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Abstract— In this paper, we present a learning approach to
facilitate the teaching of new board exercises to assistive robotic
systems. We formulate the problem as the learning of action
models using Boolean predicates, disjunctive preconditions,
and existential quantifiers from demonstrations of successful
exercise executions. To be able to cope with exercises whose
rules depend on a set of features that are initialized at the
beginning of each play-out, we introduce the concept of dynamic
context. Furthermore, we show how the learnt knowledge can
be represented intuitively in a graphical interface that helps the
caregiver understand what the system has learnt. As validation,
we conducted a user study in which we evaluated whether
and to which extent different types of feedback can affect the
subjects’ performance while teaching three types of exercises:
(1) sorting numbers; (2) arranging letters; and (3) reproducing
shapes sequences in reversed order. The results suggest that
textual and graphical feedback are beneficial.

I. INTRODUCTION

Socially Assistive Robotics (SAR) is a field of robotics
that provides assistance through social rather than physical
interaction [1]. SAR has been shown to be a powerful
tool to assist caregivers in cognitive training, engaging and
evaluating mild dementia patients [2]. However, one of the
main limitations is that they are not usually developed to
be easily re-programmed [3] [4]. Drawing inspiration from
recent work on learning action models [5] and high-level
features for classical planning [6], we have recently explored
the idea of rule learning for simple games [7].

In this paper we present the INPRO (Intuitive
Programming) learning framework. Unlike inverse reinforce-
ment techniques [8], INPRO uses much less data to infer the
exercise’s rules. Moreover, INPRO is much more explainable
since rules are obtained as first-order logic descriptions that
can be easily translated to textual and graphical feedback. IN-
PRO’s purpose is enabling the caregiver to program a robot
so it can play and monitor cognitive exercises, explaining the
actions that are applicable in every situation. INPRO learns
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innovation programme IMAGINE (no. 731761) and J. Segovia-Aguas by
the programme TAILOR (no. 952215). The work was partially supported
by the Spanish State Research Agency through the Marı́a de Maeztu Seal
of Excellence to IRI (MDM-2016-0656).
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Fig. 1: A participant teaching a new game using the board
and receiving feedback in the screen.

from execution traces, and each trace represents a sequence
of pick-and-place actions and states demonstrated by the user
(Fig. 1). The learning task is compiled to a classical planning
problem in PDDL (Planning Domain Definition Language),
and then is solved using a SAT planner. This combination
allows us to extract simple, precise logical descriptions of
the exercise’s actions. Our contributions in this paper are:
• Context: Rules are expressed as logic formulas that

contain boolean predicates or descriptors. We introduce
here the notions of static and dynamic context. The first
does not change from play-out to play-out, while the
second are useful to define exercises that require some
sort of initialization that is not necessarily the same in
each play-out (e.g. memory exercises).

• Intuitive feedback: the representation allows to provide
natural language description of the rules, and also a
graphical representation of the rules and a learning
indicator. This feedback is meant to help the caregiver
decide if the system has fully understood the exercise
or needs more traces to infer the rest of the rules.

• User study: We present empirical support for our
framework in the form of a user study on friendly
explanations for intuitive programming.

Inspired by the Syndrom Kurztest (SKT) [9], we have
designed three different exercises to train patients’ cognitive
abilities, namely their memory, attention, and visuomotor
functions [10]. The exercises require: (1) ordering numbers;
(2) arranging letters; (3) and reproducing sequences of



shapes in reverse order. They were implemented on a board
with 10 tokens and a screen to provide the different feedback
modalities (see Fig. 1). Two of the exercises (1 and 2)
can be solved with only the static context (order relations
between numbers and letter-to-location correspondences). On
the other hand, in exercise 3, the sequence is meant to be
memorized by the patient at the beginning and is bound
to change after each completion of the exercise. Therefore,
it requires dynamic context or knowledge that is instance
dependant.

We have also conducted a user study to evaluate the per-
formance of two groups of participants: (1) one teaching with
minimum feedback (only an indicator of whether the system
has learnt something or not from the last execution); and
(2) another that uses all the feedback types (text, graphical
assistance, and learning indicator).

II. RELATED WORK

One of the challenges we propose consists in making
assistive robots adaptive to learn new cognitive exercises.
While typically applied to situated agents, Reinforcement
Learning (RL) has been also used to learn probabilistic action
models [11], even in the presence of exogenous effects [12].
However, these techniques are inherently heuristic and meant
for non-deterministic environments.

Transfer learning [13] and Inverse RL [8] are two tech-
niques that can be applied to make the learning process
adaptable and scalable. While the first one uses previous
knowledge to aid in solving new tasks and adapting the
knowledge representation to new situations, the latter learns
from demonstrations by a teacher. Contrarily to INPRO,
these techniques cannot explain the intrinsic rules that de-
scribe the exercise.

Inductive learning of high-level action models consists
of incremental approaches to acquire knowledge [14]–[16]
where agents are observed interacting with the environment
and planning operators are refined to meet the observations.
System-centric algorithms such as ARMS [17] can generate
deterministic planning operators with weighted MAX-SAT
solvers. SLAF [18] can learn from partial observations.
OARU [19] is substantially different from the former, in
that it follows a clustering approach to generalize actions.
FAMA [5] can compute STRIPS operators from minimal
observations, i.e. a set of planning instances each with initial
state and goal condition. Inspired by the recent success of
the later, we force the system to satisfy all clauses using a
SAT-based solver with the intention of learning inductively
the rules of exercises.

Senft etal [20]’s have a very similar motivation to us: they
seek to enable robots to learn from adult teachers how to
tutor children in a classroom. Also similar in scope, we find
the work of Winkle etal [21] for assisting medical personnel.
However, these methods, while adequate for learning how to
interact, are not so fit for learning precise logical descriptions
of board exercises.

III. PRELIMINARIES

Internally, INPRO learns a set of action models that are in
the form of PDDL (Planning Domain Definition Language)
schemas. INPRO works by compiling the learning task itself
to a classical planning problem in PDDL. Since both IN-
PRO’s inner operation and output are influenced by classical
planning and action model learning, this section will give a
brief overview of these topics.

A. Classical Planning

Classical Planning is characterized by search problems in
deterministic, fully-observable and non-concurrent environ-
ments. Formally, a classical planning problem [22] is defined
by a 4-tuple P = 〈F,A, I,G〉 , where F is a set of fluents
or predicates, A is a set of actions, I ⊆ F is the initial state
of the problem and G ⊆ F is the goal condition.

The set of predicates in a planning problem P implicitly
defines a state space of S = 2F . The states follow the
close-world assumption, where predicates whose value is
not indicated are considered false. Therefore, a state can
be compactly specified by the set of fluents that are set
to true. The set of goal states is SG = {s ∈ S|G ⊆ s}
or, in other words, all the states where the goal condition
holds. An action a ∈ A consist of 3 sets of fluents: (i) the
precondition pre(a) ⊆ F , (ii) the negative effect del(a) ⊆ F ,
and (iii) the positive effect add(a) ⊆ F . An action a is
applicable to state s if and only if the precondition of the
action hold in the s, i.e. pre(a) ⊆ s. Once an action a
is applied, the state transitions according to the following
function θ(a, s) = (s\del(a)) ∪ add(a). That is, all the
predicates in a’s negative effect are removed from s, while
the positive ones are added.

The aim of planning is to compute a plan π that consists
of a sequence of actions a1, . . . , an. A plan is sound if every
action is applicable in the corresponding state following the
transition function si = θ(ai, si−1) s.t. 1 ≤ i ≤ n, and the
goal condition holds in the last state, i.e. G ⊆ sn. Iff a plan
π is sound, then it is a solution to planning problem P .

Classical planning problems can be expressed in PDDL,
a declarative language for representing abstract domain dy-
namics and instances. The full specification of the language
is given by McDermott etal [23]. While there is no room to
detail all the nuances of PDDL, it is worth highlighting that it
allows to compactly represent the preconditions and effects
of actions thanks to quantifiers, conjunctions, disjunctions,
and conditional effects. If preconditions and effects consist
exclusively of predicates (i.e. no quantifiers nor conditional
effects), it is said that the planning domain has STRIPS
expressiveness [24].

B. Learning Action Models

Actions model can be learnt from the execution of ex-
amples or traces. A trace, for the purpose of this paper,
consists in a history of interleaved states and actions τ =
{s0, a1, . . . , an, sn}. Algorithms for learning STRIPS action
models Λ receive as input a full or partial trace τ . Their



objective is computing, for each action a ∈ A, its precon-
dition pre(a) and effect eff(a) = 〈del(a), add(a)〉. It is also
the case that learners can be aided with partially specified
models. This is the case of INPRO, since exercises follow
a pick-and-place mechanic and the effect of the actions is
fully known beforehand (more on this later).

INPRO uses the STRIPS fragment of PDDL, plus disjunc-
tive preconditions and existential quantifiers. INPRO receives
as input a tuple Λ = 〈P,A, T 〉, where (1) P is the set of
predicates that describe the board, the relationships between
tokens, and the tokens’ features; (2) A is the set of partially
specified actions models; and (3) T is the set of traces. The
output is a plan π that refines the current action schemas and
validates it according to the given traces. The PDDL form
of the schemas can be extracted directly from this plan.

The techniques for learning action models are diverse and
need to leverage knowledge acquisition with reasoning. Thus,
the state-of-the-art in this field depends on the combination
of inputs/outputs, and language expressiveness, since this
change completely the complexity of each approach [25].

IV. INTUITIVE PROGRAMMING (INPRO) METHOD

INPRO is an interactive framework in that it learns in
real time from exercise demonstrations. INPRO’s objective
is to find the preconditions of a set of pick-and-place actions
with known effects. These preconditions implicitly encode
the rules of the exercise.

Our framework is able to quickly infer some of the
preconditions, if not all, after a few execution traces. It
is up to the caregiver to decide when to stop providing
traces. In order to help them take this decision, INPRO’s
shows its internalized knowledge in several ways: a textual
description of the rules, a graphical representation of the
applicable actions, and an indicator that tells whether the last
demonstrated example was useful to relax the preconditions
further.

A. Overview of the Learning Cycle

INPRO’s starts out with a set of maximally restrictive
actions and works by progressively relaxing their precon-
ditions watching how they are used in the input traces. To
do so, all the traces are transformed into a classical planning
problem. The solution of this planning problem is a plan that
contains instructions for relaxing the preconditions of the
internalized action schemes, and instructions for validating
the programmed instructions against the provided traces.
Preconditions are expressed in terms of the predicates that
describe the status of the board and the context, so they are
relaxed by removing predicates from them.

The learning cycle is summarized in Fig. 2. Lines 1 and 2
show the initialization of the algorithm. A is initialized to a
set of heavily constrained pick-and-place whose effects are
already known (and do not change through the algorithm). T ,
on the other hand, is meant to store the set of input traces, so
it is initially empty. At the beginning of each iteration of the
main loop, INPRO queries the user for a new demonstration
(line 4), that is, a sequence of interleaved states and actions

1: A← maximally restrictive set of actions
2: T ← {} // set of traces
3: repeat
4: trace← gather new trace from user()
5: T ← T ∪ {trace}
6: validated← try to validate trace(A, trace)
7: if not validated then
8: planning problem← build planning instance(T )
9: plan← SAT planner(planning problem)

10: A← relax preconditions(A, plan)
11: end if
12: until caregiver signals end of teaching process
13: output A

Fig. 2: Algorithm describing the learning cycle.

that represent a valid play-out. This sequence is added to
T (line 5). The system checks if it can already validate the
last input trace with its current set of schemas (line 6 and
7). Validating a trace means verifying that the preconditions
of the actions that appear in the trace are not so restrictive
that they prevent their execution, according to the current’s
system knowledge. If the trace cannot be validated, a new
planning instance is built to find the preconditions’ predicates
that should be removed to validate all the traces in T (lines 8
and 9). The resulting plan is used to relax the preconditions
of the actions in A (line 10) and the loop starts over unless
the caregiver deems that the system has already learnt all the
rules.

While this algorithm outlines the general learning proce-
dure, there are a few concepts that need a more in-depth
explanation. In Section IV-B we analyze how states are
described in terms of predicates. This is critical because these
predicates are used to specify the actions’ precondition. In
Section IV-C, we delve into the learnt action representation.
More details about the compilation to classical planning are
given in Section IV-D.

B. Board Status, Static Context, and Dynamic Context

Exercises are played on a board with dimensions 5 × 4.
In order to provide traces to INPRO, states have to be
represented as sets of predicates. States are composed of:
(1) the board status; (2) the static context of the exercise;
and (3) the dynamic context of the instance.

Board status: Current configuration of the board, which
consists of the contents of each cell. The contents are
specified through the binary predicate contains. The board
status changes after the execution of an action, and therefore
these predicates are modified as a result, too.

Static context: Set of predicates that represent static
or immutable properties of the tokens or the cells. These
properties are fixed among all the instances of one particular
exercise. Examples of such predicates are those that define
an order relation, like lessthan.

Dynamic predicates: Set of predicates that represent some
properties that are fixed at the beginning of each exercise
instance. While these do not change as the result of the



(a)

(contains A4 v32)
(contains B4 v36)
...
(contains D1 v47)
(contains E1 empty)
(lessthan v19 v23)
(lessthan v19 v32)
...
(lessthan v46 v47)
(lessthan v47 v50)

(b)

Fig. 3: (a) Example configuration of board with numeric
tokens. (b) Description of the state represented by the board
as predicates. Predicates in regular black color correspond to
the status of the board itself, which may change as a result
of a move action, while predicates in blue belong to the
static context and are fixed among all instances of the same
exercise.

(a)

(contains A4 triangle)
(contains B4 circle)
...
(contains D1 cross)
(contains E1 empty)
(selected line first)
(selected trapezium
second)
(selected square third)
(selected circle fourth)
(selected triangle fifth)

(b)

Fig. 4: (a) Example configuration of a board with shapes.
This exercise features a sequence meant to be remembered by
the patient, and is shown below for the teacher. (b) Predicates
in red belong to the dynamic context and are fixed at the
beginning of each trace. The selected tokens and their order
may change between consecutive plays.

application of actions, they may potentially be altered when
the exercise is restarted. This sort of predicates is useful
for teaching exercises whose objective is conditioned by
external influence (e.g. a random sequence of tokens meant
to be remembered). The shapes exercise briefly mentioned
in Section I and described in more detail in Section VI uses
this sort of context.

Fig. 3 showcases an example of a board and its accompa-
nying description as a set of predicates. The dynamic context
in this example is empty. On the other hand, Fig. 4 features a
non-empty dynamic context that is used to store a sequence
of tokens randomly selected at the beginning of the exercise.

C. Actions

The caregiver can perform only pick-and-place actions
that are considered atomic by the system (i.e. they cannot
be broken down to lower-level actions). The actions always
result in the same effect: eliminate one token from the

(:action move-s3-v5
:parameters (?from - ilocation

?to - glocation)
:precondition (and

(= ?to c4)
(current-step s3)
(contains ?from v5)
(contains ?to empty)
; (greater-than-token-at v5 a4)
(exists (?vaux - value)

(and
(contains a4 ?vaux)
(lessthan v5 ?vaux)

)) ; value of contents of
; a4 is greater than v5

; (greater-than-token-at v5 b4)
(exists (?vaux - value)

(and
(contains b4 ?vaux)
(lessthan v5 ?vaux)

)) ; value of contents of
; b4 is greater than v5

)
:effect (and

(not (contains ?from v5))
(not (contains ?to empty))
(contains ?to v5)
(contains ?from empty)

)
)

Fig. 5: Example of learnt action: move token v5 at time
step s3. The precondition requires that the destination cell is
always C4, and that v5 is greater than tokens at cells A4 and
B4. In natural language: “Token’s value must be greater than
the values of tokens at A4, B4. The piece must be necessarily
placed at cell C4.”

location where it was resting initially, and put it in another
cell. Thus, the preconditions of the actions are the unknown
element that INPRO seeks to learn. We consider that the rules
of each exercise are determined by the actions’ preconditions.

All the exercises have in common that there is a total
number of 10 tokens. 5 moves are necessary to complete the
exercises (a move consists in picking a token from one of
the first two rows and placing it at one of the cells of the
last row). INPRO aims at coming up with the model of up
to 50 actions, that is, one action for each token that can be
moved and for each time step in which the move could take
place. The rationale is simple: in order to accommodate rules
with large complexity, we allow the system to find different
preconditions for the pick-and-place actions depending on
the token and on the time step. Fig. 5 shows an example of
an action schema in PDDL.

D. Learning Action Preconditions via Planning

INPRO starts out with a set A containing 50 action
schemas that are maximally restrictive. That is, each a ∈
A, pre(a) contains all the possible predicates that could
potentially limit the applicability of a. In practice, that means
that no action is applicable at the beginning since their pre-



conditions contain predicates that contradict each other. For
instance, if the precondition of the action shown in Fig. 5 also
contained the predicate (= ?to d4), the action would be
inapplicable because this new predicate would be in conflict
with (= ?to c4). It is worth noting that preconditions
may also contain existential quantifiers, as long as they are
specified as input features. INPRO handles this by using
proxy predicates that are later expanded to the full quantified
expression. For example, (greater-than-token-at
v5 a4) gets expanded to the first exist precondition
of Fig. 5. Therefore, INPRO’s expressiveness is limited to
conjunction of input features.

INPRO progressively relaxes the action’s preconditions,
removing predicates until all the actions that appear in the
input traces are applicable in all the states in which they were
executed. Internally, INPRO operates by solving a classical
planning problem, specified in PDDL. The goal is to validate
all the given traces, removing preconditions if necessary. The
problem defines two modes: a programming mode, in which
predicates may be removed from the actions’ preconditions;
and a validation mode, in which the programmed actions are
executed and validated across all the input traces.

This sort of problem benefits immensely from SAT plan-
ning, since parallel encoding allows exploiting that most of
the actions are mostly independent of each other and can
be performed in the same step. This is the case of all the
operators that are employed for removing predicates from
the preconditions since they do not interfere with each other.
This is also true for the operators that are meant to validate
actions on different traces since the execution of an action
in one trace does not have any impact on the other traces.
For these reasons, we use the MADAGASCAR [26] SAT
planner. After each demonstration, the planner takes less than
1 second1 to find the preconditions that should be relaxed,
thus making our method suited for real time.

V. EXPERIMENTAL DESIGN

A. Hypotheses

The main hypothesis is that interacting with a system that
provides full feedback modalities will have a positive impact
on user’s teaching effectiveness. More formally, we aim at
validating the following two hypotheses:

H1. “teachers from the minimum feedback group will
require more traces to complete the exercises”

H2. “more teachers in the full feedback group will teach
all exercise rules.”.

B. Experimental setup

We have built a board that consists of 5×4 cells, each one
equipped with a 20 NFC sensor. This board constitutes the
scenario in which subjects taught three different exercises
to the system. The last row, called goal row, is where the
tokens need to be arranged based on the rules of the exercise.
The storage rows (first and second rows) are the rows where
10 tokens are initially arranged. Depending on the exercise,
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tokens are labelled with numbers, shapes, or letters. All the
exercises require moving a total of 5 tokens from the storage
rows to the goal row one at a time. The difference between
exercise are provided next.

Numbers exercise requires users to sort 5 tokens with
values less than 60 in ascending order (see Fig. 6a). Cells
in the goal row must be filled from left to right without
skipping any cell. For the system to learn the rules, it must
be provided with at least 3 examples.

Letters exercise requires users to spell out the name
“CURIE” (see Fig. 6b). The users can fill the goal row
either from left to right or from right to left. However, the
tokens should always spell “CURIE” when reading from left
to right. The system learns the rules after 2 examples.

Shapes exercise is a type of a memory exercise in which
the patients are provided with a sequence they need to
remember and later reproduce in reverse order (see Fig. 6c).
In our experiments, the participants have the role of teachers
so they can see the whole sequence at all times. In this
exercise, the system learns the rules after 1 example.

In addition to the board, an LCD screen is used to provide
feedback to the participant during the exercise. An audio
feedback is generated when a token is placed back at the
board. The subjects were aware of the exercises’ rules and,
thus, we assumed that no wrong traces were provided to the
system. To ensure the correctness of the traces, experimenters
observed the interaction without distracting the subjects.

C. Type of Feedback

We allocated participants into two groups: one in which
the system interacts with minimum feedback modality; and
the other where the system provides full feedback. The
system is able to provide three types of feedback: a learning
indicator, a graphical representation of the learnt rules, and
a natural language description of the actions’ precondition
(respectively, the red, green and blue boxes shown in Fig. 7).
They are described in more detail next.

The learning indicator is the percentage of relaxed precon-
ditions in the action schemas. An increment of this indicator
means that the system has learnt something from the last
demonstration. If, on the contrary, its value does not increase
after a demonstration, it means that the last demonstration
was not informative. Notice that a 100% denotes fully
relaxed rules, implying that all the preconditions have been
removed and every movement from the storage rows to the
goal row is valid (which is certainly not the goal). The
participants were told to take into account only the increment
of this indicator (shown in parenthesis) as a yes/no sign of
whether the last trace was informative, and not to mind the
actual percentage. INPRO may draw arrows on top of the
graphical representation of the board that indicate which
pick-and-place actions could be applied according to the
system’s current knowledge. Finally, the system provides
natural language description of the learnt rules. Each feature
has a template text. The template’s placeholders are filled in
runtime, and the resulting text is combined in a description.
In the full feedback group, all three types of feedback



(a) Numbers exercise (b) Letters exercise (c) Shapes exercise

Fig. 6: Initial configuration of the three exercises used as validation.

Fig. 7: Full feedback assistance

were used, while in the Minimum Feedback group only the
learning indicator feedback was shown.

D. Participants

We recruited 37 participants (9 female), aged 18-42, with
no conflict of interest. Moreover, we aimed at having a
diverse group of participants in terms of age and gender.
All participants were randomly assigned to one of the two
different feedback modalities (19 for the full feedback group,
and 18 for the minimum feedback group). Participants in each
group were told to teach the three exercises in different order.
We uniformly distributed the participants into the 6 possible
permutations of the exercises.

The goal for the participants is to provide as many
examples as they deemed necessary for the system to learn
the rules of each exercise. After each example, they judged
whether the system learnt all the rules. If so, they had to

notify the experimenter and proceed to the next exercise or
to the end of the experiment. Otherwise, they kept providing
examples. The participants could ask questions at any mo-
ment. However, questions related to the underlying learning
algorithm were not answered until the end of the experiment,
to ensure an unbiased behavior from the participants. Our
paper’s website2 provides a video in which we demonstrate
how the INPRO system work, as well as more information
on the ethical aspects of our experiment, and the source code
of INPRO.

VI. RESULTS AND EVALUATION

To evaluate the hypotheses H1 and H2 defined in Sec.
V-A, we observed several variables: useful traces, non-
informative traces, and validation traces. Useful traces are

2http://www.iri.upc.edu/groups/perception/#INPRO



those that contribute knowledge to the system or, in other
words, that lead to relaxing some preconditions. Non-
informative traces are traces that were redundant. Participants
provided non-informative traces because they either were
unsure that the system learnt the rules or because they wanted
to confirm what it had learnt. Validation traces are much
like non-informative traces, except that they are provided
once the system is fully aware of the rules. They also play
a confirmation role. We have extracted the average number
of these metrics for each group of participants, and present
the results in Table I.

The shapes and letters exercises were successfully taught
by all participants with both feedback modalities (Table I).
However, there is a difference in the number of traces that
participants provided to teach the system. For both exercises,
the participants in the full feedback modality group provided
fewer traces, both non-informative and validation traces. The
only exception is for the shapes exercise where the number of
non-informative traces is zero for both feedback modalities
because one trace suffices to teach the system all the rules.
While shapes and letters are not complex, they are examples
of a broad class of cognitively interesting games with simple
rules that can be learnt by INPRO.

Taken together, these results suggest that teachers belong-
ing to the group with minimum feedback needed in average
more traces to teach the system the correct exercises. This is
aligned to our hypothesis H1. As the number of minimum
traces for both exercises is small, and the rules are simple,
all the participants, regardless of the groups they belong,
were able to fully teach the rules. Thus, hypothesis H2 is
not tested yet.

The numbers exercise was more challenging for the
participants because it has multiple solutions, and some
participants did not manage to teach the whole set of rules.
To validate hypothesis H1, we analyzed only the participants
that were able to finish the numbers exercise (12 participants,
32% of the total number of participants). As in the case
of shapes and letters, participants that were provided with
full feedback were able to teach the exercise with fewer
validation traces and total traces (see Table I). Thus our initial
hypothesis H1 is also valid in the numbers exercise.

Additionally, we can evaluate the errors committed by the
subjects. To do so, we identify the ground truth of deleted
predicates as P (i.e. the predicates that have to be necessarily
removed to achieve the desired rules). On the other hand, the
predicates that were removed by INPRO as per a set of given
traces are called P ′. Since we assume that traces are always
correct, P ′ ⊆ P . We define the accuracy in terms of the
Jaccard index between these two sets:

Acc(P ′) = J(P ′, P ) =
|P ′ ∩ P |
|P ′ ∪ P |

(1)

Thus, the error is defined as E(P ′) = 1 − J(P ′, P ).
Figure 8 shows, for each error value between 0 and 0.40, the
percentage of subjects from both groups that have achieved
the same or less error. Some of the participants in both
groups failed to teach the system all the rules. However, more

TABLE I: User performance while teaching the rules for
three exercises, with two different feedback modalities.

Shapes Letters Numbers
Min. Full Min. Full Min. Full

useful traces 1.00 1.00 2.00 2.00 3.00 4.00
noninformative traces 0.00 0.00 0.33 0.21 0.25 0.38
validation traces 2.44 1.63 1.72 1.58 4.00 1.62
total traces 3.44 2.63 4.05 3.79 7.25 6.00

participants in the full feedback modality group (42% of the
group) managed to teach all the relevant rules compared to
minimum feedback modality group (22% of the group). It is
noteworthy that for error smaller than 0.08, the proportion
of participants from full feedback modality is considerably
bigger in comparison with the group of minimum feedback.
In summary, participants from the group with minimum
feedback struggled more on teaching all the correct rules.
Hence, the obtained results support our initial hypothesis H2.

Despite that, the trend is not so clear for errors higher than
0.08, i.e. when we involve the users who perform worse in
the experiment. We believe this is caused by the apparently
large number of combinations in the numbers exercise. While
the system can infer all the rules from a minimum of 3
traces, some participants (independently of the group) may
have felt compelled to try out every possible solution (there
are 7 tokens smaller than 60, out of which only 5 can be
selected, therefore

(
7
5

)
= 21 possible solutions), losing track

and failing to give truly informative traces. We think that the
graphical and textual feedback help with this issue and that
is why at the end (error < 0.08) we get more successful
results in the group with full feedback.

We conducted an informal poll among the participants
from the group with full feedback. The answers suggest that
the most helpful aid is the graphical representation of the
applicable actions in the form of arrows. However, when
the graphical representation was ambiguous (i.e. overlapping
arrows), participants would rely on the natural language
description.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have explored a system-centric approach
for learning action preconditions. This approach is based
on classical planning and SAT-based solvers [5]. For future
lines of research, we will explore other promising research
directions to increase the complexity of the learned rules,
like object-centric approaches [27] and unification-based
ones [19]. Furthermore, we would like to consider allowing
the specification of forbidden moves (negative examples).

We performed a user-study involving 37 participants. In
our proof-of-concept experiments, we analyzed qualitatively
whether including autonomous feedback sped up the human-
robot teaching process, resulting in a positive impact for the
human teacher. As future work, we would like to test the
framework including different autonomous feedback options
and harder problems with a large group of people (preferably
professional caregivers, who are the target audience of this
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Fig. 8: Cumulative proportion of teaching errors. Observe
between error 0 and 0.08 that the full feedback group
managed to teach better the new exercise.

work), so that our hypotheses can be statistically accepted
or rejected.

Finally, we would like to enable the robot to communicate
through voice, gestures, and facial expressions with the
intention of improving the communication of the learned
rules. These same features are useful when monitoring
patients [28], so we suspect they can also have a positive
impact during the teaching process.
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