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Adrià Colomé · Carme Torras

Abstract This paper proposes to enrich robot motion

data with trajectory curvature information. To do so,

we use an approximate implementation of a topologi-

cal feature named writhe, which measures the curling of

a closed curve around itself, and its analog feature for

two closed curves, namely the linking number. Despite

these features have been established for closed curves,

their definition allows for a discrete calculation that is

well-defined for non-closed curves and can thus provide

information about how much a robot trajectory is curl-

ing around a line in space. Such lines can be predefined

by a user, observed by vision or, in our case, inferred as

virtual lines in space around which the robot motion is

curling.

We use these topological features to augment the

data of a trajectory encapsulated as a Movement Prim-

itive (MP). We propose a method to determine how
many virtual segments best characterize a trajectory

and then find such segments. This results in a genera-

tive model that permits modulating curvature to gener-

ate new samples, while still staying within the dataset

distribution and being able to adapt to contextual vari-

ables.
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1 Introduction

Over the last years, robot motion learning has been ap-

proached by characterizing motion with different para-

metrizations, namely different types of movement prim-

itives, and using direct Policy Search (PS) (Deisenroth

et al (2013)) reinforcement learning methods to im-

prove the robot’s behavior from a certain initial mo-

tion, taught to the robot through either a sequence of

points, kinesthetic teaching (Colomé and Torras (2018))

or other methods like motion capture or visual servoing

(Jevtić et al (2018)). Such motion parametrizations are

also modulated by external features.

Fig. 1 A human kinesthetically teaching a robot to feed
a mannequin. When adapting to a changing situation and
generating new motions, it is preferable that the robot keeps
a smooth motion, which can be better achieved by modulating
curvature in trajectory samples.

A task example can be seen in Fig. 1, where a human

kinesthetically teaches a robot how to feed a person -
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substituted by a mannequin -. The locations of the food

plate and the mannequin are variables to which the

motion must be adapted. Moreover, fitting such mo-

tions and generating random samples from the learned

dataset can sometimes result in rather unpredictable or

erratic movements. While those samples can be useful

from a dataset perspective, they are not well-suited for

execution in a real robot in a human environment.

These initial motions taught are used by the robot

to subsequently improve its behavior through trial-and-

error given a certain reward function, until an optimal

(or sub-optimal) policy representation is found. In cer-

tain cases, an initial learning can be performed offline

through simulation and then be transferred to a real

robotic platform. However, real-robot applications like

manipulation of non-rigid objects are very difficult to

model and, consequently, only real-robot executions can

be used for learning. This issue has led roboticists to

often move from big data RL to micro-data RL ap-

proaches, as stated by Mouret (2016). In the latter, the

most important aspect of the policy representation and

optimization is the real robot sample efficiency, as every

sample is costly.

Within this context, Bayesian Optimization (BO)

has been lately used, as in Chatzilygeroudis et al (2017),

together with Dimensionality Reduction (DR) techniques

(Colomé and Torras (2018)) to obtain more compact

policy representations that allow to sample policies in a

lower dimensional space and, therefore, to find an opti-

mal solution with less samples. While these approaches

often sacrifice the possibility of reaching a global op-

timum within the parameter space, local optimization

has proved to be successful in many tasks (Deisenroth

et al (2013)). Policy representation has then showed to

be critical for an efficient reinforcement learning of a

robot skill. Policies are often represented with Gaus-

sian distributions, as in Canal et al (2018), Paraschos

et al (2013). These parametric distributions capture

the data moments and correlations well, but when gen-

erating samples from them, the randomness in high-

dimensional spaces often produces robot motions that

are not useful for optimization purposes. The well-known

tradeoff between a precise fit of the data (many pa-

rameters) versus having a simpler representation with

larger error (fewer parameters), presents here an ad-

ditional dimension. Those samples generated with a

simpler representation might not match the data well

enough, while samples from larger-dimensional spaces

often present higher-frequency (with large acceleration)

motions, which are undesired for real robot executions.

This fact often appears in kernel-based representations

that do not optimize the kernel parameters - centers,

widths -, such as DMPs and ProMPs, where two con-

secutive kernels can present large exploratory gradients

of opposite signs, resulting in a fast, highly acceler-

ated, robot motions. Using shape indicators such as how

much a curve is curling around a certain reference to

modulate the trajectory samples for learning, we can

ensure that the trajectory samples are smoother over-

all.

Therefore, in this paper we propose to augment the

robot motion data by capturing not only those Gaus-

sian correlations, but also how much a trajectory is curl-

ing. These curvatures can then be sampled to generate

more useful trajectories for both motion imitation and

learning. The methodology, described in Sec. 3, consists

in first calculating the trajectory curvatures, to then

infer a number of virtual segments around which the

trajectory is curling. We infer their number by apply-

ing a filtration method to the curvature radius which

provides a number of candidate points that cut the

trajectory into parts curling around different segments

along the trajectory. These candidates are then refined

through an optimization process, and the resulting parts

of the trajectories are used to obtain the segments wrt.

which the trajectory writhe is computed. Finally, a sub-

sampling of the trajectory points permits evaluating its

writhe wrt. those segments, yielding a writhe vector for

each trajectory that can be used to augment the tra-

jectory data encapsulated in a Movement Primitive.

Topological indexes such as writhe or the Gauss

Linking Integral (GLI, reinterpreted by Ricca and Nipoti

(2011)) have been used in Marzinotto et al (2014), and

Zarubin et al (2013) for robot grasping, as well as for

finding similarities in tangled postures between two bod-

ies in Ho and Komura (2009). Such features were also

used in robot motion by Ivan et al (2013) by examin-

ing the relative position between the robot and a curve

defined by an object or the environment.The GLI was

also applied to control humanoid robots in tasks involv-

ing tangled interaction between a robot’s limbs and a

manipulated object (Ho et al (2010)), as well as for

data-driven inverse kinematics (Ho et al (2013)). Such

works used topological coordinates to characterize the

relative positioning of the interacting bodies, and find-

ing a suitable inverse kinematics, after Ho and Komura

(2007) had used similar concepts for motion planning in

tangled situations. Koganti et al (2017) also uses such

topological features to dress a mannequin with a shirt,

while combining it with dimensionality reduction tech-

niques and Gaussian Processes. Yuan et al (2019) have

also used writhe for robotic manipulation, focused on

inferring the relative positionings of bodies in human-

robot interaction. Our approach is novel in the field of

robot motion characterization in the sense that such

writhe is not computed for extracting features between
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robots and/or external bodies/agents, but rather to ex-

tract features of the robot’s end-effector trajectory, rel-

ative to external geometrical shapes.

In Section 4, a generative model is built using a

Gaussian distribution encompassing the joint variables

of MPs weights - in particular, Probabilistic Movement

Primitives - , contextual features, and the writhe vec-

tors obtained. Such model allows to condition any of

the three elements given any of the others. For exam-

ple, given a context, sample the writhe and then gen-

erate a ProMP weight vector that results in a certain

trajectory with such writhe and adapted to the given

context.

Prior to the description of the method, we introduce

some preliminaries in Section 2.

2 Preliminaries

In this section, we briefly introduce the concepts and

methods used within this article. Throughout this pa-

per, we will often refer to context variables, which are

defined as observable features in the environment that

affect the task being done. Context can be represented

by means of real-valued variables for measurable fea-

tures, or classified with an integer value. As an example,

imagine a task of feeding two different types of food to

a person, from two separate plates. Given a query from

the person, indicating what food he/she wants, context

could be represented as a vector containing the position

of the food plates, the position of the person’s mouth,

and an integer variable indicating which food the per-

son wants.

2.1 Probabilistic Movement Primitives (ProMPs)

ProMPs are a motion characterization that learns and

encodes a set of similar motion trajectories that present

time-dependent variances. Given a number of basis func-

tions per DoF, Nf , ProMPs use time-dependent Gaus-

sian kernels Φt to encode the state of a trajectory,

Φt being the vector of normalized kernel basis func-

tions (e.g., uniformly distributed Gaussian basis func-

tion over time). Thus, the position and/or velocity state

vector yt can be represented as

yt = ΨTt ω + εy, (1)

where ΨTt = Id ⊗ΦT
t , Id being the d-dimensional iden-

tity matrix and Φt an Nf -dimensional column vector

with the Gaussian kernels associated to one DoF at

time t. Moreover, εy ∼ N (0,Σy) is a zero-mean Gaus-

sian noise and the weights ω are also treated as random

variables with a distribution

p(ω) = N (ω|µω,Σω). (2)

This distribution can be fitted, given a set of demon-

stration trajectories τ j = {yjt}t=1..Nt , j = 1..Nd, by ob-

taining the weights ωj of each demonstration through

least squares. Subsequently, the parameters of the dis-

tribution θ = {µω,Σω,Σy}, Σy being the state co-

variance, are fitted by means of a maximum likelihood

estimate, i.e., computing the sample mean and the sam-

ple covariance of ω. Then the probability of observing

yt is:

p (yt;θ) =
∫
N (yt|ΦTt ω,Σy)N (ω|µω,Σω)dω

= N
(
yt|ΦTt µω,Σy +ΦTt ΣωΦt

) (3)

Due to their probabilistic nature, ProMPs can rep-

resent motion variability while keeping other MP prop-

erties such as rescalation and linear representation wrt.

parameters. ProMPs also allow for other operations such

as modulation via probabilistic conditioning and com-

bination by product, as well as providing a model-based

stochastic controller that reproduces the encoded tra-

jectory distribution Paraschos et al (2013). ProMPs

are capable of encapsulating variability and correlations

throughout a trajectory.

2.2 Curvature computation

Throughout this paper, we will need to compute the

curvature of a differentiable parametrized trajectory

y(t). Such curvature κ can be obtained as:

κ =
‖ẏt × ÿt‖
‖ẏt‖3

, (4)

R = 1/κ being the Radius of curvature. Then, the cen-

ter of curvature is:

Ct = yt +R · n, (5)

where n is the direction to the center of curvature and

can be obtained for each point yt: let a = yt − yt−1,

b = yt+1 − yt and c = b× a. Then:

n =
ẏt × c

‖ẏt × c‖
. (6)

Note that, in the case of gathered data, we will com-

pute the derivatives numerically with

ẏt =
yt+dt − yt

dt
, (7)

while in the case of ProMP fitting we can compute the

derivative of yt = ΨTt ω as ẏt = Ψ̇
T

t ω.
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2.3 Calculating the linking number and writhe

The writhe number is a quantity that describes how

much a closed, simple curve γ1 revolves around itself.

It is very similar to the linking number, which describes

how many times two closed curves γ1, γ2 wind around

each other. In fact, both numbers are computed with

the Gauss Linking Integral (GLI), being the linking

number defined as:

link(γ1, γ2) =
1

4π

∮
γ1

∮
γ2

r1 − r2
|r1 − r2|3

· (dr1 × dr2) , (8)

and the writhe number using the same expression, but

integrating through the same curve for dr1 and dr2.

The highlight in Eq.(8) is that we can compute a link-

ing (or writhe) value for any pair of segments, without

integrating them throughout a closed curve. This pro-

vides us with information about how much a trajectory

is curling around a given segment (or set of segments).

As the calculations are the same, we do not distinguish

between writhe and linking number throughout this pa-

per.

Focusing on our application, we want to evaluate

the linking integral between a trajectory and a given

segment in space. To do that, we can partition our tra-

jectory in small segments and evaluate the discretiza-

tion of the integral in Eq. (8). Thus, given two segments

AB and CD in a three-dimensional space, their writhe

w can be obtained by defining:

n1 = AC×AD

n2 = BD× BC

n3 = BC×AC

n4 = AD× BD

, (9)

and then computing writhe as Yuan et al (2019):

w = sign (AB(AC× CD)) [asin
nT

1 n4

‖nT
1 n4‖

+ asin
nT

2 n3

‖nT
2 n3‖

+asin
nT

3 n1

‖nT
3 n1‖

+ asin
nT

2 n4

‖nT
2 n4‖

]

(10)

2.4 Conditional Gaussian Distributions

In order to build a generative model, we will be using a

conditional Gaussian distribution. We define a random

variable vector by appending context features s and the

ProMP weights ω to the writhe values w:

x =

w

s

ω

 = N

µwµs
µω

 ,
 Σw Σws Σwω

Σsw Σs Σsω

Σωw Σωs Σω

 . (11)

This distribution allows to condition any of the three

variables given any of the others. In particular, we are

interested in generating a trajectory - ω - given a cur-

rent context s, which is assumed to be normally dis-

tributed, and a sampled or perturbed writhe w.

Let a =

[
w

s

]
and µa =

[
µw
µs

]
, with a covariance

Σa =

[
Σw Σws

Σsw Σs

]
.

Then, the ProMP weights can be obtained by op-

erating in Gaussian distributions (see Bishop (2006)):

p(ω|a) =

= N
(
ω|µω +ΣωaΣ

−1
a (a− µa),Σω −ΣωaΣ

−1
a Σ

T
ωa

)
(12)

Given these preliminary tools, in the following sec-

tion we define the methodology for obtaining the writhe

representation of robot motion data.

3 Writhe-Augmented ProMPs

In this section, we present a methodology for, given a

certain dataset of Nk robot motion trajectories aim-

ing at performing the same task in the Cartesian 3D

space {Yk}, each with an associated contextual feature

value sk that can be observed, adding the writhe of the

trajectory wrt. certain segments that we can compute,

which tell us how curved the trajectory is. In Section

3.1, we firstly average the data, removing contextual

dependencies as much as possible in order to find the

segments from which to compute the writhe. Then, we

find such segments in Section 3.2, and compute their

writhe values in Section 3.3. We will use this model as a

generative model in Section 4. This section is developed

for contextualized trajectories, although the procedure

for context-free data is equivalent by just omitting con-

textual components.

3.1 Decontextualizing data

In order to augment a dataset of robot motion with

writhe parameters, we need to find certain segments,

common for all trajectories, to evaluate the twisting of

the trajectory wrt. them. Context-dependent trajecto-

ries such as pick and place, have strong dependencies

on, for instance, the position of the object being picked.

On the one hand, if we would pick different segments for

each trajectory, those would not be comparable and, on

the other hand, finding segments with all the raw data

would result in averaging the effect of each trajectory,

which would not have a good result. Now, let us assume

each trajectory Yk can be fitted to a parameter vector
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ωk by using Gaussian kernels as in Eq. (1). Then, we

concatenate ωk with the contextual variable s to ob-

tain a vector x =

[
ω

s

]
. From the data, we then have

a set of xk, for k = 1..Nk, that can be fit into a joint

distribution of ω and s: p(x) = N (µx,Σx):

p(x) = p

([
ω

s

])
= N

([
µω
µs

]
,

[
Σω Σωs

Σωs
T Σs

])
. (13)

From Eq. (13), we can remove the contextual depen-

dency of the MPs weights (see Eq. (1)) by decondition-

ing each trajectory k with weight vector ωk from its

context sk. So by taking Eq. (12) we have:

ωk = νk +ΣωsΣ
−1
s (sk − µs), (14)

where the first term νk does not depend on the context,

which is added by the second term ΣωsΣ
−1
s (sk − µs).

Given that ωk and the second term on the right side

are obtained from the trajectory and context, respec-

tively, we can extract the contextual dependency from

the ProMP weights of a sample ωk and obtain the de-

contextualized trajectory with ProMP weights νk:

νk = ωk −ΣωsΣ
−1
s (sk − µs), (15)

yielding the decontextualized trajectory:

zkt = ΨTt νk = ykt − Ψ
T
t ΣωsΣ

−1
s (sk − µs) (16)

These decontextualized trajectories are in the same ref-

erence context, and are useful to obtain the reference

segments for the writhe computations in the following

subsection. To do so, we will rely on the mean decon-

textualized trajectory, i.e., the mean of ν, which gen-

erates a trajectory Y∗. In Fig. 2 we see an example of

robot trajectories (taught by setting a robot in gravity

compensation and moving it while recording its posi-

tion) starting at a randomized point, touching a table

and ending in a certain position. Both the table posi-

tion and the ending positions are set as contextual vari-

ables, and the set of trajectories are decontextualized as

seen in Fig. 3, where the mid-point and end-point have

collapsed as a result of the decontextualization effect.

In this case, the decontextualization can also be seen

as the quotient space of the trajectories given the two

contextual points.

In the following subsection, we describe how to firstly

obtain the reference segments and quantify the curling

of a trajectory around them.
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Fig. 2 Set of trained trajectories in the Cartesian space (scale
in meters). Mean trajectory shown as a blue dotted line.
These motions were taught kinesthetically for a feeding task,
as illustrated in Fig. 1.
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Fig. 3 Trained trajectories in the Cartesian space after de-
contextualization with Eqs. (15) and (16). Mean trajectory
shown as a blue dotted line.

3.2 Finding segments to compute writhe

The aim of this section is to obtain a number of seg-

ments in the Cartesian space around which the trajec-

tory curls (see Fig. 9). While other methods in literature

can decompose curves into different parts with differ-

ent shapes (as in Rosin and West (1995)), our appli-

cation here is more specific. After a long time working

with robot motion learning, we found that many robotic

tasks have geometrical/topological properties that are

not considered, thus favouring pure numerical analysis.

Some motions curl around visible or invisible lines in the
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Fig. 4 Curvature radius for the mean trajectory in Fig. 2.

environment and these features defined here are suited

for representing such behaviour. To find these features,

we will firstly find a number of crossing/cutting candi-

date points, which are those trajectory points where the

curvature is large compared to most of the trajectory.

These candidates are then evaluated and considered for

cutting the trajectory into parts. Then, a plane is fitted

to each trajectory part, whose normal vector combined

with the mean center of curvature and mean radius of

the trajectory part being considered, will form a seg-

ment.

We will firstly find the center of curvature of ev-

ery point of the mean decontextualized trajectory Y∗

obtained in the previous section. The curvature (and

therefore the radius of curvature R) of the trajectory

at point y∗t is obtained with Eq. (4). Then, we can ob-

tain the sequence of radius of curvature R(t) at every
timestep (see Fig. 4).

We detect parts of the trajectory in which the radius

is very large. In many situations, this can be understood

as a change in the trajectory, resulting in a different

region for the centers of curvature. In the curvature

radius plot (Fig. 4), we can already see that there is

one clear peak of curvature, which corresponds to the

point touching the table for the motion trajectories in

Fig. 2.

We will then obtain a filtration for the curvature

radius as seen in Fig. 5. To do so, we test, for filtration

values ε ∈ [εmin, εmax], where the minimum and maxi-

mum values εmin, εmax of ε are given by the min and

max radius of curvature of the trajectory, plus an addi-

tional 5% of the total radius span, i.e., we firstly find:

ε̂min = mint(R(t))

ε̂max = maxt(R(t)),
(17)
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Fig. 5 Curvature radius and evaluated filtration values (red
horizontal dashed lines) with a filtration maximum for the
mean trajectory in Fig. 2.

and then define the maximum and minimum filtration

values as

εmin = ε̂min + 1
20 (ε̂max − ε̂min)

εmax = ε̂max − 1
20 (ε̂max − ε̂min)

(18)

For all the tested filtrations, we decompose the cur-

vature radius plot in Fig. 4 into segments between each

two consecutive points, and check if such segments cross

the horizontal line corresponding to the filtration value

ε (red dotted lines in Fig. 5). We store the data index

in which there is a crossing, and while we increment

the filtration value, we check if it stills crosses the same

horizontal line until it stops doing so. At that point, we

store this cross candidate c with its datapoint index, its

maximum filtration in which it is crossed by the hor-

izontal red line (as seen in Fig. 5). However, we only

store those candidates whose maximum filtration value

is at least the mean of all the curvature radius, plus one

standard deviation. This prevents the algorithm from

selecting too many candidates and thus building a too

large set of candidates. After finishing the filtration, we

gather all cross candidates c in the Crossing Set C,

which will have a cardinal number #C equal to the

total number of crossing candidates. Another example

of this method can be seen in the trajectory in Fig.

6 which, looking at Figs. 7 and 8, seems to have two

crossing candidates, marked in Fig. 6 as green points.

Given the set of all crossing candidates, after remov-

ing repeated occurrences that might occur, we evaluate

which choice of the candidates suits best the trajectory.

To that endeavour, we evaluate all the possible combi-

nations within the power set of C, namely P(C). Each

element p of P(C) consists of a certain number of point

candidates to be the separation between parts of the

trajectory curling around centers in different regions.
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Fig. 6 Another example of a robot motion trajectory, with
its extracted cutting points.

0 5 10 15 20 25 30
Trajectory index

0

2

4

6

8

10

12

14

16

Fi
ltr

at
io

n 
va

lu
e

Fig. 7 Curvature radius for the mean trajectory in Fig. 6.

Then, we want to find

p∗ = argmaxp∈P(C)h(P(C)), (19)

where h is a cost function defined as:

h(p) = D(p)

(
1 +

#p

M

)
, (20)

where #p is the number of point candidates in p, M

is the total number of point candidates found through

filtration, i.e., #C, and D(p) is evaluated using the

procedure summarized in Alg. 1. We firstly fit a plane

to every part j of the trajectory, given by the sepa-

ration points in p, and then we calculate the squared

sum of the distance from each point of that part of the

trajectory to the plane. However, in fitting the plane

we wanted it to be the best fitting both the trajectory

part points and their centers of curvature, but close to

transition areas, the centers of curvature may become

outliers that negatively affect the fitting. Therefore, we

first perform a k-means clustering of the centers of cur-

vature and find the dominant cluster that will exclude
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Fig. 8 Curvature radius with filtration maxima for the mean
trajectory in Fig. 6.
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Fig. 9 Writhe segments (black lines) computed with Alg. 2
for the trajectory data in Fig. 2. The perspective has been
moved for a better view.

Algorithm 1 Evaluating D(p) for p ∈ P(C)

1: Input: Partitioning of a trajectory by the points indicated
in p, trajectory data Y and centers of curvature Q

2: Set D(p) = 0
3: for all cj ∈ p do
4: Use the part of the trajectory before point cj : Yj =
{yt, t = tj0, ..., tj1} and their corresponding centers of cur-
vature Qj = {jt, t = tj0, ..., tj1}

5: Perform k-means on the centers of curvature and keep
the dominant cluster cl.

6: Find the plane πj fitting the points in Yj and Qj
cl

(centers of curvature in the dominant cluster)

7: Dj =
∑t=tj1

t=tj0
‖yt − Proj(yt, πj)‖2

8: D(p) = D(p) +Dj

9: Output: D(p), fitting planes Π = {πj | ∀cj ∈ C}, and

clusterized centers and radius of curvature Qcl = {Qj
cl |

cj ∈ C}, Rcl = {Rj
cl | ∀cj ∈ C}

such outliers. Then, we use this cluster with the trajec-

tory points to fit a plane πj . Additionally, we penalize

the use of too many partitions of the trajectory with

the term
(

1 + #p
M

)
, which goes from 1 to 2.

Once we have found which is the best partitioning

by solving Eq. (19), we can finally define the segment
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Fig. 10 An oscillatory trajectory, consisting on a robot shaking an object, in a 3-dimensional space. A 3D plot (left), the
X-axis projection (middle) and the Z-axis projection (right). In green, the points obtained by Alg. 2 to separate the trajectory
into parts, given the filtration on curvature as in Fig. 11.
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Fig. 11 Curvature radius with filtration maxima for the os-
cillatory trajectory in Fig. 10.

for each trajectory part j given the fitting planes πj ,

by calculating the mean point q of the centers of cur-

vature qj = {qt, t = tj0, ..., tj1} corresponding to that
trajectory part, and from there, the segment is defined

as:

SEGMj =

[
qj − Rj

2
nj ,q

j +
Rj
2

nj

]
, (21)

where nj is the vector normal to the plane πj , and

Rj is the mean radius of curvature for that part of the

trajectory. Algorithm 2 summarizes this procedure, and

we can see the resulting segments of the data in Figs.

2-5 in Fig. 9, where the perspective has been rotated to

have a better view of them.

Figure 10 shows a more complex trajectory that is

generated by a single sample, and two of its projections

for a better perspective. Its curvature filtration plot is

displayed in 11, and its optimization ends up with the

points marked back in Fig. 10, showing the usefulness

of the filtration for finding changes of direction. Note

that the first trajectory peak has not been selected, as

selecting it would increase complexity without provid-

Algorithm 2 Find segment given plane, centers and

radius of curvature
1: Input: For the dominant cluster found in Alg. 1, the cen-

ters of curvature Qj
cl = {qt, t = tj0, ..., tj1}, radius of cur-

vature Rj
cl = {Rt, t = tj0, ..., tj1} and fitting plane πj for

a given partitioning of the trajectory.
2: Compute the mean of the curvature centers qj

3: Compute the mean of the radius of curvature Rj

4: Find the segment SEGMj with Eq.(21)

ing much information, since it is a rather coplanar part

of the trajectory as we observe in the Z-projection plot.

3.3 Computing writhe components

After obtaining the segments around which the trajec-

tory is curling, we generate a writhe vector by compar-

ing the trajectory against them. The general process is

described in Alg. 3, where trajectories are sub-sampled

as a sequence of M segments (always at least twice

the number NW of writhe segments obtained). This

is done to prevent the method from having as many

writhe components as samples in the trajectory. We em-

pirically saw that a subsampling is enough to capture

information for a generative model. Then, these M seg-

ments are compared with the NW writhe segments with

Eq. (10) and we generate an RM ·NW vector w.

4 Building a Generative Model

Using the segments obtained in the previous section, we

will now build a generative model, as hinted in Section

2.4. For each trajectory sample k consisting of a series of

time-stamped datapoints ykt and a corresponding con-

text variable that we can measure sk in the data, we

will firstly compute the Gaussian kernel weights ωk by

maximum likelihood techniques as in Eq. (1). Then, by

using Alg. 3, we obtain the writhe of each trajectory.
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Algorithm 3 Obtaining trajectory writhe

1: Input: Data trajectories Yk with their corresponding con-
text sk

2: for all k = 1..Ndemos do

3: Fit linear weights ωk as for Eq.(1)

4: Decontextualize trajectories with Eq. (16) and obtain the
mean decontextualized trajectory Ydecon Obtain mean
trajectory

5: Compute curvatures qt for the mean trajectory with Eqs.
(4), (5)

6: Do filtration with curvatures and obtain cross candidates
set C

7: Find best partitioning p∗ with (19)
8: Obtain the writhe segments with Eq.(21)
9: for all k = 1..Ndemos do

10: Compute k-th trajectory writhe w with Eq.(10)

This results in having, for each sample k, three types of

data: writhe values wk, context variables sk and kernel

weights ωk. We append the three and create a random

variable x as in Eq. (11), under the assumption that the

context feature s and writhe w follow a Normal distri-

bution (this is already assumed for ω in building such

linear model as a ProMP):

x =

w

s

ω

 = N

µwµs
µω

 ,
 Σw Σws Σwω

Σsw Σs Σsω

Σωw Σωs Σω

 . (22)

The model obtained is a generative one in the sense that

ω can be conditioned to a given context or a perturba-

tion of the writhe, and then generate new trajectories

Y through Eq. (1). The model is defined for contextu-

alized trajectories, although it can be used regardless

of whether these contextual features exist or not.

One approach to using this model is to impose a

change in the writhe of a certain part of the trajectory

and then generate a new trajectory after obtaining the

conditional p(ω | w) with Eq. (12). Then use Eq. (1)

for obtaining the trajectory points. We applied this ap-

proach to the data from Fig. 2, and Figs. 12 and 13 show

how the trajectory is perturbed by applying a step in-

crease in different components. Note that in Fig. 13, the

perturbation of the final part of the trajectory is also

correlated with a change in the rest of the trajectory.

This is due to the non-diagonal correlation matrices in

Eq. (22). The output trajectories are those that keep

the rest of the writhe components equal - remind that

the distribution of trajectories, given a writhe value,

can have several free dimensions -, while only changing

the last term of the writhe vector.

Another approach to use this generative model is,

given a context s, to obtain the representation of the

writhe distribution using Eq. (12), sample writhe w (or

either take the mean µw|s), and proceed similarly as
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0.1
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−0.15
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−0.05
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0.15

Fig. 12 Writhe perturbations for the first part of the trajec-
tory vs the first writhe segment computed with Alg. 2 for the
trajectory data in Fig. 9. The perspective has been moved for
a better view.
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0.15

Fig. 13 Writhe perturbations for the final part of the tra-
jectory vs the second writhe segment computed with Alg. 2
for the trajectory data in Fig. 9. The perspective has been
moved for a better view.

in the previous case. This results in an efficient sam-

pling that provides trajectories which are smoother and

meaningful. Both for the case without contextual vari-

ables (Fig. 14) and with contextual variables (Fig. 15).

Moreover, we used the model in Fig. 15 and gen-

erated 1000 random trajectories by sampling a con-

text s (which would be the plate position as seen in

Fig. 1) , and obtaining a weight vector with Eq. (12).

For the same context values s, we used the model in

(11) and sampled the writhe vector given the context,

to then sample the weight vector ω given the context

and writhe. We computed the Mean Squared Accel-

eration (MSA), i.e.: the average squared norm of the

trajectories’ acceleration. We used such indicator as it

gives an idea of how smooth trajectory samples are,

and found that those trajectories sampled without the

writhe components had a mean and standard deviation
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Fig. 14 Samples generated with our model without context
dependency (in dashed red lines) and data (yellow). The
writhe is sampled from a Gaussian distribution.
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Fig. 15 Context-dependent samples generated with our
model (in dashed red lines) and data (in yellow). The samples
are conditioned on a certain context (mid- and end-points)
and generated according to our model.

MSA of 20.22 ± 8.03, while using writhe modulation

yielded 9.78 ± 3.81, which is a very significant drop in

accelerations for the generated samples.

We also tested a learning scenario for the task in Fig.

1 and Figs. 12-15. Without the contextual dependency,

we defined a new goal G for the location of the plate

and defined a reward function for each trajectory τ as:

R = −distance(τ,G)−MSA(τ)/50, (23)

where distance is defined as the minimum Euclidean

distance between the trajectory and the point G. We

added an acceleration term with a factor of 1/50 that

yielded a similar relevance for both terms in the re-

ward for the early samples. Then, we performed an

update of the model after every 20 samples, using a

Policy Search algorithm named Relative Entropy Pol-

icy Search (REPS) ( Peters et al (2010)), and updated

the model 10 times. We performed this experiment 10

Fig. 16 Learning curve of a reinforcement learning applica-
tion with (blue) and without (dashed red) writhe modulation.
The plots show the average reward vs number of policy up-
dates, averaged over a set of 10 experiments each, showing
mean and two standard deviations

times by generating samples with and without writhe

modulation, and the mean results with two standard

deviations are shown in Fig. 16, where the blue learn-

ing curve (writhe modulation) yields a slightly better

result than the baseline method. While the results do

not show a significant improvement over the baseline in

this application, it does show that smoother and more

intuitive samples can be generated.

5 Conclusions and future work

This paper presents a very novel attempt at motion

characterization by suggesting writhe as a useful fea-

ture for robot trajectory modulation. The derivations

and results show that writhe can be successfully used

for robot motion characterization and thus opens a new

path for using topological features in robot motion learn-

ing and generation. While the applicability of this method

is limited to those motions from which geometrical fea-

tures can be extracted, the results show that writhe

modulation is capable of providing samples with a sig-

nificant reduction in accelerations, thus safer trajecto-

ries, while keeping or even slightly improving the effi-

ciency of learning with them.

The proposed generative method is also robust to

contextual perturbations, and we chose a conditional

Gaussian distribution, despite having attempted to im-

plement a Gaussian Processes approach directly map-

ping writhe and time to a Cartesian pose. Such ap-

proach fails with conventional Gaussian Processes (Ras-

mussen and Williams (2005)), mainly because the gen-

eralization required is too large. Thus, Bayesian Gaus-

sian Processes is envisaged to be the next step in using

the newly defined feature. Additionally, it can be com-

bined with vision algorithms to find relevant geometries

in the environment, as done by Pumarola et al (2017)

with an application to SLAM. Finally, the methodol-
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ogy can be applied with dimensionality reduction tech-

niques, such as Gaussian Process Latent Variable Mod-

els (GPLVM) (Li and Chen (2016)) in order to obtain

a reduced-dimension feature space for policy learning,

as in the works of Koganti et al (2017), Koganti et al

(2019) and Delgado-Guerrero et al (2020).
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