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Abstract—Nowadays, companies must embrace the concept of
Digitalization and Industry 4.0 to remain competitive in the
market. The reality is that most of them do not have their
industrial devices prepared to access their data on a real-time
basis. As most companies do not have the possibility to renew
all their legacy devices and because these devices are still very
productive, a retrofit solution is of high interest. In this work,
we propose an affordable procedure that allows data collection
and monitoring of older injection machines, as a contribution
towards legacy devices integration. The developed system nei-
ther requires additional proprietary modules, nor contractual
annual fees for different devices, sharing the same interface
across different machine manufacturers and also contributing to
uniform data collection. Evaluation was carried out in a real shop
floor, monitoring the injection parameters for different machine
models, validating the effectiveness of the developed system.

Index Terms—Injection Machines, Digitalization, Industry 4.0,
Monitoring Systems.

I. INTRODUCTION

The world is constantly evolving and today with the spread
of the concept of Digitization and Industry 4.0, companies
have to keep up with the evolution to remain competitive in the
market. Regarding this, it is necessary to find the best trade-
off between innovation and the possible investment turnover,
as not all companies are equipped with recent equipment with
standardized communication protocols for data collection and
transmission like the OPC-UA, and are unable to replace
the entire shop floors with new equipment. Therefore, it is
necessary to adapt the existing equipment on the factory
floor [1] [2] so that it is possible to have the process data
in real time to be further processed to draw conclusions that
can improve performance [3], production [4], maintenance
schedules, among others.

Another difficulty that companies encounter in this evolu-
tion is not only the investment in the equipment itself but also
in the licenses of the software contracted to third parties for
the collection and data manipulation. These license fees are
commonly paid on an annual basis and often expensive to
smaller companies.
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The injection processes are quite variable and for that,
the analysis of the data in real time can be an asset in the
identification or prediction of possible failures in the produced
parts [5] [6], which leads to a reduction of the rejected
parts [7], or in the interpretation of the events that occurred,
which helps the maintenance teams [8].

Concerning injection machines, the older ones usually do
not support protocols like OPC UA with Euromap77 informa-
tion model to describe them, as it happens with the recently
released machines [9]. Some of these older injection machines,
support other communication mechanisms, frequently with a
required extra fee.

As most injection machines that do not have real time
data available have a USB output to generate a file for
printing, a low cost system (around tens of euros instead
of hundreds/thousands, which are typically the prices of the
interfaces provided by the manufacturer) was created. This
system allows to collect, process and display data in almost
real time. This system and its development are presented in
this article. The real time here means access to the injection
process data between each cycle of parts injection, it is not
entirely in real time but it is only on the lapse of a cycle. In
this case, it ends up not making a big difference because many
of the repercussions in this type of processes are not reflected
in a single cycle but in a combination of several.

The developed system solves the problem of data collection
in equipment that do not have this characteristic of factory
pre-configuration (without adding extras). So with a low-cost
system we can collect, process and view data in real-time [10]
using open-source software and using the recording feature
via the USB port provided by the brands without additional
cost. Therefore, it is not necessary to purchase extra modules
or contractual licenses for the different equipment annually.
Another focus on the development of this system was the
possibility of using the same interface on several different
machine brands, which allows uniformity in data collection.

The system functionality was evaluated in the shop floor
for several months on machines from three different brands
(Engel, Negri Bossi and Tederic) and the experimental results
prove that the system behaves correctly.

Thus, the system developed and presented in this article



contributes to:
• Low-Cost: Make possible to the companies to have a

simple way of adapting their equipment to the current
concept of Industry 4.0 without having to make large
additional investments;

• Flexibility: Wireless based solution, which allows the
system to be flexible. It is not necessary to make major
changes to the physical network structures of the shop
floor systems;

• Versatility: The concept of this system can be used in
any equipment that exports data via USB, but it is not
just for injection machines. As the software is developed
using a general purpose programming language (Python
in this case), it allows using different known libraries for
data processing/machine learning such as Numpy, Pandas,
among others.

The paper is organized as follows. In Section II are pre-
sented some of the works done in the area and how they
can relate to our work. Section III resumes the functioning
of the presented system. Section IV is concerned with the de-
velopment details about the software and hardware developed
to collect the data from the injection machines. Section V
presents the evaluation of the system in two relevant use-
cases: the gathering of the data and a glimpse of the potential
benefits, and the normalization across different machines. To
conclude, the last section presents some conclusions and future
work to be developed.

II. RELATED WORK

In the literature, there are some related works dealing with
real-time injection process monitoring.

In [11] Karbasi et al. present a monitoring system with
pressure and temperature sensors added to the mold cavity. A
LabView setup was used to do the data acquisition and sensor
calibration on the software side, using a PC to read the sensors
and send the data into a spreadsheet file. On the hardware side,
they used an interface card (PC and data acquisition), a data
acquisition card to collect analog signals from sensor ampli-
fiers and a power supply to feed the temperature and pressure
amplifiers. This means the need to use a lot of hardware, which
implies a high cost and complexity. In comparison, we aim to
a simpler and easy to setup system. Additionally, in this article
the data collection of the injection process is focused on the
mold side, which presents a different approach to our work.

Zhao et al. present a different approach to injection pro-
cess monitoring [12]. In this study, electrical sensors such
as thermocouples and displacement and pressure probes are
installed in the injection molding machine, not in the mold, for
collecting the pressure, position, temperature and time during
plastic molding. Three different data collection cards are used
to pretreat and transform the analog and discrete signals to
digital signals, respectively. The digital signals are read and
saved by a supervising computer running Windows OS that
also serves as a data processor. In this article, the data from
the injection process is collected on the machine side, similarly
to our study, but the machine is instrumented which is a
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Fig. 1. System Architecture

disadvantage compared to our presented system that uses the
machine sensor reading.

In [13] Hong et al. an interface is presented which is
not only used for collection but also for control. The data
collection implementation is identical to that presented by
Karbasi et al. [11]. They also use signal amplifiers, data
acquisition system, data interface and a PC running Python
scripts to apply machine learning algorithms. This article
presents an AI-based control system to control the hot runner
and barrel temperature and holding pressure. In this article we
can observe a possible future work to be done with the data
collected from our system (in this case the AI-based control
using the injection machine parameters).

There are many studies done in this area based on sim-
ulations of the injection processes [14] [15] [16]. It is also
possible to find studies done in real environments, like ours,
but most of them take into account only one injection ma-
chine [17] [18] [10]. One of the advantages of our system
in relation to the works presented is that it allows to monitor
more than one machine as will be presented later in this article.

As for the implementation costs of the systems of the studies
presented in this chapter, they are superior in relation to our
system due to the need for instrumentation, whether of the
machine or the mold, the use of external monitoring systems,
signal converters, charge amplifiers, among others.

III. DEVELOPED SYSTEM

This section presents the overall design of the system and
the description of the different stages.

As we can see in Fig.1, the system consists of five stages.
The availability of data from the injection process (data),



the collection of data on each individual machine (data col-
lection), the data treatment from different machine brands
(data treatment), the storage of data in a physical database
(data storage) and real-time data monitoring and visualization
(data monitoring). It is also possible to observe how data is
transferred between systems and the type of files that are
exchanged between each phase.

The details of each step related with the system concept are
described below (implementation details are presented in the
next section):

• Data - The data made available by different brands of
machines comes in different formats (.txt, .tqc, .csv).
These formats are imposed by the manufacturers of each
machine and cannot be changed. Regarding the number
of available parameters, Negri Bossi allows to collect
only 6 parameters at a time from all available parameters.
Tederic and Engel allow to export all the parameters they
monitor.

• Data Collection - The injection parameter data for each
cycle is stored in the collection system connected to each
machine and sent, cycle by cycle, to the data processing
unit.

• Data Treatment - In this stage, the data of the different
machines are normalized so that the order of writing
in the database is always the same (normalized data
set). This is because, as mentioned, there are machine
brands that provide more parameters than others and thus,
identical parameters will be saved in the same order in
the database. The storage order of these variables is fixed
and chosen based on the parameters that the shop floor
injection engineers evaluate when there is some variation
in the process. This facilitates access and processing of
the data.

• Data Storage - The storage of previously normalized
data allows having an organized structure to interact with
monitoring systems, automatic data processing systems
(data science and machine learning algorithms), among
others. With this, this system allows not only to visualize
the data in almost real time, but also the historical records
that potentially allow to correlate defects in parts and
problems that may have occurred and can be detected
within the injection datalog.

• Data Monitoring - In terms of the system’s tangible
gains, this is one of the most valuable for the company’s
performance. This is because, having a graphical access
to the collected data, allows not only process engineers
to analyze the different behaviors of the machines to
correct the processes, but also for the common operators.
Having a screen next to each machine with the respective
parameters, the operators can see sudden differences
in the parameters and alert those responsible for the
process or maintenance about any problems that may
have occurred. This minimizes the response of different
teams to reduce downtime, which consequently reduces
the company’s monetary losses.

If we want to add this system to a machine that does not
have a file extension like the ones mentioned (.tqc, .csv or
.txt), it is just necessary to adapt the data processing script.
This flexibility is one of the advantages of this system.

Another advantage of the developed system is the possi-
bility of adapting and scaling the system because it is fully
developed by us (developers on the factory floor). This leads
to greater autonomy and less dependence on the availability
of providers to implement the different needs that may arise.

Fig. 2. Real system connected to the injection machine.

IV. IMPLEMENTATION DETAILS

The great challenge of this project was to find a way to
have a system where a machine could write data via USB
between each injection cycle but which could also make the
data available on another platform so that it could be saved and
observed at the same time. In that way, a pen drive cannot be
used because it does not allow reading and writing at the same
time. In essence, we need a device that can work similarly to
USB-OTG technology.

In the next two subsections, the developments made regard-
ing the hardware and software are presented.

A. Hardware

Figure 2 shows the developed system connected to the
injection machine, in this case, Negri Bossi 330 Tones Bi
Injection Machine (NB330BI). Regarding the hardware, one
restriction was to only use equipment already available on
the market so it was not necessary to develop any specific
component from scratch, which makes this system easy to
reproduce.

To solve this problem, we tested the use of a system that
could read and write at the same time. For this, a Raspberry
Pi zero (RPi0) with wireless functionality was used to emulate
as a mass storage device. As this Raspberry Pi has wireless
functionality, it was possible to send this data to another device
to be processed and stored. This means that is necessary to
place a RPi0 per injection machine.

In order not to overload the computational power of the
collection devices, a Raspberry Pi 4 (RPi4) with 8 GB ram
was used to process and store the data.



At the moment, the system is running on five machines
(5 RPi0’s) and only one RPi4 is used to process the data.
This makes the system cheaper. The RPi4 may still be able
to process data from more machines, but it is a matter of
balancing the required computational power and the cost.
We note that the data flow depends on the injection cycle,
the shorter the injection cycle, the greater the data flow per
machine.

Regarding the collection cycle by cycle, it was necessary
to place two relays on each machine to replicate the signal
referring to the automatic operation mode and the signal that
represents a new injected part. When the two signals are at
high logic level it signals that we have a new cycle and this
give the order to the RPi0 to send the data to the RPi4.

In machines that do not have the possibility to append the
date and time of each injection cycle, a real time clock (RTC)
was placed in the system to guarantee the correct time and
date so that later it can be compared with data process and
the time at which specific events occurred.

B. Software

In this section, the scripts that were developed for the differ-
ent constituents of the system (data collection and treatment)
are presented.

1) Raspberry Pi Zero Wireless: In this case, the developed
scripts are simpler. These are bash scripts that allow the read of
a digital signal (new machine cycle signal for data collection
order) and copy the file with the process data generated by
the machine at each new cycle.

The file copy is made through a folder shared between
the RPi0 and the RPi4. As these devices have the wireless
functionality, a wireless communication network was created
at the factory that allows interconnecting all devices. Thus,
through the assigned IPs, there is a shared folder between
each of the collection devices and the data processing board
(RPi4).

2) Raspberry Pi 4: On the factory floor where the system
test was carried out, there are three brands of machines that
have the functionality to export a file with the process data
via USB. The brands of the machines are Engel, Negri Bossi
and Tederic.

Each of these brands exports the file in a different extension.
Negri Bossi exports the process data in a file of the type (.tqc),
Engel in a file of the type (.csv) and Tederic in a file of the
type (.txt).

As the cycle-by-cycle writing of the file is imposed by the
machine, it was necessary to implement the data processing
system for each of the different brands (this implies a different
script for each brand).

In this data treatment, the Python language was used to
develop the scripts that facilitate the implementation of some
of the necessary functionalities. With the Python language it
is possible to process the data with functionality features like
pandas and numpy to prepare the data effectively not only for

placement in databases, but for future use of machine learning
algorithms [19].

Although the treatment of the different files is done dif-
ferently, the reasoning and the final implementation is always
the same. Basically, the written file in the shared folder by
the data collection system is opened, the last written cycle is
read and saved in an open source time series database (Influx
DB1).

This part of the system works as a data normalization API,
as each of the brands provides a number of different process
variables per file. Engel and Tederic have no limit on the
number of the variables that can be acquired, but Negri Bossi
using the .tqc file has a limit of six variables per file. Therefore,
in this case we have to choose which variables we want to see
within that limit.

This data can also be sent to a cloud storage, for example,
AWS2 from Amazon or Azure3 from Microsoft, in order to
facilitate the work of processing data through machine learning
algorithms. The use of computing and storage resources as a
service from the service provider, will further avoid the need
of powerful computing devices in the presented system side.

So far we have referred to the form of data collection,
treatment and storage. However, without having the possibility
of observing the data cycle by cycle, it is not possible to
correlate problems in production with the process variables of
the machines. An open source version of Grafana software was
used for this propose, allowing a real-time data visualization.

V. EXPERIMENTAL EVALUATION

This chapter presents two experiments: first the example
of the monitorization of several parameters from a single
machine, and second, an example of comparison of data
gathered from different machines. Both experiences include
a practical example of a simple problem that occurred in an
injection process and that was solved thanks to the analysis of
the data collected in the injection machine where the system
was connected.

First experiment results can be seen in Fig.3, where it is
possible to observe the appearance of the created monitoring
interface for the NB330BI machine.

In this machine, six parameters were being monitored,
namely: injection time, plasticization time, cycle time, cush-
ion, closing force and maximum injection pressure. Due to
the size of the image and in order to be perceptible, only the
parameters that have undergone relevant changes appear here
and allowed us to understand the cause of the problem. In this
particular case, the parameters in which the highest deviations
were observed are the injection time, the plasticization time
and the cushion. The injection pressure is also displayed
to maintain the correct dimensions of the image (although
variations are observed, their impact is residual).

Regarding the problem, quality operators identified defects
in some produced parts and alerted the injection technicians.

1https://www.influxdata.com
2https://aws.amazon.com
3https://azure.microsoft.com



Fig. 3. Example of a data visualization interface.

It was concluded that the injection process was unstable, as it
is possible to observe at the beginning of the different graphs
shown in Fig.3.

The technicians tried to make adjustments without yet
understanding the cause of the problem, but began to observe
that over time the value of the cushion decreased, which
caused the material in the machine’s spindle to decrease. It
is possible to observe this decrease in the value of the cushion
over time in the graph related to this variable. Although this
is not an article related to the injection technique and in order
to assist in the analysis, the cushion represents the amount of
material that is present in the spindle after a part is injected.
This amount is measured by the value of the distance between
the nozzle and the site where the inner part of the spindle
stops, which retains the material after injecting. The shorter
the distance, the less material remains after each injection.

Based on the information mentioned above, the injection
technicians realized that over time there was less material in
the spindle after each injected part and they went to see where
leakage problems could be. They observed that the spindle ring
(connection between the mold and the spindle) was not sealing
correctly.

After realizing the problem, the injection technicians inter-
vened in the process in order to solve it. This intervention
can be seen in Fig.3 from 12 o’clock. Here the parameters
were stable and the parts produced with defects did not appear
again.

Regarding the second experiment, we focus on showing the

potential of visualizing the process parameters of the different
machines simultaneously. As before, errors were caused in the
injection processes (spindle temperature variation, disconnect-
ing water circuits, among others) in two different machines.
These machines are working with the same material (in this
case, low density polyethylene) to understand if the variation
of the different parameters were identical. The tests with error
provocation were the same and performed in the same order.

In Fig.4 it is possible to observe the variation of the
plasticization time. This variable was one of the chosen among
the others because it is one of the variables with the greatest
variation and because it is different from the one analyzed in
the previous example.

The tests were carried out on different days and in parts
with different cycle times (hence the variations on the x-axis
of the graph). Despite this, it is possible to observe that the
behavior of this parameter was identical in both cases. Even if
the behavior shown is identical, further testing is needed in the
future to see if there is a pattern of variation and correlation.

These examples are a proof that a lot of potential work can
be done in this field because there is still a lot to explore. The
causes of problems are not always the same, the variables that
change can vary from problem to problem and from material
to material, among other things.

In this case, the data was used to help in identifying a
problem, but in the future, machine learning techniques can
be used to predict failures before they occur and help with
predictive maintenance and thus reduce the time that machines



Fig. 4. Plasticization time of NB90 and NB220 machines.

are stopped.

VI. CONCLUSION AND FUTURE WORK

With the system developed and presented in this article, we
can solve a problem that many industries face today, which is
obtaining data in real time from machines who do not have the
latest communication protocols (legacy devices) and at a cost
that can be supported. This system is a low-cost, flexible and
versatile alternative for implementing digitization in factories
with injection machines.

The described system is actually working on different
machines on a factory floor. To show its interest, we have
described two experiments involving a single machine and the
comparison of two machines. Some problems that caused de-
fective parts were solved with the help of the data collected and
presented by the developed system. Some of these problems
are presented in this article in order to explain the potential
that it can add to its use in the plastic industry.

With the success implementation of this system, a new stage
now appears, which is the treatment and drawing of conclu-
sions about the data obtained. One of the great future goals
is to understand the injection process (correlation between
the variables) and to understand how these variations of the
machine parameters can be related to the condition of the parts
produced.

This work opens the possibility of evaluating work batches
a-posteriori, but also to on-line monitor the evolution of the
process to, for example, raise alarms to the operators or even
adjust automatically some parts of the process. This is a
challenge with many aspects to be worked on because the
injection process is a complex process, the correlations of
the variables can vary depending on the type of material,
the size of the part, the capacity of the machines, among
others. It will also be interesting to develop algorithms that
allow, through the analysis of injection parameters, to identify
problems before they occur, perform predictive maintenance
and solve other challenges that may arise.
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