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Abstract—This paper proposes an observer-based methodology
to detect and mitigate false data injection attacks in collaborative
DC microgrids. The ability of observers to effectively detect
such attacks is complicated by the presence of unknown non-
linear constant power loads. This work determines that, in the
presence of unknown constant power loads, the considered attack
detection and mitigation problem involves non-linearities, locally
unobservable states, unknown parameters, uncertainty and noise.
Taking into account these limitations, a distributed non-linear
adaptive observer is proposed to overcome these limitations
and solve the concerned observation problem. The necessary
conditions for the stability of the distributed scheme are found
out. Moreover, numerical simulations are performed and then
validated in a real experimental prototype, where communication
delay, uncertainty and noise are considered.

Index Terms—Cyber-attacks, DC microgrid, constant power
loads, non-linear observer, cyber-physical systems, resilient con-
troller, adaptive observer, distributed estimation.

I. INTRODUCTION

The DC nature of renewable energy sources (e.g. fuel
cells [1] or photovoltaic panels [2]) has motivated the

further development of DC microgrids in order to avoid
redundant conversions along the power grid. Adequate DC
microgrid operation requires equal current sharing between
the distributed generation units (DGUs), as well as stable and
accurate DC voltage control [3]-[4]. One of the commonly
used coordination framework between DGUs is the distributed
framework, which relaxes the scalability issues, offers high
bandwidth and resilience against the single point of failure [5].

Consequently, the microgrid control relies on the integration
of a communication cyber-layer to improve its performance [6].
The interaction between the physical-layer and the cyber-layer
creates a risk of malicious cyber-attacks, which may endanger
the performance of the DGUs and/or the whole DC microgrid.
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For this reason, the interest in developing attack detection and
mitigation techniques, from a control viewpoint, has increased
in the recent years [7].

Amongst many different types of cyber-attacks, e.g. false
data injection attacks (FDIAs) [8], denial of service [9] and
replay attacks [10]; this work focuses on the FDIA as it is the
most prominent cyber-attack [8]. This attack is conducted by
injecting malicious data in hijacked measurements in order to
modify the behaviour of the microgrid.

Reliable security measures against FDIAs rely on detecting
if an attack is present or not in the system and identifying
the compromised agent. In this context, a successful strategy
is based on implementing an observer that is independent of
the attack signal and a detector that computes the presence
of the attack by comparing the estimation with the measured
signals. Some examples of this approach may be the use of a
weighted least squares as the observer and a sparse optimization
as a detector [11], the use of Kullback–Leibler distance as
the detector, a Kalman filter as the observer and a Euclidean
distance as the detector [12], a Kalman filter with a cosine
similarity approach as detector [13], [14], neural-network based
detector [15] or a short-term state forecasting as the observer
[16]. One of the main drawbacks of the mentioned approaches
is that the observer and the detector were implemented in
a centralized framework, which hinders the scalability of
the solution to large systems. Consequently, recent detection
algorithms are changing to the distributed framework [17].
Some notable examples are the use of constant gain distributed
linear observers [18], distributed extended Kalman filters [19],
[20], a bank of unknown input observers [21] and distributed
sliding mode observers [22]. For a more in-depth review of the
potential impacts, vulnerabilities, and detection strategies of
FDIAs in power systems, the reader is referred to the surveys
in [23], [24] and references within.

Once a FDIA has been detected, the immediate objective is
to mitigate the influence of the attack on the microgrid without
a significant effect on the system performance [25]. In relation
to DC microgrids, an attack estimation approach has been
proposed in [22], an event-driven approach has been proposed
to mitigate FDIA [26], man-in-the-middle attacks for a system
of homogeneous agents [27] and for a system of heterogeneous
agents [28].

A major limitation of available observer-based detection
and mitigation methods is the assumption that the microgrid’s
dynamics are linear. In many cases, the load side converter
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is required to deliver a constant power to the load. In such
situations, the voltage dynamics behave non-linearly [29],
where small deviations of the load voltage may produce large
variations of the equilibrium point, thereby limiting the linear
approximations. Moreover, it is reasonable to assume that the
constant power load (CPL) is not known, which makes the
dynamics linearization process infeasible.

Furthermore, it is well-known that CPLs induce non-linear
dynamics and have a destabilizing effect on the DC microgrid.
In such context, the interaction of FDIAs and CPLs may
drive the power system to unstable equilibrium points, which
may lead to significant oscillations or to network collapse.
This instability behaviour cannot be replicated in linear DC
microgrids with the same false data signal. An example of this
fact is presented in the subsection "II-A Impact on stability
due to FDIA in presence of CPLs".

The purpose of the present work is to design a distributed
non-linear observer that can be used to reconstruct the false
data in DC microgrids comprising of unknown CPLs. The
reconstruction of an attack signal is a more prohibitive process
than the detection and identification of the cyber-attack, which
only requires finding the compromised agent and does not
necessarily compute the actual FDIA signal. However, it offers a
set of advantages. In particular, the estimated attack signal value
can be used to remove the false data from the compromised
measurement(s), which can serve the dual purpose of addressing
both security of the system, by detecting the presence of false
data, and stability conflicts in the microgrid, by extracting the
false data from the system before stability issues arise.

A solution for a similar problem has been recently proposed
in [22]. Despite presenting promising results, the approach
had some conflicts that limited its practical implementation.
First, the states are estimated through a sliding-mode observer,
which is known to be highly sensitive to measurement noise
[30]. Second, the observer relied on high-gain feedback terms
in order to cancel the effect of non-local states, this fact
also increments the noise sensitivity of the observer and
hinders its transient performance. Third, the estimation of
the CPL is based on appending the CPL in the state vector
as a constant variable and implementing an observer for the
extended state. This approach is highly sensitive to model
uncertainty and measurement noise. Finally, the power line
currents were estimated through an open-loop integration,
consequently, the accuracy of the FDIA estimation was highly
sensitive to uncertainty in the power line parameters and
the convergence rate of the estimation was not tunable. As
the proposed observer was highly sensitive to measurement
noise, it required the implementation of low-pass filters, which
incremented the phase-lag of the estimator. This fact limited its
capability of estimating time-varying FDIAs. Consequently, this
work proposes a new observer structure that addresses all the
commented issues and, as a consequence, presents significantly
higher performance than the solution proposed in [22].

Specifically, the main contributions of this work are:

• A distributed non-linear adaptive observer-based strategy
that achieves a reliable state-estimation for DC microgrid
models comprising of unknown CPLs.

Fig. 1. Electrical scheme of the DGU and power line k. Used symbols are
described in Table I.

TABLE I
SYMBOLS USED IN FIG. 1

States
Iti DGU output current
Vi Voltage
Ik Power line current

Parameters
Lti Filter inductance
Ci Shunt capacitor
Ri Local load impedance
Rk Power line resistance
Lk Power line inductance

Inputs
ui Converter voltage
Pi CPL

• The necessary conditions for the stability of the estimation
scheme are given.

• The secure estimation is used to detect and reconstruct
the false data.

• The viability of the mitigation scheme is studied through
a numerical simulation and in a experimental prototype,
where sensor noise, uncertainty and communication delay
are considered.

The remainder of this paper is organized as follows. Section
II introduces the concerned cooperative DC microgrid model
and formulates the attack mitigation problem. Section III
presents the non-linear adaptive observer algorithm that is
used for the attack reconstruction. In Section IV, the proposed
approach is validated in a set of numerical simulations. In
Section V, the approach is validated in a real experimental
prototype. Finally, Section VI draws some conclusions.

II. SYSTEM’S MODEL AND PROBLEM FORMULATION

This work considers a DC microgrid composed by a set of
DGUs. The different DGUs are connected through a set of
resistive power lines. Each DGU is comprised of a DC voltage
source and a DC-DC converter. Moreover, the DGU supplies
power to a CPL and a constant impedance. The electrical
scheme of the proposed DGU model is depicted in Fig. 1.

This work considers an averaged model of the DC-DC
converter, which results in the following equations for the
dynamics of the ith DGU:

Ltiİti = −Vi + ui

CiV̇i = Iti −
∑
k∈Ei

Ik,i −
1

Ri
Vi − Pi

1

Vi
(1)

Lk İk = (Vi − Vj)−RkIk ∀k ∈ Ei,
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where ui depicts the output voltage of the converter and Ei
is the set of incident power lines.

It is assumed that there are sensors that can measure the
generated current, Iti, and the load voltage, Vi, but, no sensor
is deployed to estimate the line current, Ik, since this is not a
control quantity used for control of DGUs. Therefore, the output
in the ith DGU is defined as yi = [y1,i, y2,i]

ᵀ = [Iti, Vi]
ᵀ.

In the cyber-layer, the DC microgrid is modeled through an
undirected and connected communication graph G = {V ,E },
where V depicts the set of DGU and E depicts the power lines
between the DGUs [31]. The graph is described through an
incident matrix B ∈ Rn×m, where n is the number of DGUs
and m the number of resistive power lines, defined as:

Bij =


+1, if i is the positive end of the line j
−1, if j is the negative end of the line j
0, otherwise.

where Bij are the components of the matrix B. For the
adequate operation of the DC microgrid, each DGU is only
required to send and receive information from its neighbour
DGUs. Consequently, the communication graph in the cyber-
layer coincides with the physical power network of the
microgrid. Nonetheless, the efficacy of the proposed method
is not based on the fact that the power network graph is the
same as the communication graph.

As an assumption, the DC microgrid is controlled through
the droop control philosophy in order to ensure equal current
sharing among the agents. It operates with an error across
the voltage reference. To compensate for this error, secondary
controllers are employed to provide compensation terms to
limit the offset [32]. This work considers the most common
case, that is each DGU has two PI controllers connected in
cascade that ensure the tracking of the voltage reference and
current control. Therefore, the input voltage, ui, is generated
through the following PI controller [33]

ui = KpI

(
y1,i − Iref,i

)
+KiI

∫ (
y1,i − Iref,i

)
. (2)

where KpI is the gain of the proportional part, KiI is the gain
of the integral part and Iref,i is the current reference generated
by the previous PI in the cascaded controller.

The PI controller ensures that the DGU’s load voltage
and the DGU output current present bounded trajectories.
Moreover, the PI controller includes saturation limits that
prevents under/over-voltage. A more in-depth description of
the controller is presented in [22].

In the distributed control topology, each DGU local control
is complemented by the information from cyber-layer neigh-
bouring DGUs to establish a distributed coordination. Between
DGUs, the information vector ψi = [ψ1,i, ψ2,i]

ᵀ = [v̂dc,i, Iti]
ᵀ

is transmitted, where v̂dc,i depicts the average voltage estimate
in the ith DGU [4]. The information vector, ψi, is used to
create a voltage off-set to be compensated by the secondary
controllers [5]. More precisely, the local voltage reference,
Vdc,ref , to be tracked by the ith DGU is disturbed as follows:

Vdc,ref,i = Vdc,ref + ∆V1i + ∆V2i, (3)

where ∆V1i and ∆V2i are the two voltage off-set computed
as:

∆V1i = H1(s)(Vdc,ref −
∑
k∈Ei

(v̂dc,k − v̂dc,i))

∆V2i = H2(s)(Idc,ref −
∑
k∈Ei

(Itk − Iti)) (4)

where Idc,ref is a global current reference quantities for
the whole microgrid, and H1(s) and H2(s) are proportional
integral controllers.

A depiction of the presented control can be seen in the left
hand side of Fig. 2.

This paper focuses on the reconstruction of false data that
can affect the DGU output current measurements. Explicitly,
an attack on the ith DGU is depicted as:

Sensor attack : yi = [Iti + xai , Vi]
ᵀ

Cyber-link attack : ψi = [v̂dc,i, Iti + xai ]ᵀ

where xai represents the FDIA value.
It is assumed that the FDIA can be classified as a deception

attack [33], which means that it satisfies the instantaneous
system objectives but may affect the performance of the
microgrid later.

It is also assumed that the voltage sensor is free of attacks,
as previous works have proved that a stealth attack is not
possible by manipulating the voltage due to the presence of a
distributed observer [22], [34].

The main objective is to design an observer that can estimate
the attack signal, xai . After that, the reconstructed attack signal
can be used to mitigate the FDIA. Precisely, if an attack in
the sensor is exactly estimated, i.e. xai = x̂ai , later, the FDIA
can be removed from the microgrid as follows:

ycleanedi = [y1,i − x̂ai , y2,i]ᵀ = [Iti, Vi]
ᵀ. (5)

A scheme of the proposed reconstruction and mitigation
strategy is depicted in Fig. 2.

This mitigation algorithm is planned to be implemented in
large scale systems. For reasons stated before, it is of high
interest to implement the observer in a distributed framework.
Consequently, the observer implemented in the ith DGU has
to estimate the DGU output current, Iti, with only the signals
measured in the ith DGU, yi, and the signals transmitted
through the neighbour DGUs.

In order to reconstruct the current, it is required to design a
non-linear observer through the direct study of the non-linear
model in (1). Consider the following:

Lemma II.1. The ith DGU output current, Iti, can be
computed through the input ui, the voltage Vi, its derivative,
V̇i, the CPL, Pi, and the line currents, Ik,i, by computing the
following expression

Îti = Ci
˙̂
Vi +

∑
k∈Ei

Îk,i +
1

Ri
Vi + P̂i

1

Vi
. (6)

Proof. Expression (6) is obtained by isolating Iti from the
second equation in (1).
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Fig. 2. General scheme of the proposed FDIA mitigation strategy. More details of primary and secondary controller can be found in [22].

Therefore, assuming that one generates an estimation, ˙̂
Vi,

Îk,i and P̂i, then, ‖Îti − Iti‖ → 0, where Îti is computed
through (6) using the estimations ˙̂

Vi, Îk,i and P̂i.

A. Impact on stability due to FDIA in presence of CPLs
The concerned model presents strongly nonlinear dynamics

induced by the CPLs that may contribute to the microgrid
instability by the non-linearity of the CPL. As stated before, the
DGUs are commonly controlled through linear PI controllers,
as a consequence, the stability of the agent can only be ensured
inside region of attraction around the operating point considered
during the PI tuning [35]. Precisely, there is a region Di ⊂ R2

such that if Iti, Vi ∈ Di, then, the DGU’states converge to the
desired trajectories. Otherwise, the agent becomes unstable or
presents large oscillations [35]. For the concerned microgrid,
the region of attraction can be approximated a series of sum
of square optimizations [35].

The injection of a FDIA induces a large variation of the
state variables that may lead to an escape of the region of
attraction and, consequently, destabilize the system. This fact
confirms that the interaction between FDIAs and CPLs can
destabilize the plant.

An experimental example of this statement is presented in
Fig. 3, where a DC microgrid of 2 DGUs with CPLs (782 W )
is tampered by a small step function FDIA. When an attack
element of x1a = 0.8 A is introduced in the agent 1, the average
voltage remains unaltered, while an oscillatory instability is
induced in the DGU current. Such phenomenon does not occur
in the system with linear dynamics, i.e. in the absence of
CPLs. Indeed, if the same FDIA is conducted in a similar
microgrid without CPLs, the performance of the system is not
significantly affected.

III. PROPOSED NON-LINEAR OBSERVER

The objective here is to design an observer algorithm that can
accurately estimate, V̇i, Ik,i for k ∈ Ei and Pi, of the ith DGU,

II IIII

Fig. 3. Experimental example of oscillatory behaviour induced by a step FDIA
in presence of CPLs. At time t = 1.5s, false data x1a = 0.8 A is introduced
in the measurements of Agent 1.

even in the presence of false data, unmodelled disturbances,
model uncertainty and sensor noise.

First, it is convenient to define a coordinate change that
transforms the system into a form that eases the observability
study and observer design.

Lemma III.1. The following input-independent map:
ξ1,i
ξ2,i
η1,i

...
ηm,i

 = ϕ(Vi, V̇i, I1,i, . . . , Imi,i) =


Vi
V̇i
I1,i

...
Imi,i

 (7)

defines a diffeomorphism that transforms the system (1) into
the following triangular form

ξ̇1,i = ξ2,i

ξ̇2,i = φi(ξi, ui, Pi,ηi) + w1 (8)

η̇j,i =
1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηj,i + w2,j for j = 1, ...,mi
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where ξi = [ξ1,i, ξ2,i]
ᵀ are the local voltage and its derivative,

ηi = [I1,i, . . . Imi,i]
ᵀ are the incident power line currents, w1

and w2,j for j = 1, ...,mi represent unknown disturbances
or model uncertainty and

φi(ξi, ui, Pi,ηi) =
1

Ci

(
1

Lti

(
− ξ1,i + ui

)
+ Pi

ξ2,i
ξ21,i

−
∑
k∈Ei

( 1

Lk
(ξ1,i − ξ1,j)−

Rk
Lk

ηk,i
)
− 1

Ri
ξ2,i

)
. (9)

The measured signal in the new coordinates is y = Vi = ξ1,i.

Proof. The Jacobian of ϕ(Vi, V̇i, I1,i, . . . , Imi,i) is full rank in
all DGU operating conditions, therefore, the function φi defines
a diffeomorphism in the considered operating conditions.

By inspection of the structure in (8), it is possible to study
the elements involved in the estimation problem that prevents
the direct implementation of solutions available in the literature.

First, for system in (8), if the local voltage, Vi = ξ1,i, is
the measured signal, most observer techniques, e.g. the sliding-
mode observer in [22], can only achieve an estimation of
ξ1,i and ξ2,i, as all the power line currents as ηi are in the
unobservable space of the system [36]. Second, standard robust
observers give no information about the unknown CPL, Pi, and
may present noise sensitivity problems. Finally, the inability
of estimating the CPL, Pi, and the power line currents, Ik,
prevents the computation of (6), which makes the proposed
mitigation strategy difficult to implement.

To solve these limitations, this work proposes designing the
observer as the interconnection of three sub-systems. First, an
extended Astolfi/Marconi observer [37], [38] will be designed
to robustly estimate the states ξ1,i, ξ2,i and a virtual state,
σ. Second, the virtual state, σ, will be used to compute an
auxiliary signal, µi, that is going to be implemented as the
measured signal in a Luenberger observer to robustly estimate
the unobservable power line currents, ηi. Finally, the unknown
power load will be estimated through an adaptive law based
on the immersion and invariance (I&I) technique [39]. The
reasoning behind such observer structure will be explained
throughout this paper. A general scheme of the proposed
observer algorithm is depicted in Fig. 4.

A. Estimation of ξ1,i, ξ2,i and design of extended As-
tolfi/Marconi observer

Let us consider the first two equations of (8), and extend
the system as follows:

ξ̇1,i = ξ2,i

ξ̇2,i = σ (10)

σ̇ = φ̇i(ξi, u̇i, Pi,ηi, ξ2,k) + ẇ1

where

φ̇i(ξi, u̇i, Pi,ηi, ξ2,k) =

∂φi(ξi, ui, Pi,ηi)

∂ξi
ξ̇i +

∂φi(ξi, ui, Pi,ηi)

∂ηi
η̇i

+
∂φi(ξi, ui, Pi,ηi)

∂ui
u̇i +

∑
k∈Ei

∂φi(ξi, ui, Pi,ηi)

∂ξ1,k
ξ2,k.

The objective is to design an algorithm to estimate ξ1,i, ξ2,i
and σ in (10). System in (10) is uniformly observable in
the inputs, ui, [40], which allows the implementation of non-
linear observers as the high-gain observer [41] or sliding-mode
observer [22]. However, the convergence rate and robustness
of said observers relies on increasing the gain in the feedback
term, which significantly increases the observer’s sensor noise
sensitivity [41], i.e. small noise in y can significantly aggravate
the state-estimation accuracy.

For this reason, this work proposes implementing an As-
tolfi/Marconi low-power observer [37]. The Astolfi/Marconi
observer includes some extra dynamics that attenuates the noise
effect on the estimation accuracy without losing convergence
rate and robustness properties [37].

For the concerned triangular structure (10), such observer
takes the following form

˙̂
ξ1,i = λ1,i +

α1

ε
(y − ξ̂1,i)

˙̂
ξ2,i = λ2,i +

α2

ε
(λ1,i − ξ̂2,i)

˙̂σ = φ̇i(ξ̂i, u̇i, P̂i, η̂i, ξ̂2,k) +
α3

ε
(λ2,i − σ̂) (11)

λ̇1,i = λ2,i +
β1
ε2

(y − ξ̂1,i)

λ̇2,i = φ̇i(ξ̂i, u̇i, P̂i, η̂i, ξ̂2,k) +
β2
ε2

(λ1,i − ξ̂2,i)

where ξ̂i = [ξ̂1,i, ξ̂2,i]
ᵀ is the estimation of ξi, σ̂ is the estima-

tion of σ, λ1,i and λ2,i are virtual states, α = [α1, α2, α3] and
β = [β1, β2] are positive design parameters, ε is the design
high-gain parameter, P̂i is the estimation of the CPL, η̂i is the
estimation of ηi and ξ̂2,k is the estimation of ξ2,k.

The tuning of the parameters in this observer requires the
definition of some extra matrices. Define for i = 1, 2 the
following matrices

B2 ,

[
01,1
1

]
∈ R2×1, Ei ,

[
−αi 0
−βi 0

]
∈ R2×2.
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Next, let M3 ∈ R5×5 be a matrix recursively constructed as
follows

M1 , E1, M2 ,

 M1 B2Bᵀ
2[

α2

β2

]
Bᵀ
2 E2


M3 ,

[
M2 0
α3Bᵀ

4 −α3

]
.

Lemma III.2. [37] Consider a matrix Phgo = Pᵀ
hgo > 0 and

q > 0 that satisfy the following

PhgoM3 + Mᵀ
3Phgo ≤ −qI (12)

Then, there exists a positive value ε∗1 such that for all ε ≤
min{ε∗1, 1} the estimation error of the observer (11) satisfies
the following ultimate bounds for q = 1, 2,

|ξq,i − ξ̂q,i| ≤ ε4−qk1|Pi − P̂i|+ ε4−qk2‖ηi − η̂i‖
+ ε4−qk3|ξ2,k − ξ̂2,k|+ ε4−qkw|ẇ| (13)

|σ − σ̂| ≤ εk1|Pi − P̂i|+ εk2‖ηi − η̂i‖
+ εk3|ξ2,k − ξ̂2,k|+ εkw|ẇ| (14)

where k1, ..., k3 and kw are some positive constants indepen-
dent from ε.

The implementation of the observer (11), requires the
computation of ξ̂2,k. This factor is not locally estimated by the
observer nor measured by any sensor, but is being computed by
the observers allocated in the neighbour DGUs. Therefore, the
computation of (11) requires the transmission of ξ̂2,i between
observers in neighbour DGUs.

B. Estimation of the power line currents, ηi
A crucial part for the computation of (6) and the observer

implementation in (11) is to achieve an accurate estimation of
the power line currents, ηi. The idea proposed in this work is
to use the value of the virtual state σ̂ to compute an auxiliary
signal that allows the design of an observer for the ηi dynamics.

Assume that the extended Astolfi/Marconi observer (11) is
used to estimate ξ1,i, ξ2,i and the virtual state, σ. Moreover,
notice that σ = φi(ξi, ui, Pi,ηi) +w1. Then, by inspection of
(9), the following holds:

µi ,
∑
k∈Ei

Rk
Lk

ηk,i + w1 −∆φ, i = Ciσ̂ −
1

Lti

(
− ξ̂1,i + ui

)
+
∑
k∈Ei

( 1

Lk
(ξ̂1,i − ξ̂1,k)

)
+

1

Ri
ξ̂2,i − P̂i

ξ̂2,i

ξ̂21,i
(15)

where ∆φ, i , φi(ξi, ui, Pi, 0) − φi(ξ̂i, ui, P̂i, 0) + σ − σ̂.
Now, take the value µi (15) as the measured signal of the
ηi dynamics. Then, the following partially linear system is
obtained:

η̇i = Aiηi +
∑
k∈Ei

1

Lk
(ξ1,i − ξ1,k) + Imi

w2

µi = Ciηi + w1 −∆φ, i (16)

where Imi
is a mi ×mi identity matrix,

w2 ,
[
w2,1, . . . , w2,mi

]ᵀ

and Ai ∈ Rmi×mi and Ci ∈ R1×mi are matrices such that

Ai ,


−R1

L1
0

. . .

0 −Rmi

Lmi

 , Ci =

[
R1

L1
, . . . ,

Rmi

Lmi

]
.

It can be seen that, the introduction of the auxiliary signal, µi,
has transformed the ηi dynamics into a LTI observable system
with a non-linear disturbance in the sensor equation. This work
proposes the implementation of a Luenberger observer, due to
its simplicity in design and tuning.

Lemma III.3. Consider a linear Luenberger observer

˙̂ηi = Aiη̂i +
∑
k∈Ei

1

Lk
(ξ̂1,i − ξ̂1,k) + Li(µi − Ciη̂i) (17)

where µi is the auxiliary signal computed as (15), Li ∈ Rmi×1

is a design matrix such that Ai − LiCi has all the eigenvalues
in the open left-half plane.

Then, the estimation error ηi − η̂i is ultimately bounded as
follows:

‖ηi − η̂i‖ ≤ k4|ξi − ξ̂i|+ k5‖ξ1,k − ξ̂1,k‖
+ k6|σ − σ̂|+ k7|Pi − P̂i|+ kw,2|w1|+ kw,3‖w2‖ (18)

where k4, ..., k6 and kw,2, kw,3 are some positive constants.

Proof. As the matrix Ai − LiCi is Hurwitz by design, there
is a matrix P = Pᵀ > 0 such that:

P(Ai − LiCi) + (Ai − LiCi)ᵀP = −Q, (19)

where Q is positive defined matrix.
Consider the error dynamics between (17) and (16), eη ,

ηi − η̂i, and consider the radially unbounded Lyapunov
candidate V = eᵀηPeη . The derivative of the function is given
by:

V̇ = −eᵀηQeη + 2eᵀηP(ξ1,i − ξ̂1,i) + 2eᵀηP(ξ1,k − ξ̂1,k)

− 2eᵀηPLiw1 + 2eᵀηPLi∆φ, i− 2eᵀηPw2.

As the function φi(ξi, ui, Pi, 0) is (locally) Lipschitz, there are
some positive constants L1, L2, L3 and L4 such that

|∆φ, i| ≤ L1‖ξi−ξ̂i‖+L2‖ξ1,k−ξ̂1,k‖+L3|σ−σ̂|+L4|Pi−P̂i|.

Therefore, the derivative of Lyapunov function candidate is
upper bounded by:

V̇ ≤ −λmin(Q)‖eη‖+ 2‖eη‖‖P‖(Imi + LiL1)‖ξi − ξ̂i‖
+ 2‖eη‖‖P‖(Imi + LiL2)‖ξ1,k − ξ̂1,k‖
+ 2‖eη‖‖P‖(Imi

+ LiL3)|σ − σ̂|
+ 2‖eη‖‖P‖(Imi + LiL4)|Pi − P̂i|
+ 2‖eη‖‖PLi‖|w1|+ 2‖eη‖‖P‖‖w2‖ (20)

where λmin(·) depicts the minimum eigenvalue.
The inequality in (20) shows that the system is input-to-state

stable (ISS) [42] taking ξi− ξ̂i, ξ1,k− ξ̂1,k, σ− σ̂, Pi− P̂i, w1

and w2 as inputs. This fact proofs the existence of the bound
(18).
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Notice that, similar to the Astolfi/Marconi observer (11),
the implementation of the linear observer (17), requires the
transmission of ξ̂1,k between neighbour observers.

C. Estimation of Pi
The computation of the DGU current estimation (6) and the

auxiliary signal (15), requires an estimation of the CPL, Pi. A
common approach in such situation is to include the unknown
parameter as a new state of the system [22], i.e. include a state
ξ3,i in system (8) as follows:

ξ̇1,i = ξ2,i

ξ̇2,i = φi(ξi, ui, ξ3,i,ηi)

ξ̇3,i = 0,

and design an observer that can estimate ξ1,i, ξ2,i and ξ3,i.
Nevertheless, in the concerned problem, this approach is highly
sensitive to measurement noise. For this reason, it is interesting
to implement an alternative parameter-estimation algorithm.
This work proposes implementing a technique based on the
Immersion and Invariance (I&I) framework [39], which offers
some gain margin with respect to uncertainties in the regressor
vector and its stability can be proved through an L2 integrability
condition that is generically satisfied in the considered system.

Lemma III.4. Consider system (8), let ξ̂i be a state-estimation
generated by a Astolfi/Marconi observer (11) that satisfies (13)
and let η̂i be a power line current estimation that satisfies
(18). Define the following vector functions

f0,i(ξ̂i, q̂i, η̂i, ξ̂1,k) =

[
ξ̂2,i

φi(ξ̂i, q̂i, P̂i, η̂i)

]
,

f1,i(ξ̂i) =

 0

ξ̂2,i

Ciξ̂21,i
+

KpI

CLtiξ̂1,i


where q̂i is the estimation of qi, which is defined as

qi = KpI

(
CiV̇i +

∑
k∈Ei

Ik,i +
1

Ri
Vi − Iref,i

)
+KiI

∫ (
y1,i − Iref,i

)
.

and y1,i is the measured local current Iti.
Define the following function

βi(ξ̂i) = γ

(
ξ̂22,i

2Ciξ̂21,i
+

KpI ξ̂2,i

CiLtiξ̂1,i

)
(21)

where γ is a positive constant to be tuned.
Moreover, consider the following parameter-estimation dy-

namics:

˙̂
θi = −∂βi(ξ̂i)

∂ξi

[
f0,i(ξ̂i, q̂i, η̂i, ξ̂1,k) + f1,i(ξ̂i)

(
θ̂i + βi(ξ̂i)

)]
P̂i = θ̂ + βi(ξ̂i). (22)

Then, the following ultimate bound holds

|Pi − P̂i| ≤ k8‖ξi − ξ̂i‖+ k9‖ξ1,k − ξ̂1,k‖
+ k10‖ηi − η̂i‖+ kw,3|w1| (23)

where k8, .., k10 and kw,3 are some positive constants.

Proof. Define the off-the-manifold variable

z , θ̂ − Pi + βi(ξi). (24)

Then, the dynamics of the off-the-manifold coordinates z are
given by:

ż = −γ
(

ξ2,i
Ciξ21,i

+
KpI

CLtiξ1,i

)2

z + δ

where δ is defined as:

δ ,
∂βi(ξi)

∂ξi

[
f0,i(ξi, qi,ηi, ξ1,k) + f1,i(ξi)

(
θ̂i + βi(ξi)

)
+ w1

]
− ∂βi(ξ̂i)

∂ξi

[
f0,i(ξ̂i, q̂i, η̂i)+

+ f1,i(ξ̂i)

(
θ̂i + βi(ξ̂i)

)]
. (25)

The functions βi, f0,i, f1,i and
∂βi(ξi)

∂ξi
are (locally) Lips-

chitz. Moreover, the factor
∂βi(ξi)

∂ξi
is upper bounded. There-

fore, there exist some positive constants Lδ,1, Lδ,2, Lδ,3 and
βmax such that

‖δ‖ ≤ Lδ,1‖ξi − ξ̂i‖+ Lδ,2‖ηi − η̂i‖+ Lδ,3‖ξ1,k − ξ̂1,k‖
+ βmax|w1|.

Consider the Lyapunov function candidate:

V =
1

2
(z)2 (26)

The derivative of (26) satisfies the following

V̇ = −zγ
(

ξ2,i
Ciξ21,i

+
KpI

CLtiξ1,i

)2

z + zδ

≤ −zγ
(

ξ2,i
Ciξ21,i

+
KpI

CLtiξ1,i

)2

z + zLδ,1‖ξi − ξ̂i‖

+ zLδ,2‖ηi − η̂i‖+ zLδ,3‖ξ1,k − ξ̂1,k‖
+ zβmax|w1| (27)

Generically, the variable ξ̂1,i is upper and lower bounded.

Thus, the factor
ξ̂2,i

Ciξ̂21,i
+

KpI

CLtiξ̂1,i
is not L2 integrable.

Therefore, by inspection of (27), it is possible to show that
(26) is a ISS-Lyapunov function with linear ISS-gain [42] from
ξ− ξ̂,ηi − η̂i and ξ1,k − ξ̂1,k to z. As a consequence, taking
into account the relation (24) and the fact that βi is Lipschitz,
the bound (23) can be deduced.

D. Observer stability

The last subsections have presented the sub-systems of the
proposed estimation algorithm in a single DGU. The observer at
each DGU can be seen as an interconnection of three estimation
algorithms as it is depicted in Fig. 4. The crucial step is to
study under which conditions the coupling between the three
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estimation algorithms creates a stable structure. After that, it is
necessary to study the conditions in which the interconnection
of FDIA estimation algorithms is stable for an arbitrary DC
microgrid topology.

In order to proof the stability of the observer, it is of interest
to define the following vector

χi ,

ξ1,i − ξ̂1,iξ2,i − ξ̂2,i
σ − σ̂

 .
Lemma III.5. Consider the case without uncer-
tainty/disturbances, i.e. w1 = 0 and w2,j = 0 for j =
1, ...,mi. Moreover, consider an observer composed by (11),
which satisfies the bound (13), the linear observer (17) that
satisfies (18) and the parameter-estimation (22) that satisfies
(23). Then, if the following condition holds,

k7k10 < 1, (28)

there is a value ε∗2 such that, for all ε ≤ ε∗2, the variable χi
is ultimately bounded as follows,

‖χi‖ ≤ εk11‖ξ1,k − ξ̂1,k‖+ εk12‖ξ2,k − ξ̂2,k‖. (29)

where k11 and k12 are some positive constants.

Proof. Taking into account (13) and the definition of χi, there
are some positive constant n1 and n2, such that the following
bounds hold

‖χi‖ ≤ ε
√
n1k1|Pi − P̂i|+ ε

√
n1k2‖ηi − η̂i‖

+ ε
√
n1k3|ξ2,k − ξ̂2,k|. (30)

Consider (18), (23), the second equation of (30) and assume
that k7k10 < 1. Then, the following bound is obtained:

‖χi‖ ≤ ε
√
n1

(
k1k8 + k1k10max{k4, k6}

1− k10k7
+ k2max{k4, k6}

+
k2k7k8 + k2k7k10max{k4, k6}

1− k10k7

)
‖χi‖

+ ε
√
n1

(
k1k9 + k1k10k5

1− k10k7

+ k2k5
k2k7k9 + k2k7k10k5

1− k10k7

)
‖ξ1,k − ξ̂1,k‖

+ ε
√
n1k3‖ξ2,k − ξ̂2,k‖. (31)

Notice that the bound in (31) reduces with ε. Therefore, there
is a value ε∗2 such that for ε ≤ ε∗2, the bound (31) reduces to
the ultimate bound (29).

The existence of the ultimate bound (29), shows that, the
local estimation structure at each DGU is ISS from the
estimation error of the neighbouring observers if condition
(28) is satisfied. This fact can be used to present a condition
for the stability of an interconnection of observers for an
arbitrary communication graph of the DC microgrid. Taking
into account (29), the following ultimate bound for the ith
DGU can be deduced

‖χi‖ ≤ ε max{k11, k12}
∑
k∈Ei

‖χk‖. (32)

Theorem III.1. Consider a distributed observer that satisfies
(32). Then, there are a set of positive constants ε∗3,i for i =
1, ..., N , such that, for all εi ≤ ε∗3,i for i = 1, ..., N , the
estimations ξ̂1,i, ξ̂2,i, P̂i and ηi converges to its true value.

Proof. As the observer in the ith DGU satisfies the bound (32),
the χi dynamics are ISS from χk for k = 1, ...,mi. Define
γi,j as the ISS gain from χj to χi. As the communication graph
of the microgrid is connected and without self-loops, and all
the ISS gains are linear, the small-gain theorem reduces to a set
of function compositions of γi,j and (1− γi,j)−1 that have to
be smaller than 1 (define a contraction) to ensure the estimation
convergence [42]. The ISS gains, γi,j are proportional to the
design parameter εi. Therefore, the functions γi,j and (1 −
γi,j)

−1 and its possible compositions can be made arbitrary
small by reducing εi for i = 1, ..., N , which proves the
theorem.

IV. NUMERICAL SIMULATIONS

This section aims to study the behaviour of the detection
and mitigation algorithm in a set of numerical simulations that
consider significant sensor noise and model uncertainty.

A. Microgrid with 4 agents

A DC microgrid composed of 4 DGUs interconnected, as
depicted in Fig. 5, is considered in the Simulation. Each DGU
has an unknown CPL connected at its point of coupling to the
microgrid.
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Fig. 5. Topology of the considered DC microgrid with 4 DGUs. Blue arrows
represent the cyber-layer and black lines depict the physical circuit.

The whole microgrid is controlled to ensure the convergence
of the average voltage to 315 V . During the simulation, there
is a set of DGU output current cyber-link FDIA attacks.
Specifically, at time t = 4 s there is a FDIA in the cyber-
links that connect the DGU 1 with its neighbours, and at time
t = 4.5 s there is a simultaneous attack in the cyber-links of
the DGU 2 and the cyber-links of DGU 4. The FDIA signal
in the DGU 1 consists of a step function of value 8 A. In the
DGU 2, the FDIA signal consists of a step function of value
3 A. Finally, the FDIA signal in DGU 4 consists of a sinusoidal
of amplitude 0.5 A, bias 2 A and frequency 10 rad/s.

The presence of these attacks does not destabilize the
microgrid nor prevents the convergence of the average voltage,
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IIIIII

t = 4 s t = 4.5 s

t = 4.5 s

Fig. 6. Current and voltage evolution under FDIAs. At t = 4s there is a
FDIA in the DGU 1 cyber-links and at time t = 4.5s there is a simultaneous
attack in the cyber-links of the DGU 2 and the cyber-links of DGU 4.

this fact can be observed in Fig. 6. However, it significantly
modifies the behaviour of the microgrid and prevents the equal
current sharing between agents.

It is considered that the DC microgrid parameters are not
accurate, which is translated to some parametric uncertainty. In
Table II, it is depicted the true DGU and power line parameter
values and the ones used in the observer equations. The only
parameters that are assumed to be known exactly are the PI
controller design parameters, which are fixed with KpI = 29.99
and KiI = 168.1, in each DGU.

TABLE II
TRUE DGU PARAMETERS AND MODEL PARAMETER VALUES USED IN THE

OBSERVERS.

Symbol True Value Model value
Lti 1 [H] 0.8 [H]
Ci 0.05 [F ] 0.055 [F ]
Ri 96 [Ω] 90 [Ω]

R12, R23 1.8 [Ω] 1 [Ω]
R14, R34 1.3 [Ω] 1.8 [Ω]
L12, L23 50 · 10−6 [H] 30 · 10−6 [H]
L14, L34 50 · 10−6 [H] 60 · 10−6 [H]

Pi 500 [W ] − [W ]

Moreover, it is assumed that the voltage and current
sensors are corrupted by some high-frequency Gaussian noise.
Specifically, the voltage sensor, V1, and the voltage signals
transmitted between DGUs are affected by random noise with
variance 0.0102. The current sensor is affected with Gaussian
noise of variance 0.001.

As the DGUs are assumed to be identical, the observer
design parameters are tuned identically in each DGU following
the next methodology, which has been motivated by the theory
provided in the last section.

1) The value of γ has been fixed at an arbitrary positive
value 2.

2) The Luenberger observer gains, Li, have been tuned to
minimize the H∞ norm between the estimation error and

Fig. 7. Evolution of the attack estimation and true attack signal value in the
compromised DGUs. The estimation is initially zero due to the warm-up time
of 1.5 s.

the output disturbances, as explained in ([43], Chapter
9). This is sufficient to satisfy conditions (19) and (28).

3) The parameters α1, α2, α3, β1 and β2 have been fixed
through the algorithm in [44]. This is sufficient to satisfy
the condition (13).

4) The high-gain parameter ε has been decreased until
adequate performance is obtained.

The value of said parameters is summarized in Table III.

TABLE III
OBSERVER DESIGN PARAMETERS.

Parameter Value Parameter Value
α1 3 L2 2.5997
α2 3 β1 4.222
α3 1 β2 1.0526
γ 2 ε 0.02
L1 −3.5997

This simulation considers the case scenario in which no
prior information of the power line currents or the local power
load.

The evolution of the FDIAs signals and the observer
reconstruction is depicted in Fig. 7. Naturally, the presence of
sensor noise does not destabilize the observer, but prevents the
convergence of the estimation to zero. The estimation error
presents a variance of approximately 0.0012, which is coherent
with the considered current sensor noise. Nevertheless, as it
will be shown later, the current attack reconstruction accuracy
is sufficient in order to get an adequate attack mitigation.
Additionally, it can be noticed that, even in the presence of
significant model uncertainty, the bias of the attack estimation
is minimal. These results validate the robustness and scalability
of the proposed estimation algorithm.

The reconstructed attacks have been used to mitigate the
FDIAs following the idea presented in (5). The behaviour
of the DC microgrid current and voltage under the proposed
attack mitigation strategy is depicted in Fig. 8. By comparing
the pre-attack and post-attack system behaviour, it can be
seen that even in the presence of significant sensor noise
and model uncertainty, the proposed strategy is capable of
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Fig. 8. Current and voltage evolution under FDIAs and observer reconstruction
and mitigation. At t = 4s there is a FDIA in the DGU 1 cyber-links. At
t = 4.5s there is a FDIA in the DGU 2 and 4 cyber-links.

IIII
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I

VV
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a) b)

Fig. 9. Current and voltage evolution under FDIAs. At t = 4s there is a
FDIA in the DGU 1 cyber-links and at time t = 4.5s there is a simultaneous
attack in the cyber-links of the DGU 2 and the cyber-links of DGU 4, and at
t = 5s there is an attack in the Cyber-links of the DGU 7. In the first case
scenario, a), the system is not protected. In the second case scenario, b), the
system is protected by the proposed observer-based approach.

mitigating immediately the effect of FDIAs on the system with
insignificant effects on the system performance.

B. Microgrid with 8 agents

In order to validate the scalability of the proposed approach,
a second simulation has been performed with a DC microgrid
composed by 8 DGUs. Each DGU has an unknown CPL
connected at its point of coupling and the topology of the
grid is depicted in the left-hand side of Fig. 9.

Similar to the last simulation, the whole microgrid is
controlled to ensure the convergence of the average voltage to
315 V . During the simulation, there is a set of DGU output
current cyber-link FDIA attacks. Specifically, DGU 1, 2 and
4 are compromised with the same FDIA value as in the last
simulation scenario. Additionally, at time t = 5s, there is a
FDIA in the cyber-links of the DGU 7 that consists of random
steps of duration 0.5s. The exact value of the attack signal is
xa7 = [1, 0.2,−0.5, 2, 0.5].

DC Programmable 
Load

Level 
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Buck 
Converters LEM 

Sensor 
Box

MicroLabBox 
DS1202

PC

DC 
Power 
Supply

Oscilloscope
Tie-line 

Resistances

Fig. 10. Experimental setup of a cooperative DC microgrid comprising of N
= 2 agents controlled by dSPACE MicroLabBox DS1202 supplying power to
the programmable CPL.

It can be observed in the case scenario a) of Fig. 9 that the
average voltage still satisfies the instantaneous objective after
the cyber-attack, but the load voltage of each DGU presents
an unstable behaviour. This is due to the interaction between
the CPL and the FDIA. The objective is to implement the
proposed technique in order to detect the presence of FDIA
and mitigate its effect in order to preserve the stability of the
system.

Again, it is considered that the DC microgrid parameters are
not accurate, and the sensors are corrupted with high-frequency
noise. The values of the uncertainty and noise are of the same
order as in the last simulation. Due to space restrictions, the
exact value of the parameters have been obviated.

The behaviour of the DC microgrid current and voltage
under the proposed attack mitigation strategy is depicted in the
second case scenario b) of Fig. 9. By comparing the pre-attack
and post-attack system behaviour, it can be seen that even in
the presence of significant sensor noise and model uncertainty
and FDIA with random step values, the proposed strategy is
capable of mitigating immediately the effect of FDIAs on the
system with insignificant effects on the system performance.

V. EXPERIMENTAL VALIDATION

The proposed mitigation strategy has been validated in
an experimental prototype of DC microgrid operating at a
voltage reference Vdcref of 48 V with N = 2 DC-DC buck
converters. An image of the experimental setup is depicted
in Fig. 10(a). Both converters are tied radially via tie-line
resistances in a physical ring-bus network with a programmable
load, where a constant value of demand can be programmed
in one of the buses. Each converter is controlled by dSPACE
MicroLabBox DS1202 (target), with control commands from
the dSPACE ControlDesk from the PC (host). The considered
system consists of two sources with the converters rated
equally for 600 W. It should be noted that the controller gains
are equivalent for each converter. The experimental testbed
parameters and controller parameters are provided in Table IV.

Using the local and neighboring measurements, the proposed
observer-based strategy is implemented in every converter (as
shown in Fig. 11) to mitigate FDIAs and meet the desired
control objectives in DC microgrids. The observer design
parameters have been tuned following the same process as in the
numerical simulation in Section IV. The resulting parameters
are included in Table V.
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Fig. 11. Single line diagram of the experimental setup shown in Fig. 10.

TABLE IV
EXPERIMENTAL TESTBED PARAMETERS.

Symbol Value
Plant
Lsei 3 [mH]
Cdci 100 [µF ]
R1 0.8 [Ω]
R2 1.4 [Ω]

Controller
Vdcref 48 [V ]

KH1
P 1.92 [−]

KH1
I 15 [−]

KH2
P 4.5 [−]

KH2
I 0.08 [−]
g 0.64 [−]

TABLE V
OBSERVER DESIGN PARAMETERS IN THE EXPERIMENTAL TESTBED.

Parameter Value Parameter Value
α1 2 L2 1.032
α2 2 β1 2.84
α3 1 β2 1.075
γ 2 ε 0.075
L1 −1.462

The performance of the proposed algorithm has been
validated in three different case scenarios where communication
delay, a shift in the CPL’s value and time-varying attack signals
have been considered. In the first case scenario, the system is
perturbed with a change of the unknown CPL and, after the
CPL modification, a simultaneous cyber-attack is conducted on
current measurements from both the converters with the false
data, given by Ia1 = 1.5 A and Ia1 = 1 A. As it can be seen in
Fig. 12a), the introduction of this simultaneous cyber-attack
significantly modifies the behaviour of the system and prevents
consensus. In the second case scenario, first, a cyber-attack is
conducted on agent I with a false data, given by Ia1 = 1.8 A.
Second, the value of the CPL is increased. Additionally, the
communication channel is affected with a variable delay with a
maximum value of 75 ms. The evolution of the system under
this cyber-attack is very similar as in the first case scenario in
Fig. 12a) and has been obviated due to space restrictions. The
purpose of this second case scenario is to study the performance
of the algorithm under communication delay between observers.
In the third case scenario, two cyber-attacks are conducted on
DGU II with the false data modeled as a sinusoidal function
Ia2 = 1.4 (sin 0.4πt) A for the first event and then as a ramp
function Ia2 = 1.2t A for the second event.

(a)

(b)

Idc1 (5 A/div)

Idc2 (5 A/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Vdc1 (50 V/div)

Vdc2 (50 V/div)

Idc1 (5 A/div)

Idc2 (5 A/div)

Sinusoidal attacks

Simultaneous cyber attack

Cyber attack

Switching 

ramp ON

Sinusoidal FDIA

Fig. 12. Evolution of the experimental setup in the presence of FDIAs and
absence of mitigation strategy: (a) simultaneous constant cyber attack on both
agents, (b) ramp and sinusoidal attack element on agent II.

By comparing the pre-attack and post-attack behaviour in
Fig. 12, it can be seen that the attacks modify significantly the
behaviour of the system if no mitigation strategy is deployed.
Alternatively, the evolution of the system in all the studied case
scenarios with the proposed mitigation strategy is presented
in Fig. 13. In the first case in Fig. 13(a), the response of
the mitigation scheme under a change in the unknown CPL
value is studied. It can be seen that the variation of CPL
modifies the DGUs current set-point, but does not prevent the
equal current sharing. Therefore, the modification of the CPL
does not introduce a bias in the a attack estimation, which
exemplifies the adaptability of the algorithm to changes on
the unknown CPL value. Moreover, after the cyber-attack, the
system restores back itself to the pre-attack set-points. This
validates the scalability of the proposed observer strategy in
providing resiliency against FDIAs.

Since a communication network is employed to transmit
neighbouring estimations between observers, the validity of the
proposed detection scheme needs to be studied in the presence
of time delays in the communication channel. In some cases,
the presence of communication delay may affect the system
performance [45], thereby reducing the convergence rate and
leading to sustained oscillations in the system. Furthermore,
chaotic behaviour may be induced due to the interaction of the
delay and the nonlinearities [46]. Fortunately, in the considered
scenario, the delayed terms appear in the last equation of the
extended Astolfi/Marconi observer (11) and can be modeled as
a disturbance to be attenuated by the observer. It is well known
that the Astolfi/Marconi observer is robust to disturbances in
the last equation [37] and can attenuate its effect by reducing
the design parameter ε. This fact can be seen in equation (13).
Specifically, if there is a factor d that models the disturbance
induced by the communication delay, the upper-bound in (13)
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(a)

(b)

Idc1 (5 A/div)

Idc2 (5 A/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Idc1 (5 A/div)

Idc2 (5 A/div)

Communication delay of 75 millisec

Simultaneous cyber attack

Cyber attackLoad change

Load change
Cyber attack

Ramp and Sinusoidal Attack (c)

Sinusoidal FDIARamp FDIA

Fig. 13. Experimental validation of the proposed controller under: (a)
simultaneous cyber attack on both agents, (b) cyber attack on agent I under a
communication delay of 75 ms, (c) ramp and sinusoidal attack element on
agent II.

reduces to

|σ − σ̂| ≤ εk1|Pi − P̂i|+ εk2‖ηi − η̂i‖
+ εk3|ξ2,k − ξ̂2,k|+ εkw|ẇ|+ εk3|d|,

which shows that the effect of the cyber-disturbance d can be
diminished by reducing ε. Consequently, the estimator ensures
resilience to delay in the communication channels. This fact has
been validated in the second case study, where the performance
of the algorithm under communication delay between DGUs
is studied. Specifically, a variable communication delay with
a maximum value of 75 ms is considered in the second case
study in Fig. 13(b). Even though the coordination between
DGUs is limited to large communication delay, it can be seen
that when a FDIA is conducted under communication delays
that may lead to diverging DGU output currents, the proposed
observer strategy recovers pre-attack performance.

For the third case study in Fig. 13(c), two time-varying cyber-
attacks are conducted on DGU II. However, in the presence
of the proposed mitigation strategy, it can be seen that the
system restores back to the pre-attack setpoints in both types
of attack. This validates the robustness of the performance of
the proposed observer strategy in providing resiliency against
FDIAs of time-varying nature.

VI. CONCLUSIONS

This work presents a FDIA detection and mitigation strategy
for cooperative DC microgrid’s DGU current sensors and cyber-
links, even in the presence of unknown CPLs. The strategy
is based on reconstructing the attack signal and cancelling its
effect in the compromised measurements. It has been shown
that the attack signal can be estimated by the use of a distributed
observer that estimates the DGU output current accurately.

This work has presented the necessary conditions for the
local stability of each individual observer and the necessary
conditions for the stability of the distributed scheme. Moreover,
the results have been validated in a numerical simulation and
in an experimental prototype, where model uncertainty, noise,
and communication delay have been considered.
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