

(adapted from [2, p. 462]).

In 1979, J. Duffy and S. Derby,

as a result of a suggestion by

K. H. Hunt —who was aware of

Willis’ observations— studied the in-

verse kinematics (i.e., the determina-

tion of joint angles required to move

the end-effector to a desired position

and orientation) of what they called

the generalized lobster arm [3]. This

arm is a 6R kinematic chain where

every two consecutive axes intersect

(Fig. 2). The resolution of this prob-

lem was seen as an intermediate step

worth to be solved before address-

ing the same problem for the general

6R arm which, few years earlier, was

ranked as the “Mount Everest of kine-

matic problems" by F. Freudenstein [4]. Curiously enough, as we will see later,

the arrangement of joints in the generalized lobster arm does not provide much

simplifications with respect to the general 6R arm, at least in the number of solu-

tions. J. Duffy and S. Derby showed, using a long and complicated process, how

to reduced this inverse kinematics problem to the computation of the roots of a

24th-degree polynomial, which is now seen as an outdated result.

In 1992, V. Murthy and K. J. Waldron revisited the problem in [5]. They solved it

including a further generalization: the intersection between the second and the third

axis and between the fourth and the fifth axis were no longer required. The standard
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B(31) H(36, 06, U6)

Fig. 2 A generalized lobster’s arm, as defined by Duffy and Derby, is a 6R serial kinematic chain

where all consecutive rotation axes intersect. In terms of standard DH-parameters, this means that

08 = 0 for 8 = 1, . . . , 5.
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DH-parameters of this kind of 6R serial chain appear in Table 1, where the parameters

marked with an asterisk are actually irrelevant because they can be incorporated in

the base and the hand transformations. In Fig. 2, these two transformations are

represented by B(31) and H(36, 06, U6), respectively. Murthy and Waldron reduced

the resulting system of equations to a single univariate polynomial equation of

degree 16. They also demonstrated that the used elimination process introduced no

extraneous roots. This implied that the end-effector could reach a given position and

orientation in at most sixteen different ways. This was an important improvement

with respect to the 24th-degree polynomial solution of Duffy and Derby.

Table 1 Standard DH-parameters of

the 6R serial chain analyzed by

Murthy and Waldron [5]. The gener-

alized lobster’s arm can be seen as a

particular case of this chain in which

02 = 04 = 0.

Link \8 38 08 U8

1 \1 * 0 U1

2 \2 32 02 U2

3 \3 33 0 U3

4 \4 34 04 U4

5 \5 35 0 U5

6 \6 * * *

Six years earlier, in 1986, E. J. F. Primrose had

already proved that the general 6R robot could

have up to 16 inverse kinematic solutions. How-

ever, due to the complexity of the formulas, he

could not come up with a way to remove the 16 re-

dundant solutions of a polynomial equation of de-

gree 32 [6]. This was considered as an important

landmark in the history of kinematics. Neverthe-

less, in 1984, H.-Y. Lee already devised a method

to explicitly obtain the 16th-degree polynomial

in his Master Thesis written in Chinese [7]. This

method became known to the western world when

it appeared four years later in [8, 9]. Subsequently,

Raghavan and Roth [10, 11] reformulated it in

a cleared way using DH parameters. Since then,

many other methods and variations have appeared

leading to an extensive literature on the topic that

we will not review here. However, it is worth ob-

serving that most methods reduce the problem to a single univariate polynomial in

the one of the joints half angle tangent, and all the remaining joint variables follow

from linear equations once the roots of the univariate polynomials are found.

Certain values of the kinematic parameters may reduce the degree of the resultant

polynomial. Nevertheless, the intersections between the revolute axes in the 6R

serial chain studied by Murthy and Waldron also lead to a 16th-degree polynomial.

Unfortunately, Murthy and Waldron did not discuss the case in which all consecutive

axes intersect. Thus, to the best of our knowledge, the question concerning the

number of possible solutions for the inverse kinematics of the generalized lobster’s

arm remained open. We clarify this point in Section 2.

Since the roots of a 16th-degree polynomial equation gives the solution of the

general case, one might think that it also contains the solutions to 6R serial chains

with special geometric parameters as a mere particular case. Nevertheless, as it

was pointed out in [13], under certain geometric circumstances, various problems

appear. Some are of numerical nature, but others are fundamental problems of the

used method. For that reason it is still useful to study 6R chains with special geometric

parameters, such as the one discussed in this paper.
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Fig. 3 (a) Bar-and-joint framework associated with the generalized lobster’s arm. The lengths of

the bars in blue and dotted red are determined by the geometric parameters of the arm; and those

in green, by the closure condition. (b) 4-3 Gough-Stewart platform whose associated bar-and-joint

framework has the same topology as that of the generalized lobster’s arm.

The rest of this paper is organized as follows. Section 2 describes how the inverse

kinematics problem of the generalized lobster’s arm can be reformulated as the

position analysis of seven points in R3 where some of their pairwise distances are

known. This comes out to be equivalent to solving the forward kinematics of a

4-3 Stewart-Gough platform. Then, Section 3 shows how to solve this problem by

computing a distance inversion in a strip of tetrahedra and Section 4 presents an

example. Finally, the main contributions are summarized in Section 5.

2 A distance-based formulation

From a purely geometric point of view, a generalized lobster’s arm can be described as

the bar-and-joint framework depicted in Fig. 3(a). The points %2, . . . , %6 correspond

to the intersections between the six rotation axes and %1 and %7 can arbitrarily be

taken on the first and the last rotation axes provided that they do not coincide with

%2 and %6, respectively. The origin of the reference frames at the base and at the

end-effector can be placed at %1 and %7, respectively. Then, we have that

|%8%8+1 |
2
= 32

8 , 8 = 1, . . . , 6. (1)

These distances are associated with the bars in solid blue in Fig. 3(a). Moreover,

since the angle between consecutive joint axes is known and constant, we also have,

using the cosine rule for supplementary angles, that

|%8%8+2 |
2
= 32

8 + 32
8+1 + 23838+1 cosU8 , 8 = 1, . . . , 5. (2)

These distances are associated with the bars in dotted red in Fig. 3(a).
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When the end-effector of the lobster’s arm is fixed at a given location with respect

to its base reference frame, the set of points {%1, %2, %6, %7} defines a tetrahedron

whose edge lengths are all known. The corresponding closing bars are depicted in

light green in Fig. 3(a).

As a result of the above representation, the inverse kinematics problem of the

generalized lobster’s arm comes down to obtaining all the possible 3D embeddings

of the bar-and-joint framework in Fig. 3(a). In general, one must be careful on how

these embeddings are performed because they must respect the orientations of the

involved tetrahedra [15] but, since in this case the framework contains just one

tetrahedron, this can be ignored as it is done, for example, in [16].

Another interesting outcome of formulating the problem in terms of distances is

that we can straightforwardly conclude that the inverse kinematics of the generalized

lobster’s arm and the forward kinematics of the 4-3 Gough-Stewart platform in

Fig. 3(b) are equivalent position analysis problems. It is worth noting that this

equivalency is not related to the series-parallel duality studied in [5]. Therefore,

since the forward kinematics of this particular Gough-Stewart has up to 16 real

solutions [15], so has the inverse kinematics of the generalized lobster’s arm. In

other words, the fact that any set of consecutive revolute axes of a 6R arm intersect

at arbitrary angles does not reduce the number of solutions of its inverse kinematics.

Some reductions are however obtained in the case that the axes intersect at right

angles. Mavroidis and Roth gave a detailed investigation of these latter cases in [14].

3 The resolution process

Although it is not straightforward to see it at first glance, it is not difficult to express

32
57

= |%5%7 |
2 (a known distance) as a function of 32

36
= |%3%6 |

2 (an unknown

distance). This is a one-to-many mapping whose inversion leads to a 16th-degree

polynomial in the unknown distance. Each real root of this polynomial leads, using

a sequence of trilaterations, to a valid configuration of the bar-and-joint framework.

A detailed explanation of this method can be found in [17]. Next, we just give a brief

summary.

First of all observe that, if we remove the bar %5%7 and we add the bar %3%6

in the bar-and-joint framework in Fig. 3, the resulting framework can be seen as

a strip of four tetrahedra: %7%1%2%6, %1%2%6%3, %2%6%3%4, and %6%3%4%5. Each

tetrahedron shares a face with the following one in the strip. For example, the first and

the second one share the face %1%2%6. Now, let us suppose that the two neighboring

tetrahedra in Fig. 4(left) belong to this strip. The squared distance between %; and

%< can be expressed as (see [12] for details):

32
;,< =

2

� (8, 9 , :)

(

� (8, 9 , :, ;; 8, 9 , :, <)

�

�

�

�

B;,<=0

±
√

� (8, 9 , :, ;) � (8, 9 , :, <)

)

. (3)
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where the terms of the form � (·) stand for Cayley-Menger determinants or bideter-

minants, and the ± sign accounts for the two possible solutions depending on the

relative orientation between the two tetrahedra.

%8

%9

%9

%:%:

%; %;

%<%<

Fig. 4 Substitution rule in a strip of tetrahedra that

permits reducing by one the number of tetrahedra

in the strip.

If one of the points in the set

{%8 , % 9 , %: } does not belong to any

other tetrahedron in the strip, it can

be removed from the strip provided

that a bar connecting %; and %<, with

length given by Eq. (3), is added [see

Fig. 4(right)]. This reduces the num-

ber of tetrahedra in the strip by one.

Then, by repeating this operation three

times, we end up with an expression

for the known squared distance 32
57

as

a function of the unknown squared

distance 32
36

. This expression contains radicals, and singularity factors associated

with the shared faces between consecutive tetrathedra in the strip, that can be easily

cleared to finally obtain a closure polynomial of 16th-degree (see [17] for details).

4 Example

Let us consider the 6R kinematic chain with the standard DH-parameters given in

Fig. 5(a). We can use the method described in the previous section to determine the

joint angles required to move the end-effector to the location, with respect to the

base reference frame, defined, for instance, by

E = RG (−2.4019) RI (0.7047) T(0, 0,−2.2744). (4)

For this particular example, we obtain 14 real solutions. The corresponding join

angles appear numbered in Fig. 5(b) and the corresponding graphical representation

of the arm configuration in Fig. 5(c).

Alternatively to the described method, we could straightforwardly use the im-

plementation of the celebrated Manocha-Canny’s method [18], available at [19].

Unfortunately, this implementation delivers 18 solutions, six of them being erro-

neous. These spurious solutions appear in Fig. 5(c) without number, and the missed

solutions are marked with an asterisk.

5 Conclusion

We have derived a 16th-degree polynomial whose roots determine the inverse kine-

matics solutions of the generalized lobster’s arm. Contrarily to other methods that

also derive closing polynomials, the one obtained here needs no variable elimina-
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(a)

Link \8 38 08 U8

1 \1 1.0000 0 1.2661

2 \2 1.0000 0 1.9058

3 \3 1.5969 0 2.3505

4 \4 1.2247 0 1.6116

5 \5 1.0000 0 1.3181

6 \6 1.0000 0 2.7411

(b)

sol. \1 \2 \3 \4 \5 \6

1 0.3529 -2.1181 -0.7380 0.1745 -0.7304 1.9820

2 0.3321 -1.5990 0.9899 -0.1750 0.8327 0.1452

3 0.3293 2.4415 0.7239 -0.1752 1.7406 1.9539

4 0.2668 -0.6467 -0.6026 0.1863 -1.4280 0.9062

5 0.2633 2.8899 0.5955 -0.1873 1.4031 1.6535

6 0.4520 0.5264 -1.2307 0.1923 -2.3244 -0.2700

7 0.1679 3.0171 -1.4765 0.2258 -1.3087 -2.9700

8* 0.0836 -0.1470 1.6851 -0.2728 1.7280 -1.2528

9* 1.8664 -0.4997 -1.7695 1.1613 2.3125 -2.0415

10 2.4236 -3.1147 1.4208 -1.5051 -1.2302 -3.0822

11 3.0179 -3.0882 -0.5596 1.7591 1.2549 1.5303

12 3.0816 -1.9218 -0.9766 1.7763 2.1124 2.4124

13 -2.4803 2.1982 -0.6337 1.7982 0.7401 0.8245

14 -2.5240 2.3406 0.8787 -1.8062 -0.7739 2.2421

1.8664 2.7047 -2.0793 -0.1201 -3.1357 2.5302

0.0836 2.2749 -0.4562 -1.3347 1.5828 -2.8315

2.9407 -2.6665 0.8593 -1.9783 2.2324 2.6025

2.6512 -3.1377 -0.2420 1.5604 -3.0005 0.7550

154.9700 -119.1354 -6.8803 -179.6604 144.9683 1.5549

130.3419 -26.1367 -76.4750 90.6894 -162.2357 1.5229

1 2 3 4 5

6 7 8 9 10

11 12 13 14

(c)

Fig. 5 Using the method described in this paper, 14 real solutions are obtained for the inverse

kinematics of the arm with the DH-parameters given in (a) and the end-effector located at Eq. (4).

These solutions are numbered from 1 to 14 in (b), and the corresponding configurations are depicted

to visually verify their correctness in (c).



8 F. Thomas and J. M. Porta

tions. Moreover, the polynomial variable is a distance, and all its coefficients also

come from operations with distances. No angles are involved at any point. We have

also shown how Manocha and Canny’s method fails to deliver the correct solutions

for the analyzed 6R serial arm. As Dietmaiyer already observed, this is a common

problem for general methods when some parameters are set to zero.
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