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A Distributed Augmented Lagrangian Method over
Stochastic Networks for Economic Dispatch of

Large-Scale Energy Systems
Wicak Ananduta, Carlos Ocampo-Martinez, and Angelia Nedić

Abstract—In this paper, we propose a distributed model
predictive control (MPC) scheme for economic dispatch of
energy systems with a large number of active components. The
scheme uses a distributed optimization algorithm that works over
random communication networks and asynchronous updates,
implying the resiliency of the proposed scheme with respect
to communication problems, such as link failures, data packet
drops, and delays. The distributed optimization algorithm is
based on the augmented Lagrangian approach, where the dual
of the considered convex economic dispatch problem is solved.
Furthermore, in order to improve the convergence speed of the
algorithm, we adapt Nesterov’s accelerated gradient method and
apply the warm start method to initialize the variables. We show
through numerical simulations of a well-known case study the
performance of the proposed scheme.

Index terms – economic dispatch, multi-agent optimization,
model predictive control, stochastic time-varying network

I. INTRODUCTION

THE aim of achieving clean, efficient, and sustainable
energy production and consumption [1] drives a rapid

installation of small-scale production units, particularly those
that use renewable energy sources, and storage units [2]. Based
on these developments, distributed optimization and control
approaches are perceived to be suitable for future energy
networks [2], [3]. The advantages of distributed approaches
over the centralized counterpart include better cybersecurity,
communication efficiency, scalability, and privacy [3].

This paper focuses on the energy management problem of
large-scale systems with a large number of active components,
which are previously mentioned. Specifically, we consider a
distributed model predictive control (MPC) approach, which
allows us to include forecasts of uncontrollable generation
and loads, the slow dynamics of the storage units, and hard
operational constraints [4], [5]. Moreover, the decisions (set
points of the active components) are updated at each time step
based on the latest measurement, making the decisions more
robust against uncertainty [4].

Various distributed methods to solve economic dispatch
problems can be found, especially in the recent literature,
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e.g., [6]–[10], or see [3], [11] for a survey. One of the key
differences of those methods is in the way of decomposing
the problem. In this regard, many distributed methods are
based on the (augmented) Lagrangian duality theory [12].
Nevertheless, typically distributed methods, including those
that are based on the Lagrangian duality, are iterative and
require the exchange of some necessary information at each
iteration. Due to its reliance on communication, it is important
to ensure the resiliency of the distributed method in case some
communication problems arise, such as link failures, delays,
or data packet drops.

We can model the above communication problems as having
a time-varying communication network and asynchronous up-
dates. However, there is only a few existing work that discusses
this problem in distributed economic dispatch problem, e.g.,
[13]–[15]. In [13], the time-varying network is assumed to
be strongly connected with a positive probability. Moreover,
in [14], [15], the time-varying communication network is
assumed to be jointly (strongly) connected. Additionally, [13]–
[15] do not model asynchronous updates. Differently, [16],
[17] consider stochastic communication networks for consen-
sus and constrained optimization problems, respectively.

On the other hand, an MPC-based scheme requires solving
an optimization problem online. Therefore, having a fast
distributed algorithm as well as implementing heuristics, such
as warm start method, become important. One fast gradient-
based optimization method is proposed by Nesterov in [18].
Some adaptations of Nesterov’s accelerated gradient method
have also been proposed to solve the dual of some problems,
e.g., MPC [19], [20] and network resource allocation problems
[21], resulting in distributed algorithms. However, these papers
consider problems with a strongly convex primal cost function,
which does not hold in the problem that we consider. In
the class of augmented Lagrangian methods, the papers [22],
[23] present fast alternating direction method of multipliers
(ADMM) algorithms, which implement Nesterov’s gradient
steps. However, the problem considered is limited to that with
only an equality constraint whereas an economic dispatch
problem typically also has inequality constraints. Moreover,
these ADMM-based distributed methods require the agents to
perform their updates sequentially and do not consider time-
varying communication networks.

In this work, as the main contribution, we propose two novel
distributed optimization algorithms for MPC-based economic
dispatch of large-scale energy systems. The algorithms have
parallel implementation and are based on an augmented La-
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grangian method, firstly introduced in [24], [25]. Furthermore,
the proposed algorithms work over stochastic communication
networks, thus they are robust against some communication
problems. The first algorithm is an adaptation of the method
presented in [26] for large-scale economic dispatch problems
whereas the second method is an accelerated version of the
first based on Nesterov’s approach. We show through a numer-
ical study the efficacy of these algorithms using a well-known
benchmark case. As MPC-based economic dispatch methods,
both algorithms produce a comparable performance under
an unreliable communication network. However, indeed the
accelerated algorithm converges faster than the unaccelerated
one, highlighting its advantage.

The paper proceeds as follows. Section II presents the model
of a large-scale energy system considered in this paper, the
network partitioning, and the MPC-based economic dispatch
problem of the system. Then, Section III provides the pro-
posed distributed method based on the augmented Lagrangian
approach, whereas Section IV discusses the techniques consid-
ered to improve the convergence speed of the proposed method
and presents the accelerated version of the proposed method.
Furthermore, Section V is devoted to showing the performance
of the proposed method and its accelerated version through
numerical simulations using a well-known benchmark case
study. Finally, Section VI concludes the paper with some
remarks and a discussion of future work.

Notation

The sets of real and integer numbers are denoted by R and
Z, respectively. For any a ∈ R, R≥a = {b ∈ R : b ≥ a}.
Similar definition is also used for Z≥a, and the strict inequality
cases. The set of real vectors with dimension n is denoted
by Rn. The inner product of vectors x, y ∈ Rn is denoted
by 〈x, y〉. The Euclidean norm of vector x is denoted by
‖x‖2. The all-ones vector with the size of n is denoted
by 1n, whereas the identity matrix with the size n × n is
denoted by In. Finally, col(·) constructs a column vector from
its arguments, whereas the block-diagonal operator, which
constructs a block diagonal matrix of the arguments, is denoted
by blkdiag(·).

II. MPC-BASED ECONOMIC DISPATCH PROBLEM

In this section, a graph-based model for large-scale electrical
networks and its distributed MPC-based economic dispatch
problem are formulated.

A. Model of the network

Let a large-scale electrical network be represented by an
undirected graph G = (N , E), where N = {1, 2, . . . , n}
denotes the set of busses (nodes) and E ⊆ N ×N denotes the
set of links that physically connect the nodes. In this system,
each node might have load, storage unit, and generation unit.
Moreover, each pair of nodes that are connected, e.g., nodes i
and j such that {i, j} ∈ E , might also exchange power between
each other. Some nodes might also be connected with the main
grid. We denote by N dg ⊆ N , N st ⊆ N , and Nmg ⊆ N the

set of nodes that have dispatchable generation units, storage
units, and are connected with the main grid, respectively.

We denote by di ∈ R, for each i ∈ N , the difference
between the load and power generated by non-dispatchable
generation units at node i. Note that if di > 0, the load is larger
than the generated power. Furthermore, we define the local de-
cision of node i at time step t by ui,t = col(usti,t, u

dg
i,t, u

mg
i,t ) ∈

Rnl
i , where usti,t ∈ R, udgi,t ∈ Rn

dg
i , and umg

i,t ∈ R≥0 are the
set points of the power delivered from/to the storage unit, the
power produced by the dispatchable generation units, and the
power imported from the third party, respectively. Note that
nli = 2 + ndgi . On the other hand, let Ni := {j : {i, j} ∈ E}
be the set of neighbors of node i. Then, we denote by vji,t ∈ R
the power exchanged between nodes i and j ∈ Ni. Note that
vji,t is a decision of node i, whereas the decision of node j is
denoted by vij,t and it must hold that

vji,t + vij,t = 0, ∀j ∈ Ni, ∀i ∈ N . (1)

Additionally, locally, each node must also meet a power
balance, which is reflected by

1>nl
i
ui,t +

∑
j∈Ni

vji,t = di,t. (2)

Now, we describe the operational constraints of each com-
ponent in the network as follows.

1) Dispatchable generation units. The production capacity
constraints of these units are stated as follows:

udg,min
i ≤ udgi,t ≤ u

dg,max
i , ∀i ∈ N , (3)

where udg,min
i and udg,max

i denote the minimum and
maximum power that can be generated by the dispatch-
able generation units in node i, respectively. Note that,
for i /∈ N dg, udg,min

i = udg,max
i = 0.

2) Storage units. The capability of storing energy is modeled
by discrete-time integrator dynamics, i.e.,

xi,t+1 = aixi,t + biu
st
i,t, ∀i ∈ N st, (4)

where xi denotes the state of charge (SoC) of the storage
unit. The scalar ai ∈ (0, 1] denotes the efficiency of
the storage whereas bi = − Ts

ecapi
, where Ts denotes the

sampling time of the system and ecapi denotes the energy
capacity of the storage unit. Moreover, the SoC and
the power delivered to/from the storage unit are also
constrained as follows:

xmin
i ≤ xi,t+1 ≤ xmax

i , ∀i ∈ N st, (5)

−uchi ≤ usti,t ≤ udhi , ∀i ∈ N st, (6)

usti,t = 0, ∀i /∈ N st, (7)

where xmin
i , xmax

i ∈ [0, 1] denote the upper and lower
limits of SoC whereas uchi , u

dh
i ∈ R≥0 denote the

maximum charging and discharging power of the storage
unit.

3) Imported power. The amount of power that can be im-
ported from the main grid is limited as follows:

0 ≤ umg
i,t ≤ u

mg,max
i , ∀i ∈ Nmg, (8)

umg
i,t = 0, ∀i /∈ Nmg, (9)
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where umg,max
i ∈ R>0 denotes the maximum power that

can be imported.
4) Exchanged power. The amount of power that can be

exchanged between two neighboring nodes is also limited
as follows:

−vj,max
i ≤ vji,t ≤ v

j,max
i , ∀j ∈ Ni, ∀i ∈ N , (10)

where vj,max
i is the maximum power that can be delivered

to/from node i through link {i, j}.

B. Distributed MPC-based economic dispatch problem

In a distributed control scheme, it is assumed that there
exists m computational units (controllers), where m� n.
These controllers cooperatively manage the operation of the
network G. In this regard, suppose that the network is de-
composed into m non-overlapping partitions, defined by the
set M = {Mp : p = 1, 2, . . . ,m} where the definition of
partitions is given in Definition 1. Note that the partitioning of
the network can be done based on the network design, market
design, or the energy contracts [7], [27]–[31].

Definition 1 (Non-overlapping partitions): Let Mp, for
p = 1, 2, . . . ,m, be a non-empty subset of N . Then, the set
M = {Mp : p = 1, 2, . . . ,m} defines m non-overlapping
partitions of the network G = (N , E), if

⋃m
p=1Mp = N and

Mp ∩Mq = ∅, for any Mp,Mq ∈M and p 6= q. 2

We consider that each partition is a subsystem controlled
by a local controller. In this regard, we describe the network
of subsystems by the undirected graph Gs = (P, Es). The set
P = {1, 2, . . . ,m} denotes the index set of the subsystems and
Es ⊆ P × P denotes the set of links among the subsystems.
Furthermore, if there exists at least one node in subsystem p
connected to a node in subsystem q, then {p, q} ∈ Es. There-
fore, let N s

p denote the set of neighbors of subsystem p ∈ P ,
i.e., N s

p := {q ∈ P : ∃{i, j} ∈ E , i ∈ Mp, j ∈ Mq, p 6= q}.
Figure 1 illustrates how the network of subsystems of a
small-scale energy system is formed. Additionally, since the
partitions are non-overlapping, each node is associated with
one subsystem. In this regard, let φ : N → P be the function
that gives the subsystem index with which a node is associated,
i.e., φ(i) := p, where p ∈ P is such that i ∈Mp.

We are now in the position to state the optimization
problem that underlies the MPC-based economic dispatch
scheme. To that end, first, we define the concatenated de-
cision variables over a certain time horizon h, i.e., for all
τ ∈ T = {t, t + 1, . . . , t + h − 1}, with bold symbols, i.e.,
ui,t := col({ui,τ}τ∈T ) ∈ Rnl

ih, vji,t := col({vji,τ}τ∈T ) ∈ Rh,
and vi,t = col({vji,t}j∈Ni

) ∈ R|Ni|h. Therefore, at time step
t, the controllers must cooperatively solve

minimize
{(ui,t,vi,t)}i∈N

∑
i∈N

(
f li(ui,t) + f ci (vi,t)

)
(11a)

s.t. (ui,t,vi,t) ∈ Li,t, ∀i ∈ N , (11b)

vji,t + vij,t = 0, ∀j ∈ Ni, ∀i ∈ N , (11c)

where f li(ui,t) and f ci (vi,t) in (11a) are the cost functions
associated with node i and the set Li,t, for each i ∈ N , is the
local polyhedral constraint set defined such that (2)-(10), for
all times t, t+ 1, . . . , t+ h− 1, hold.

Sub-system 1

Sub-system 2

Sub-system 3 Sub-system 4

Sub-system 5

1

4

3 5

2

Fig. 1. An example of a small-scale energy network. Top figure shows graph
G where the nodes in N are depicted as dots and the links in E are depicted
as solid lines. The graph G is partitioned into five subsystems. Bottom figure
shows graph Gs where the subsystems in P are depicted as filled squares and
the links in Es are depicted as dash-dotted lines.

Remark 1: Although we specify that Li,t is defined by
(2)-(10), one might consider additional operational constraints
for some components, e.g., those that are inter-temporal. For
instance, the rate of power produced by either the generation
units or the storage units, which still results in polyhedral Li,t.
2

Assumption 1: For each i ∈ N , the functions f li : Rnl
ih →

R and f ci : R|Ni|h → R are continuously differentiable and
convex. Moreover, f li(ui,t) is strongly convex. 2

Assumption 2: The feasible set of Problem (11), for any
t ∈ Z≥0, is non-empty. 2

Furthermore, we let Assumptions 1 and 2 hold. Assumption
1 is commonly considered [3], [5], [6] and typically f li is a
strongly convex quadratic function, i.e., u>i,tQiui,t + q>i ui,t,
with positive definite Qi, which is typically used to approxi-
mate the operational cost of the distributed generation units,
penalize the usage of storage units as well as the cost of
importing power from the main grid [8], [10] whereas f ci = 0.
Moreover, Assumption 2 is a technical assumption to ensure
the existence of an optimal solution to Problem (11).

In an MPC scheme, Problem (11) is solved at each time
step t, and only the decisions associated to the current time
step t are applied, as summarized in Algorithm 1.

Algorithm 1 MPC-based economic dispatch
Iteration: For each t ∈ Z≥0,

1) Compute ui,t and vi,t, for all i ∈ N , by solving Problem
(11).

2) Implement the decisions of the current time step t, i.e.,
ui,t and vi,t, for all i ∈ N .

3) Measure the states xi,t+1, for all i ∈ N st.

Remark 2: We consider a nominal problem in (11) and do
not specifically deal with uncertainties from power demands
and non-dispatchable generation. Nevertheless, in order to
complement this work with a robustification method, we must
ensure when the problem is robustified, it remains convex and
the assumptions we consider are satisfied. 2
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III. DISTRIBUTED AUGMENTED LAGRANGIAN METHOD

This section describes a distributed method to solve Problem
(11) that works under imperfect communication. We drop
the time index t for convenience as the proposed algorithm
solves Problem (11) at a fixed t (step 1 of Algorithm 1).
Furthermore, we also introduce the iteration index k used by
the algorithm. Prior to describing the algorithm, we model
imperfect communication as random processes.

A. Stochastic communication process

We consider that not all subsystems might perform the
updates at each iteration (asynchronicity) and the commu-
nication links between neighboring subsystems are time-
varying. Therefore, we represent the communication network
of the local controllers by the undirected graph Gc(k) =
(A(k), Ec(k)), where A(k) ⊂ P and Ec(k) ⊆ Es denote
the set of subsystems and the set of communication links
that are active at iteration k−1, respectively, i.e., p ∈ A(k)
means that subsystem p is active, whereas {p, q} ∈ Ec(k)
means that the communication link between subsystems p and
q is active at k−1. Furthermore, we denote the set of active
neighbors of subsystem p ∈ P by Ap(k), i.e., Ap(k) = {q ∈
A(k) : {p, q} ∈ Ec(k)}. Finally, the communication network
is modeled as a random graph as follows [16].

Assumption 3 (Random network): The set Ec(k) ⊆ Es is a
random variable that is independent and identically distributed
across iterations. Furthermore, any communication link be-
tween two coupled subsystems p and q, where {p, q} ∈ Es,
is active with a positive probability denoted by βpq , i.e.,
P ({p, q} ∈ Ec(k)) = βpq > 0. 2

Assumption 4 (Asynchronous update): The set A(k) ⊆ P
is a random variable that is independent and identically
distributed across iterations. Moreover, a subsystem p ∈ P
is active at iteration k with a positive probability denoted by
γp, i.e., P (p ∈ A(k)) = γp > 0. 2

B. Stochastic DAL algorithm

The proposed distributed method, as presented in Algorithm
2, is based on solving the dual problem associated with the
augmented problem of (11), where the augmentation terms and
the Lagrange multipliers, denoted by λji ∈ Rh, for all j ∈ Ni
and i ∈ N , are associated with the coupling constraints. A
detailed explanation of the derivation is provided in [26]. Note
that ηji , for all j ∈ Ni and i ∈ N , are step sizes used to
perform the gradient step ascent of the Lagrange multipliers,
whereas the auxiliary variable zji ∈ Rh, for each j ∈ Ni and
i ∈ N , is used by subsystem φ(i) to track the information of
the neighbor nodes of node i, i.e., vij , for all j ∈ Ni.

Now, we explain how each iteration in Algorithm 2 works.
• Primal variable updates: Each subsystem p ∈ P updates
ui(k+ 1) and vi(k+ 1), for all i ∈Mp, by first solving
the local optimization problem (12), where v̂i(k) denotes
an auxiliary variable used to update vi(k + 1). Then,
in step 2, vji (k + 1) is updated by applying a convex
combination of v̂ji (k) and vji (k). In this step, the coupled
variable vji is only updated with the convex combination

Algorithm 2 Stochastic DAL method

Initialization: For each node i ∈ N , vi(0) ∈ R|Ni|h.
Moreover, zji (0) = vij(0), λji (0) = λij(0) ∈ Rh, and
ηji = ηij ∈ (0, 14 ), for all j ∈ Ni and i ∈ N .
Iteration: For each subsystem p ∈ A(k + 1),

1) Update (ui(k + 1), v̂i(k)), for all i ∈Mp, according to

{(ui(k + 1), v̂i(k))}i∈Mp

= arg min
{(ui,vi)∈Li}i∈Mp

∑
i∈Mp

(
f li(ui) + f ci (vi)+

+
∑
j∈Ni

(
2〈λji (k),vji 〉+ ‖vji + zji (k)‖22

))
. (12)

2) Update vji (k+1), for all j ∈ Ni and i ∈Mp, as follows:

vji (k + 1) =


ηji v̂

j
i (k) +

(
1− ηji

)
vji (k),

if φ(j) ∈ Ap(k + 1) ∪ {p},
vji (k), otherwise.

(13)

3) For each j ∈ Ni\Mp such that φ(j) ∈ Ap(k + 1) and
i ∈ Mp, send vji (k + 1) to and receive vij(k + 1) from
subsystem φ(j).

4) Update the auxiliary and dual variables zi(k + 1) and
λi(k + 1), for all i ∈Mp, according to

zji (k + 1)=

{
vij(k + 1), if φ(j) ∈ Ap(k + 1) ∪ {p},
zji (k), otherwise,

(14)

λji (k + 1) =


λji (k) + ηji

(
vji (k + 1) + zji (k + 1)

)
,

if φ(j) ∈ Ap(k + 1) ∪ {p},
λji (k), otherwise.

(15)

For subsystem p /∈ A(k + 1), we have ui(k + 1) = ui(k),
vi(k + 1) = vi(k), zi(k+1) = zi(k), and λi(k+1) = λi(k)
for all i ∈Mp.

step if φ(i) and φ(j) can exchange information, i.e., both
φ(i) and φ(j), when φ(i) 6= φ(j), as well as the link
{φ(i), φ(j)} are active. Note that if nodes i, j ∈Mp and
p ∈ A(k + 1), then vji and vij are updated.

• Information exchange: In step 3, each active subsystem
p ∈ A(k + 1) exchanges information with its active
neighbors q ∈ Ap(k + 1).

• Dual variable updates: In step 4, the dual variables are
updated with a gradient ascent step. Similarly to the
update of vji , λji is also updated depending whether both
subsystems φ(i) and φ(j) as well as the communication
link {φ(i), φ(j)} are active. Note that if φ(i) = φ(j) and
φ(i) ∈ A(k + 1), then λji is updated with the gradient
step.

In addition, it is important to mention that, based on Assump-
tions 3 and 4, the variables vji , zji and λji , for each j ∈ Ni
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and i ∈ N , are updated with a positive probability, denoted
by αij , which is defined as follows:

αij =

{
βpqγpγq, if p 6= q,

γp, otherwise,
(16)

where p = φ(i) and q = φ(j).
Theorem 1 ([26, Theorem 1]): Let Assumptions 1-4 hold.

Furthermore, let the sequences {(ui(k),vi(k))}, for all i ∈ N ,
be generated by Algorithm 2. Then, with probability 1,

a. (Feasibility) limk→∞ ‖vji (k) + vij(k)‖22 = 0, for all
j ∈ Ni and i ∈ N ,

b. (Primal variable convergence) limk→∞ ui(k) = u?i and
limk→∞ vi(k) = v?i , for all i ∈ N , where {u?i ,v?i }i∈N
is an optimal solution to Problem (11). 2

Proof: A complete proof is provided in [26], with a minor
modification on the definition of αij as defined in (16).

IV. IMPROVING CONVERGENCE SPEED

This section provides two techniques that can be used to
reduce the number of iterations of the stochastic DAL method.

A. Nesterov’s accelerated method

In [18], Nesterov proposes an optimal gradient method that
has convergence rate of O( 1

k2 ) for a convex smooth optimiza-
tion. The main idea of this accelerated gradient method is that
the gradient step is taken from a smartly chosen interpolated
point of the last two iterations. This method has been further
extended for non-smooth cases in [32]. Furthermore, a gen-
eralization of the accelerated method and its variants and a
unifying framework to analyze them are provided in [33].

To show the accelerated gradient method, we consider the
following problem:

minimize
u

f(u),

where u ∈ Rnu and f(u) : Rnu → R is a differentiable
convex function wih Lipschitz continuous gradient. Moreover,
we denote by ω the Lipschitz constant of the gradient of
f(u), denoted by ∇f(u). The accelerated gradient method
for the preceding problem, as presented in [23], is shown in
Algorithm 3. As can be seen, û(k) is the interpolated point
used to perform the gradient step.

Algorithm 3 Nesterov’s accelerated gradient descent
Initialization: θ(0) = 1, u(0) = u(−1) ∈ Rnu , η ≤ 1/ω.
Iteration:

1) Update θ(k + 1) by θ(k + 1) = 1
2 (1 +

√
4θ(k)2 + 1)

2) Update û(k + 1) by û(k + 1) = u(k) + θ(k)−1
θ(k+1) (u(k) −

u(k − 1))
3) Update u(k+1) by u(k+1) = û(k+1)−η∇f(û(k+1))

We adapt this acceleration technique to the stochastic DAL
method, as shown in Algorithm 4. Since we apply the gradient
step to update the dual variable, an interpolated point of a
dual variable must be computed at each iteration based on
the rule shown in steps 1 and 2 of Algorithm 3. Due to this

requirement, all subsystems must always be active at each
iteration, i.e., the following assumption holds.

Assumption 5: The probability of subsystem p ∈ P being
active is 1, i.e., P(p ∈ A(k)) = 1, for all p ∈ P and k ∈ Z≥0.
2

Algorithm 4 Stochastic accelerated DAL method

Initialization: For each node i ∈ N , vi(0) ∈ R|Ni|h.
Moreover, zji (0) = vij(0), λji (0) = λij(0) ∈ Rh, and
ηji = ηij ∈ (0, 14 ), for all j ∈ Ni and i ∈ N . Additionally,
θ(0) = 1.
Iteration: For each subsystem p ∈ P ,

1) Update θ(k + 1) as follows:

θ(k + 1) =
1

2
(1 +

√
4θ(k)2 + 1).

2) Update λ̂i(k + 1), for all i ∈Mp, as follows:

λ̂i(k + 1) = λi(k) +
θ(k)− 1

θ(k + 1)
(λi(k)− λi(k − 1)).

3) Update (ui(k + 1), v̂i(k)), for all i ∈Mp, according to

{(ui(k + 1), v̂i(k))}i∈Mp

= arg min
{(ui,vi)∈Li}i∈Mp

∑
i∈Mp

(
f li(ui) + f ci (vi)+

+
∑
j∈Ni

(
2〈λ̂ji (k + 1),vji 〉+ ‖vji + zji (k)‖22

))
.

4) Update vji (k+1), for all j ∈ Ni and i ∈Mp, as follows:

vji (k + 1) =


ηji v̂

j
i (k) +

(
1− ηji

)
vji (k),

if φ(j) ∈ Ap(k + 1) ∪ {p},
vji (k), otherwise.

5) For each j ∈ Ni\Mp such that φ(j) ∈ Ap(k + 1) and
i ∈ Mp, send vji (k + 1) to and receive vij(k + 1) from
subsystem φ(j).

6) Update the auxiliary and dual variables zi(k + 1) and
λi(k + 1), for all i ∈Mp, according to

zji (k + 1)=

{
vij(k + 1), if φ(j) ∈ Ap(k + 1) ∪ {p},
zji (k), otherwise,

λji (k + 1) =


λ̂ji (k + 1) + ηji

(
vji (k + 1) + zji (k + 1)

)
,

if φ(j) ∈ Ap(k + 1) ∪ {p},
λ̂ji (k + 1), otherwise.

Assumption 5 implies that Algorithm 4 is performed syn-
chronously. Nevertheless, the communication network might
still be randomly time-varying. Notice that in step 3 of Algo-
rithm 4, each subsystem uses the interpolated points λ̂i(k+1),
for all i ∈ N , to update the primal variables. Note that we
treat the acceleration technique as a heuristic method and the
effectiveness will be shown through numerical simulations.
Although [22], [23] show the convergence rate analysis of
an accelerated ADMM method, the problems considered in
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those papers are limited and do not include Problem (11).
Specifically, [23], which provides a more general result than
[22], shows the convergence rate of O( 1

k2 ) when the cost
function is composed of two component, one is strongly
convex while the other is quadratic. Moreover, the problems
considered only have an equality constraint but do not include
local constraint sets.

B. Warm start method

We also consider the warm start method [34, §4.3.3] to
reduce the number of iterations performed by the distributed
algorithms. As suggested by its name, the idea of this method
is carefully choosing the initial condition of the variables.
Particularly for an MPC scheme, where a similar problem
is repeatedly solved at each time step, the variables can be
initialized using the computed value from the previous time
step. Note that the difference between the problem solved at
one step and another is the value di,τ , for all i ∈ N and t ∈ T ,
considered at each step. At time step t, although only ui,t and
vi,t are implemented, the decisions for h time steps ahead,
i.e., ui,τ and vi,τ , for all τ ∈ T , are computed. Furthermore,
we can also record the dual variables from the last iteration at
t and use them as the initial value at the next time step, t+ 1.

Now, consider Algorithms 2 and 4 and let vji,t|t =

col({vji,τ |t}τ∈T ) and λji,t|t = col({λji,τ |t}τ∈T ), for all j ∈ Ni
and i ∈ N , denote the coupled and dual variables computed
at time t ∈ Z≥0. Therefore, in the next time step, t+ 1, they
can be initialized as follows:

vji,t+1(0) = col({vji,τ |t}
t+h−1
τ=t+1,v

j
i,t+h−1|t),

λji,t+1(0) = col({λji,τ |t}
t+h−1
τ=t+1,λ

j
i,t+h−1|t),

for all j ∈ Ni and i ∈ N .
Notice that we initialize the variables associated with the

last step in the horizon, i.e., t+ h, in the same way as we
initialize the variables at t+ h− 1. The reason of this choice
is twofold. Firstly, as previously explained, the difference
between the optimization problem solved at t and t+ 1 is the
uncertain variables di, for each i ∈ N . Secondly, the difference
between di,t+h and di,t+h−1, for each i ∈ N , might not be
large, especially when the sampling period is small.

V. NUMERICAL SIMULATIONS

We consider the PG&E 69-bus distribution network, with
the addition of 11 solar-powered non-dispatchable generation
units, 11 storage units, and 13 dispatchable generation units.
Figure 2 not only shows the locations of these units in the
network but also the decomposition of the network into eight
subsystems, which is obtained from [29]. The parameters of
the active components in the network are given in Table II.
Moreover, we use the available load data set as the maximum
value of the load at each node. The nodes that have a maximum
load greater than 100 kW are considered to have a commercial
load profile. Otherwise, they have a residential load profile.
Furthermore, Table I shows the maximum power generation
of the non-dispatchable generation units. Additionally, it is
assumed that the subsystems have the knowledge of the

1 27

59

69

36 39

28 35

3 4 8 9 11 12

42
54

40
41

55
56

57 58Agent 1

19

Agent 3 Agent 4

Agent 5

Agent 7 Agent 8

Agent 6

Agent 2

Fig. 2. The locations of non-dispatchable units (indicated by filled squares,
�), dispatchable generators (indicated by empty squares, 2), and storage units
(indicated by crosses, ×) in the PG&E 69-bus distribution network, which is
partitioned into eight subsystems [29].

TABLE I
MAXIMUM GENERATED POWER OF SOLAR-BASED GENERATION UNITS

Nodes Maximum power [kW]

7, 32, 37, 45, 56, 65 50

20, 41 75

16, 54 100

52 150

loads and non-dispatchable power generation, implying perfect
forecasts, so that the analysis can be focused only on the
outcomes of the algorithms. An example of residential and
commercial load profiles is shown in the top plot of Figure
3, whereas a solar-based generation profile is shown in the
bottom plot of Figure 3.

The simulation time is one day with the sampling time of 15
minutes, implying 96 steps. Moreover, the prediction horizon
in the DMPC scheme is h = 4. Furthermore, we assume that
the probability of each communication link being active is
equal, i.e., βpq = β = 0.9, for all {p, q} ∈ Es, whereas all
subsystems are always active at each iteration to accommodate
Algorithm 4 (c.f. Assumption 5). We simulate both Algorithms
2 and 4 by using the same case and considering the step sizes
to be ηji = 0.2, for all {i, j} ∈ E . Moreover, their stopping
criterion is ‖vt(k)+zt(k)‖2 ≤ 1, which is the primal residual
[34]. Note that since the stopping criterion corresponds to the
coupling constraints and max ‖vji + vij‖2 = 80, the choice
of the stopping criterion is acceptably small. Additionally, we
also apply the warm start method described in Section IV-B
to both algorithms. Note that all simulations are carried out
in MATLAB with Yalmip [35] on a PC with 16 GB of RAM
and 2.6 GHz Intel core i7.

Figures 4-6 show the simulation results. Figure 4 shows the
number of iterations required by the stochastic DAL and its
accelerated version (Ac-DAL) over all time steps. The average
number of iterations are 1294.9 and 730.6, respectively. From
these results, we can see that Nesterov’s accelerated method
reduces the number of iterations needed to satisfy the stopping
criterion close to 50%. However, it is also important to note
that the acceleration technique does not allow the subsystems
to be inactive randomly since they must always perform the
interpolation steps at each iteration. Furthermore, we also
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Fig. 3. One-day residential and commercial load profiles (top plot) and one-
day solar-based power generation profile (bottom plot).

TABLE II
PARAMETERS OF THE NETWORK COMPONENTS

Parameters Value Unit Bus

udg,min
i , udg,max

i 0, 400 kW i ∈ Ndg

xmin
i , xmax

i , xi,0 30, 100, 50 % i ∈ N st

uch
i , udh

i 100, 100 kW i ∈ N st

ecap,i 1000 kWh i ∈ N st

ai 1 - i ∈ N st

vj,max
i 200 kW {i, j} ∈ E

DAL Ac-DAL

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Fig. 4. The number of iterations performed by each algorithms. The blue
boxes show the 25th percentiles until the 75th percentiles, the red lines show
the median, and the + symbols indicate outliers.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
0

0.05
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0.15

0.2

DAL
Ac-DAL

Fig. 5. Top plot shows the coupled power imbalance, ||∆c||2 (see (17)).
Bottom plot shows the local power imbalance, ||∆l||2 (see (18)).
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200
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Fig. 6. The stage cost at each iteration (top plot) and the total power
transferred among subsystems at each iteration (bottom plot).

evaluate the power imbalances. Based on (1) and (2), the
coupled and local power imbalance indices, denoted by ∆l

t

and ∆c
t , respectively, are defined as follows:

∆c
t = col({vji,t + vij,t}j∈Ni,i∈N ), (17)

∆l
t = col({1>nl

i
ui,t + 1>|Ni|vi,t − di,t}i∈N ). (18)

Figure 5 shows ‖∆c
t‖2 (top plot) and ‖∆l

t‖2 (bottom plot).
It can be observed that ‖∆c

t‖2 is relatively similar. However,
in terms of local power imbalance, ‖∆l

t‖2 obtained from the
accelerated algorithm is most of the time larger than the
standard algorithm, although the difference is quite small.
Finally, we also show the cost achieved by both algorithms
at each time step in the top plot of Figure 6. In addition, the
subsystems must actively exchange power among each other,
as shown in the bottom plot of Figure 6. Thus, Figures 5-6
indicate that the stochastic DAL and its accelerated version
achieve a comparable performance.
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VI. CONCLUSION AND FUTURE WORK

We present a distributed model predictive control scheme
for an economic dispatch of large-scale energy systems. The
scheme is based on the distributed augmented Lagrangian
approach and works over random communication networks
and asynchronous updates. Furthermore, we also propose to
implement two techniques, i.e., Nesterov’s accelerated gradient
method and the warm start method, to improve the conver-
gence speed. The performance of the proposed scheme is
showcased through a numerical study using a benchmark case.
As ongoing work, we are performing a theoretical analysis
of the accelerated version of the method. Furthermore, we
also consider extending the proposed method such that more
general problems can be handled, e.g., non-convex power
flow equations or its convex approximations and coupled cost
functions.
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