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Leak localization method for water distribution networks using a
data-driven model and Dempster-Shafer reasoning
A. Soldevila, J. Blesa, T. N. Jensen, S. Tornil-Sin, R. M. Fernandez-Canti, V. Puig

Abstract—This paper presents a new data-driven method for
leak localization in water distribution networks. The method
uses the information provided by a set of pressure sensors
installed in some internal network nodes in addition to flow and
pressure measurements from inlet nodes. Pressure measurements
are recorded under leak-free network operation and a water
distribution network data-driven model of the pressure at each
sensed node is adjusted. The pressure estimation from this model
is complemented by a Kriging spatial interpolation technique to
estimate pressure in the nodes which are not sensed, leading
to a pressure reference map. Leak localization is based on the
comparison of this reference pressure map with the current
pressure map which is obtained by applying Kriging directly to
the pressure measurements provided by sensors. The key element
in this comparison is the use of Dempster-Shafer theory for
reasoning under uncertainty. The successful application of the
proposed methodology to two real-data case studies is presented.

I. INTRODUCTION

Water leaks are present to some extent in all Water Dis-
tribution Networks (WDNs) and are estimated to account up
to 30% of the total amount of extracted water [1]. This is
a very significant amount since water is a precious resource,
especially in many parts of world where it is necessary to
satisfy water demands of a growing population and sometimes
in presence of drought periods, which are increased by the
climate change. Fault diagnosis and security in water systems
are key challenges that will become even more crucial in the
years ahead [2].

Several works have been published dealing with the leak
detection and isolation (localization) problem in WDNs (see
[3] and references therein). For example, in [1], a review of
transient-based leak detection methods is offered. In [4], a
method is proposed to identify leaks using blind spots based on
previous leak detection that uses the analysis of acoustic and
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i Informàtica Industrial (CSIC-UPC). Carrer Llorens Artigas, 4-6, 08028
Barcelona, Spain.

T. N. Jensen is an independent researcher. Aalborg, Denmark. (e-
mail:noergaard jensen@hotmail.com)

vibration signals [5], and models of buried pipelines to predict
wave velocities [6]. More recently, [7] presents a method to
localize leaks using Support Vector Machines (SVM) that
analyzes data obtained by a set of pressure control sensors
installed in a pipeline network to localize and calculate the
size of the leak. The use of k-Nearest Neighbors, Bayesian
and neuro-fuzzy classifiers in leak localization have been also
recently proposed in [8], [9] and [10] respectively.

Some of the recent proposed leak localization methods
use pressure sensors inside the WDNs. Pressure sensors are
cheaper and easier to install than flow sensors. Therefore, a
setup with a few pressure sensors installed in the WDN is an
attractive option for utilities. One such setup is presented in
[11], where a model-based method that relies on the pressure
measurements and a leak sensitivity analysis is proposed. In
this methodology, pressure residuals, i.e. differences between
pressure measurements provided by sensors and the corre-
sponding estimations obtained by using a hydraulic model,
are used. These residuals are computed on-line and compared
against associated thresholds that take into account the effects
of modeling uncertainty and noise. When some of the residuals
exceed their thresholds, the residuals are matched against
the leak sensitivity matrix in order to discover which of
the possible leaks is present. Although this approach has
good efficiency under ideal conditions, its performance de-
creases due to the nodal demand uncertainty and measurement
noises[12], [13]. The methodology has been improved in
[14], where a comparison of several geometric approaches for
leak localization are compared and an analysis along a time
horizon is proposed. Additional improvements are achieved by
processing the residuals using classifiers [8], [9].

In this paper, we propose a new method to deal with the leak
localization problem in WDNs, or in partitioned zones called
District Metered Areas (DMAs) where the flow and pressure at
the inlets are measured and some pressure sensors are placed
inside. It is here assumed that the leak detection task is already
been performed, e.g. using some of the approaches reviewed
in [1]. The proposed method is based on three key ideas:

• Use of a data-driven adjusted model to estimate nominal
(without leak) expected pressure values according to the
current operating conditions in the internal nodes that are
equipped with pressure sensors.

• Use of the Kriging spatial interpolation technique to
estimate the pressure at the network nodes which are not
equipped with sensors based on the hydraulic proximity.

• Use of the Dempster-Shafer theory for reasoning under
uncertainty to analyze the differences between the nom-
inal and the currently observed network behaviour.

The proposed method has two clear benefits. First, it is
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a data-driven method that does not require the computation,
the recursive updating and difficult calibration of a hydraulic
model. An estimation of the hydraulic resistance between
nodes in the network is used instead. Second, it only needs
historical data from normal operation behaviour, in contrast to
conventional data-driven methods that require historical data
for all the considered abnormal behaviours.

The rest of the paper is organized as follows. In Section II,
the data-driven model of the network and the spatial interpo-
lation based on Kriging are presented and the leak localization
problem is introduced as the evaluation of residuals generated
by the data-driven model. Section III proposes an improved
localization using a Dempster-Shafer time reasoning. The
method is summarized in Section IV. Section V illustrates the
application of the leak localization methodology to two real
DMAs. Finally, Section VI draws the main conclusions of the
work.

Notation: Matrices are denoted using capital and bold
letters, while lower and bold letters denote vectors, and italic
letters denote scalars. Sets and graphs are represented using
calligraphic letters.

II. WDN DATA-DRIVEN MODEL

A water distribution network can be described by a directed
graph
G = {V, E}. Here, V = {v1, . . . , vnm

} is the set of vertices,
which represent connections between the components of the
network, i.e. the nn internal nodes and the nr inlet nodes,
giving a total number of nodes nm = nn + nr. The set E ∈
V × V with E = {e1, . . . , enp} is the set of edges, which
represents the np pipes of the network. A path P in the graph
G is a sequence {xi}`i=1 such that xi ∈ V , xixi+1 ∈ E and
xi 6= xj for every pair i, j ∈ {1, 2, . . . , `}. Furthermore, we
consider that the edge ej ∈ P if ej = xkxk+1 with xk ∈ P
and xk+1 ∈ P .

Let p be the vector of absolute pressures at the nodes and
∆p be the vector of differential pressures across the pipes,
both in meters water column [mwc], then

∆p = HTp = f(q)−HTh (1)

where p ∈ Rnm , q ∈ Rnp is the vector of volumetric flow
in the edges in cubic meters per second [m3/s], H with size
nm×np is the incidence matrix1, f : Rnp → Rnp and f(q) =
(f1(q1), . . . , fnp(qnp)). The function fi(qi) describes the flow
dependent pressure drop due to the hydraulic resistance in the
ith edge.

For turbulent flow in the pipes, the Darcy-Weisbach equa-
tion is a good approximation of the pressure drop due to the
hydraulic resistance of the pipe [16]. The expression in the ith

pipe is given by

fi(qi) =
8CiLi
π2gD5

i

|qi|qi (2)

where Ci is the coefficient of surface resistance (which is
in part determined by the flow, but we will here consider it

1The incidence matrix of the graph, that describes the interconnection of
vertices and edges, is defined as usual in graph theory, see as e.g. [15].

constant) with adimensional units, Li is the length of the pipe
in [m], g is the gravitational acceleration in [m/s2] and Di is
the diameter of the pipe in [m].

The term HTh is the pressure drop across the pipes due to
the difference in geodesic level (i.e. elevation), in meters [m],
between the ends of the pipes, with h ∈ Rnm the vector of
geodesic levels at each vertex.

Knowledge of the length and diameter of all the pipes
in the network as well as their interconnections (topological
structure) and the geodesic level at all nodes is required.
Therefore we assume that these values can be obtained from
an available database.

A. Interpolation between boundary conditions

Here, we will present the reduced order model which will
be used for calculating the expected nominal pressures at the
measured internal nodes, based on the known values of flows
and pressures at the inlets and the previous measured values
in the sensed nodes. The derivation of the model is presented
in [17].

Nodes in a network can be classified as inlet nodes (directly
connected to tanks or reservoirs) and inner nodes (associated
to network internal junctions and consumer nodes). In the
following, variables associated to inlet nodes are indicated
with a (1) superscript, while variables associated to inner nodes
present a (2) superscript. For each node (inlet or inner node),
the three variables of interest are the elevation, the pressure,
and the head, represented in the paper whith the letters ”h”,
”p” and ”y”, respectively. For each node i, the head is defined
as the addition of the elevation and the pressure at the node,
i.e: yi = hi + pi.

Now, as suggested in [18], consider the case where

y(1) = p(1) + h(1) = κ1 (3)

for some κ ∈ R which is the total head at the inlets in [mwc]
and where 1 denote the vector consisting of ones.

The constraint (3) has the physical implication that the total
head at all inlets must be equal at all times. At first glance this
seems like a hypothetical assumption. However, it appears that
at least in some networks this assumption is fulfilled which we
have observed through measurements of the inlet pressures (as
e.g., the real networks considered as case study in the paper).
Moreover, we can refer the reader to the reference [17] in
which a discussion is found as to why controllers would have
to fulfil this assumption at least in networks with low total
consumption. For networks fulfilling (2) and (3), we have the
following proposition from [17].

Proposition 1: If the vector p(1) of pressures at inlet nodes
fulfils (3) and fi(·) fulfils (2), then the pressure at the ith

internal node follows the expression

p
(2)
i = αiσ

2 + κ+ γi (4)

where αi and γi are parameters dependent on the network
topology and the distribution of demands in the network, and
σ > 0 is the total inlet flow (sum of all inlet flows) in [m3/s].
The total inlet flow σ is typically well-known since inlet flows
are measured.
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In general, the parameter αi in (4) is time-varying. However,
if the proportion of the total consumption that any particular
end-user at any point in time has is constant then αi is also
constant. The latter is the case if all end-users follow the same
profile, for instance if all users are residential.

Since the model (4) of p(2)i is linear in the parameters αi
and γi, standard parameter identification methods [19] can be
used to identify these parameters based on measurements of
p
(2)
i , σ and p(1) over a number of time periods. Subsequently,

having identified the parameters, the model (4) can be used
to predict the expected pressure p̃(2)i at a measurement vertex,
since the variables σ and p(1) are measured and h(1) is known.

B. Pressure estimation in unsensed nodes

In practice, in real WDNs, pressure measurements p(2)i are
only available in a limited number of internal nodes, due to
the costs of installing and maintaining pressure sensors. The
location of the installed sensors is given by the index set S of
internal nodes equipped with sensors

S = {s1, . . . , sns
} (5)

where ns is the number of pressure sensors installed.
To obtain the pressure in the nodes without pressure sensors

installed, an interpolation technique can be used. In this
work, the Kriging approach is used. Kriging is a well-known
interpolation method in the area of geostatistics and it can be
seen as a multivariate regression approach, see [20] for a recent
review. The basic idea of Kriging is to estimate the value of a
function at a given point by computing a weighted average of
the known values of the function in the neighborhood of the
point.

Consider that the WDN is working under some operating
conditions c given by the total inlet flow and user demands as
proposed in [21]. Since the user demands are rarely measured,
the vector c contains the total head at the inlets κ, obtained by
taking into account PRVs or gravity and the total inlet flow,
σ.

The vector q consisting of flows in all the pipes in the
network, can be partitioned as

q = aσ (6)

where a determines the distribution of flow in pipes and is
unknown and the total inlet flow σ is typically well-known
since inlet flows are measured values.

It was shown in [17] (or in [22] for the single inlet case),
that when the distribution of the total inlet flow among the
end-users remain constant (i.e. all consumers have the same
consumption profile), then the vector a is constant as well.

Having knowledge of the absolute pressure, say p
(2)
i , up-

stream of the kth pipe, then the head y
(2)
j downstream the

pipe can be obtained from (1) as

y
(2)
j = p

(2)
j + h

(2)
j = p

(2)
i + h

(2)
i − fk(qk) (7)

Now, we re-write (2) using the definition in (6) and obtain

fk(qk) =
8CkLk
π2gD5

k

|akσ|akσ =
8CkLk
π2gD5

k

(|ak|ak)σ2 (8)

where the latter equality is due to the fact that σ > 0.
If we assume that we have knowledge of the length and

diameter of pipes, we can rearrange (8) into known and
unknown quantities to obtain

fk(qk) =

θk︷ ︸︸ ︷
Ck(|ak|ak)

8Lk
π2gD5

k

σ2 = θk
8Lk
π2gD5

k

σ2 (9)

θk is now an unknown parameter of the kth pipe and it will
be estimated using the Kriging approach. Now (7) can be
expressed as

ŷ
(2)
j = p

(2)
i + h

(2)
i − θ̂k

8Lk
π2gD5

k

σ2 (10)

where the term 8Lk

π2gD5
k
σ2 will be used as the independent

variable in the interpolation.
Since multiple pipe paths may connect jth and ith vertices, R2-

C1we suggest to use the shortest “weighted” pipe length (e.g.
weighted by pipe diameters) as the interpolation variable in
the Kriging interpolation. That is, if we let
Pij = {Pij(1), . . . ,Pij(n)} denote the set of paths

connecting nodes i and j, then we define the shortest
weighted pipe length D̄ij as

D̄ij = arg min
Pij(k)∈Pij

∑
ez∈Pij(k)

Lz
D5
z

(11)

R2-
C2In other words, for every path between the two nodes, we

calculate the sum of Lz

D5
z

for all edges ez in the path. The
path which returns the smallest sum is the one used in the
interpolation.

Thus, the estimation of an unmeasured head ŷ(2)i in the ith

node can be computed by means of a fitted Kriging model
[23] as

ŷ
(2)
i (c,S) = µ(c) + ε(χ(c),φ(c), D̄i:(S)) (12)

where c is the vector that defines the operation conditions
(i.e. total head in inlets κ and total inflow σ), S is the
sensor set defined in (5), and µ(c) provides a value that
represents the constant part of the interpolation given a par-
ticular operating condition c. On the other hand, the function
ε(χ(c),φ(c), D̄i:(S)) is the spatially correlated part of the
variation where χ(c) is a polynomial function, φ(c) is the cor-
relation function and D̄i:(S) is a vector containing the shortest
weighted pipe distances, defined in (11), between the node i
and the ns sensors, as D̄i:(S) = (D̄is1 , . . . , D̄isns

). Both terms
µ(c) and ε(·) are obtained in the fitting process as well as
the functions χ(c) and φ(c). The fitting process consists in a
least squares error minimization problem considering available
pressure measurements and distances between the nn nodes
and the ns sensors installed. The reader is referred to the
reference [21] for more details about interpolation model
(12). R2-

C7Finally, the pressure in the unmeasured node i can be
obtained from (12) by substracting the geodesic level as

p̂
(2)
i (c,S) = ŷ

(2)
i (c,S)− h(2)i (13)
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C. Basic residual computation and evaluation

The leak localization problem, posed as a Fault Detection
and Isolation (FDI) problem in the literature, typically assumes
that only one leak can occur at a time. Additionally, it is also
usually assumed that leaks can only occur in the nodes of the
network (e.g. as considered in [11], [24], or [9]), which makes
the number of potential leaks equal to the number of nodes of
the considered network.

As stated in the introduction, the proposed leak localization
technique is applied after the detection of a leak in the
monitored network. Therefore, the used measurements are
assumed to be captured under a leaky situation. Consider the
presence of a leak lj with magnitude l and acting on the node j
of the network. If leak-free historical data of pressure sensors
installed in inner nodes are available for all possible operating
conditions, including the current operating conditions c. Then,
residual pressures in internal nodes can be computed as

ri = p̃
(2)
i (c)− p(2)i (clj ) ∀i ∈ S (14)

where p(2)i (clj ) is the pressure value measured by the inner
pressure sensor i under boundary conditions clj (total head
and inflow in inlets) under the presence of leak lj . On the
other hand, p̃(2)i (c) is its estimation considering boundary
conditions c in a leak-free scenario that can be computed
reformulating (4) asR2-

C3

p̃
(2)
i (c) = α̂iσ

2 + κ+ γ̂i (15)

where α̂i and γ̂i are estimated from historical leak-free
data applying classical identification methods based on least
squares estimation.

Considering Kriging spatial interpolation to estimate the
pressure in the unmeasured nodes (13) both in non-leak
p
(2)
i (clj ) and leak p̃

(2)
i (c) conditions ∀i ∈ S , the residual

vector for all internal nodes can be approximated byR2-
C3

r̂ = p̂(2)(c,S)− p̂(2)(clj ,S) (16)

where

• p̂(2)(c,S) = (p̂
(2)
1 (c,S), . . . , p̂

(2)
nn (c,S)) is the vector

that approximates the pressure map in the WDN
under operating conditions c in a leak-free scenario
(reference map).

• p̂(2)(clj ,S) = (p̂
(2)
1 (clj ,S), . . . , p̂

(2)
nn (clj ,S)) is the vec-

tor that approximates the pressure map in the WDN
under operating conditions clj in a leak scenario with
a magnitude l in node j.R2-

C3 Then, leaky node localization can be estimated as the one
with the largest pressure residual component (as used in [25]
and [26] and analytically justified in [27]), i.e.

̂ = arg max
i∈{1,...,nn}

{r̂i} (17)

where r̂i ∀i ∈ {1, . . . , nn} are the components of residual
vector (16).

The performance when using the leak localization defined
in (17) will depend on the number of sensors, their location
in the WDN, and the accuracy of the data-driven model (4)
to predict the pressure under the operational conditions c and
leak-free conditions.

Note that according to (10), the consumption (σ) affects
the value of the residual, providing larger residuals as the
consumption increases for the same leak size. To deal with that
issue and to obtain a robust leak localization, the Dempster-
Shafer reasoning is used here to integrate the temporal devel-
opment of the residual (16).

III. DEMPSTER-SHAFER REASONING

A. Dempster-Shafer evidence theory

The Dempster-Shafer (DS) evidence theory [28], [29] is a
general framework for reasoning with uncertainty that allows
to fuse information from different sources. In the same way,
evidences from the same source but in different time instants
can also be considered. In [30], the use of DS reasoning
approach is proposed as an alternative to Bayes reasoning
when ambiguous hypotheses exist. This is the case of the
leak localization approach with a reduced number of sensors,
since several leaks presents a similar pressure pattern. On the
other hand, the Bayes reasoning considers all of the supported
hypotheses must be mutually exclusive. This is the main
motivation of using DS reasoning in this paper.

Given a set of individual hypothesis Ai, the DS theory
considers all the possible combinations, i.e. the power set P .
For each subset A of the power set P , three quantities are
defined: the mass m(A), the belief bel(A), and the plausability
pl(A). The mass is associated to the information provided by
a given source and it can also be considered as a subjective
probability. Hence, a probability mass function (pmf) is a
function that satisfies: m(∅) = 0; m(A) ∈ [0, 1],∀A ∈ P;∑
A∈P m(A) = 1. The belief bel(A) is defined as the sum

of all the masses of all the subsets of A, i.e. bel(A) =∑
B|B∈Am(B). The plausability pl(A) is the sum of all the

masses of the subsets of P that intersect A, i.e. pl(A) =∑
B|B∩A6=∅m(B). The belief and the plausability define an

interval where the true probability of the considered hypothesis
lies, i.e. bel(A) ≤ m(A) ≤ pl(A).

When there are two sources of information the Dempster’s
rule of combination can be used. Being mg1 the mass assign-
ment associated to the first source and mg2 the one associated
to the other, the joint mass is computed as

mg1,g2(A) = (mg1 ⊕mg2)(A)

=

∑
B∩C=A6=∅

mg1(B)mg2(C)

1−
∑
B∩C=∅

mg1(B)mg2(C)
(18)

where B and C are subsets of P and ⊕ is the direct sum [29].
The constraint B ∩ C = A 6= ∅ limits the interaction of the
probability mass functions only to the shared hypotheses and
the constraint B ∩ C = ∅ contain the rest of combinations of
probability mass functions. More precisely, the denominator in
(18) is for normalizing the result, i.e. the sum of the resulting
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mass probabilities of the resulting set of common hypothe-
ses A (m(A)) is one. This Dempster’s rule of combination
considering three different sources of information was used in
[31] to perform the leak localization task.

The Dempster’s rule of combination (18) can be formulated
for time reasoning [32] as

mt1,t2(A) = mt1(A)⊕mt2(A) (19)

where t1 and t2 are two different time instants for the same set
of hypotheses A. More precisely, for a particular hypothesis
Ai in the set A we can say

mt1,t2(Ai) =
1

Λ
×∑

j=1,...,A|Ai⊆Aj

(mt1(Ai)mt2(Aj) +mt1(Aj)mt2(Ai))

(20)

where A is the number of hypotheses contained in the set A

and Λ is a normalization factor such that
A∑
i=1

mt1,t2(Ai) = 1.

B. Probability mass functions for leak localization

The presented Dempster-Shafer framework can be applied
to the leak localization problem. Leaks in network nodes
can be considered as the individual hypothesis Hi, and a
probability mass function can be associated to normalizedR2-

C1 pressure residual components of vector (16) as

mt(Hi) =
r̂i(t)−min(r̂(t))∑nn

j=1(r̂j(t)−min(r̂(t)))
(21)

where the size of the hypothesis setH is the number of internal
nodes of the network nn and

nn∑
i=1

mt(Hi) = 1 (22)

In order to illustrate the proposed leak localization method,
we will consider the simplified WDN of Hanoi (Vietnam)
introduced in [33] and depicted in Fig. 1. This network has
one reservoir, 31 internal nodes (nn = 31) and 34 pipes (np =
34) and it is assumed that three pressure sensors are placed in
internal nodes with indices 2, 8 and 24 (ns = 3). So, for this
particular network, the hypothesis set H will be nn = 31. One
for each potential leak location considered i.e. inner node.

However, the use of these probability mass functions
presents the particularities that the complete set of hypotheses
is composed by singletons (i.e. inside each hypothesis there
is no uncertainty among single hypothesis) and fulfills the
condition (22). So, the application of the Dempster’s rule of
combination is analogous to the application of the Bayes rule
[34]. Thus, the potential of the Dempster’s rule of combination
will not be fully exploited. So with that aim, additional
hypotheses sets of clustered singleton hypotheses from the set
H are proposed by taking into account spatial and hydraulic
information.
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Fig. 1: Simplified Hanoi WDN.
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Fig. 2: K(L) clusters in the simplified WDN of Hanoi.R2-C5

C. Clustering

According to section II-B, as nearby nodes present similar
hydraulic behaviour [35], the sensor relation to the nodes of
the network is analyzed using the hydraulic relation given by
the shortest weighted pipe distance D̄. This weighted pipe
distance can also be used to infer a set of node clusters that can
be considered as additional hypothesis under the Dempster-
Shafer framework.

First, ns clusters are created, each one of them associated
to one of the network nodes that are equipped with pressure
sensors. Each cluster around a sensed node includes all the
network nodes that present a minimum hydraulic distance
to this particular sensed node. The obtained set of clusters
define a partition of the network similar to a Voronoi diagram.
Formally, the cluster associated to a given sensed node l is
defined as

K(L)
l = {v(2)i ∈ V(2)| arg min

j∈S
{D̄ij} = l} (23)

where l ∈ {1, . . . , ns}. The whole set of clusters (one for each
sensed node) can be represented as K(L).

In the simplified WDN of Hanoi, where three pressure
sensors are considered, the computed clusters associated to
each sensed node are depicted in Fig. 2.
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Furthermore, some sensors can be close in hydraulic terms
and their measurements can be significantly affected by a leak
in the nodes clustered in another cluster from a nearby sensor.
To take that into account, a second clustering is performed.

These additional clusters are based on the previous clusters
K(L) and are computed by implementing three steps inside
a loop. The loop considers each possible pair K(L)

i , K(L)
j ∈

K(L) and at each loop iteration the following three steps are
implemented.

Firstly, for every cluster K(L)
j the mean of the shortest

weighted pipe distance between the nodes and the sensor is
computed as

d
(L)
j =

1

|K(L)
j |

∑
v
(2)
i ∈K

(L)
j

D̄ij (24)

where |K(L)
j | is the number of elements of the cluster K(L)

j .
Secondly, for every couple of clusters K(L)

i and K(L)
j , with

i 6= j, a threshold is set as the minimum of the mean of the
shortest weighted pipe distance between the couple of sensors
as

τij = min{d(L)i , d
(L)
j } ∀i 6= j ∈ S (25)

And thirdly, the elements of a new cluster K(W)
k can be

found from the elements of the couple of clusters K(L)
i and

K(L)
j as

K(W)
k = K(W)

ki
∪ K(W)

kj
(26)

where
K(W)
ki

= {v(2)l ∈ K(L)
i |D̄lj 6 τij} (27)

and
K(W)
kj

= {v(2)l ∈ K(L)
j |D̄li 6 τij} (28)

The potential number of the new resulting clusters is
ns!

2! (ns−2)! but only some combinations of clusters K(L)
i and

K(L)
j can lead to a non-empty new clusters K(W)

k 6= ∅ in (26).
Then, the real number of new clusters w ≤ ns!

2! (ns−2)! will
depend on the sensor configuration.

All the singleton clusters obtained, if any, are not considered
since they are already contained in the set H.

Fig. 3 depicts the elements of cluster K(W)
1 that is one of

the three possible additional clusters in the simplified WDN
of Hanoi. This cluster is computed by means of Eq. (26)
considering clusters K(L)

1 and K(L)
2 associated to sensed nodes

2 and 8, respectively.
The first clusters, K(L), are converted to a new set of

composed hypothesis L where each cluster is a composed
hypothesis from the hypotheses in H. In the same way, each
cluster K(W) will be a composed hypothesis from the new set
of hypotheses W .

D. Expanded probability mass function for leak localization

Now we have the three sets of hypotheses H, L and W .
On the one hand, we have the set of singletons H where
the probability mass functions of each node are computed
using (21). On the other hand, we have the sets L and W
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9000

10000
new cluster considering sensor clusters 1 and 2

  S 1

  S 2

  S 3

Fig. 3: K(W)
1 cluster in the simplified Hanoi WDN between

clusters K(L)
1 and K(L)

2 .R2-C5

with clustered nodes, but without probability mass functions
assigned to them yet.

To assign probabilities into each set of composed hypotheses
L and W , the mean of the mass probabilities from the set H
of each node inside the cluster is computed as

m(Li) =

∑
v
(2)
j ∈K

(L)
i

m(Hj)

|K(L)
i |

(29)

and the same is done for the composed hypotheses in W .
Then, the new extended set of mass probabilities m(H′)

from the extended set of hypothesis H′ = {H,L,W} with
size |H′| = nn + ns + w is normalized according to

m(H′i) =
m(H′i)

nn∑
j=1

m(Hj) +
ns∑
j=1

m(Lj) +
w∑
j=1

m(Wj)

(30)

in order to fulfill the condition
∑|H′|
i=1 m(H′i) = 1.

So, considering the simplified Hanoi WDN, as nn = 31, ns
= 3 and the number of additional clusters w = 3!

2! 1! = 3, the
number of hypotheses of the extended set is |H′| = 37.

E. Time leak localization reasoning

Given a sequence of pmfs of the hypotheses set H′ at
different time instants t1, t2, ..., tN , the pmfs of the hypotheses
set H′ considering all the samples can be computed by the
Dempster’s rule following (19) to perform a time reasoning
and obtain as a result an enhanced diagnosis as

mt1,...,tN (H′) = mt1(H′)⊕mt2(H′)⊕ · · · ⊕mtN (H′) (31)

As an illustrative example, we will describe the computation
of probability mass function associated to leak in node 1 of
the simplified WDN of Hanoi considering pressure residuals
computed from measurements at initial time instant t1 and
time instant t2, i.e. mt1,t2(H′1). As node 1 belongs to the group
associated to sensed node 2

(
K(L)

1

)
and to additional cluster

K(W)
1 depicted in Fig. 3 that correspond with hypotheses H′32
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and H′35, the probability mass function of these hypothesis
will also be involved in the computation of the pmf of the
singleton hypothesis H′1. Applying (31), the probability mass
function associated to leak in node 1 can be computed as

mt1,t2(H′1) =
1

Λ
× (mt1(H′1)mt2(H′1)

+mt1(H′1)
(
mt2(H′32)) +mt2(H′35))

+mt2(H′1)
(
mt1(H′32)) +mt1(H′35)))

(32)

To select a given node among all the candidates, the
resulting hypothesis with larger probability is chosen as

̂ = arg max
j∈ {1,...,nn}

{mt1,...,tN (H′j)} (33)

IV. SUMMARY

The application of the proposed leak localization technique
can be divided in off-line and on-line stages.

Note that the leak detection task is not considered in
this work, neither the problem of data validation, which are
problems that have to be addressed first.

The off-line stage can be summarized as follows:

• Use the topological information to calculate the shortest
weighted pipe distance between each pair of nodes (11)
to generate the D̄ matrix.

• Perform the clustering process to identify the clusters L
and W that will be used as composed hypothesis.

• Use historical leak-free data to fit the models (4) that
predict the pressure behavior without leak according to
the actual network operational conditions c.

The on-line stage that is triggered when a leak is detected
can be summarized as follows:

• Compute the expected pressure behavior without leaks at
the sensed nodes using the actual operation conditions
and the fitted models (4).

• Apply the Kriging interpolation technique to generate
the expected reference (no-leak) map using the predicted
values.

• Apply the Kriging interpolation technique using the cur-
rent pressure measurements to generate the current (leak)
pressure map.

• Compute the difference between the two maps (16).
• Compute the probability mass functions of the singleton

hypotheses H by means of (21) and compute the pmfs
of composed hypotheses L and W by means of (29).

• Build the expanded set H′ and compute the normalized
pmfs of the hypotheses of H′ using (30).

• Apply the Dempster-Shafer reasoning (31) to combine
diagnosis from different time instants.

• Select a given node among all the candidate nodes using
(33).

The whole procedure is summarized in the flowcharts pre-
sented in Figures 4 and 5.

On-line stage

Leak?

1. Read operating conditions c

2. Read the inner pressure sensors

Leak Detection

Wait for the next sample time

k=k+1

1. Compute the expected non-leak pressures

in sensed nodes using Eq. (4)

2. Apply Kriging interpolation to compute actual

and expected non-leak pressure maps

3. Compute residual (16)

Apply the Dempster-Shafer reasoning (31) 

and select the most probable leak localization 

candidate by means (33) 

Yes

No

1. Compute pmfs of singleton and composed

hypotheses by means of (21) and (29).

2. Build the extended set of hypothesis and

Compute the pmfs using (30)

Initial time instant tk with k=1

Fig. 4: Proposed Method Flowchart: On-line Stage. R1-C2

V. CASE STUDIES

The proposed leak localization technique is tested in two
DMAs from the WDN of the city of Madrid (Spain), where
the water company in charge has produced real case studies of
water leaks by using fire hydrants. These DMAs are equipped
with flow and pressure sensors at the inlet, and pressure
sensors inside the network. Also, a flowmeter and a valve R2-

C8at the leak point are installed to measure and control the

R2-
C8

magnitude of the leak. For every DMA the leak magnitude

R2-
C6

setpoint was set as a value that the water company
considered challenging in leak localization terms. In all

R2-
C8

the cases, the installed sensors have a sampling rate of two
minutes and they have a resolution of 0.1 [mwc] in the case
of pressure sensors and a resolution of 0.1 [l/s] in the case
of flow sensors. The results of the proposed leak localization
method have been compared with the ones provided by other
two methods: the proposed method considering the Bayesian
reasoning instead of the Dempster-Shafer one (i.e. without
considering cluster hypothesis) and a well accepted method
proposed in the literature [36] that is based in the use a
hydraulic model to generate leak signatures to be matched
with current measurements according the Angle metric.
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1. Historical data of 

    operating conditions c

    inner pressure measurements

Off-line stage

Clustering process

Described in Section III.C

1. Topological information of the WDN

2. Compute weighted pipe matrix using (11) 

3. Number of sensors ns 

New 

clustering  ?

Yes

Calibrate parameters of inner 

pressure estimation  Eq. (4)

No

Fig. 5: Proposed Method Flowchart: Off-line Stage. R1-C2
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Fig. 6: Madrid DMA1 topological network.

A. Madrid DMA1

Madrid DMA 1is a small network formed by one reservoir
that feeds the network with water by elevation, 169 consumer
nodes, and 173 pipes. Ten pressure sensors are placed inside
at nodes with indexes 146, 145, 148, 162, 153, 155, 156, 157,R2-

C1 158 and 168. The topology and the location of the sensors
installed are depicted in Fig. 6. Two periods of data, with
and without leak, were recorded. Measurements without leak
were recorded starting the 19th of December of 2016 at 4:00
pm until the 22nd of December of 2016 at 0:58 am, whereas
the leak event was recorded from the 22nd of December of
2016 at 4:00 am until the 23rd of December of 2016 at
8:58 am. The controlled leak of setpoint magnitude of 0.8R2-

C8

R2-
C6

[l/s] approximately. The leak and the inlet measurements are
depicted in Fig. 7, in addition a detail of the leak flow is
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Fig. 7: Madrid DMA1 inlet flow, leak flow and pressure rate
measurements without leak (before black line) and with leak
(after black line).
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Fig. 8: Madrid DMA1 leak flow detail

provided in Fig. 8. R2-
C8The measurements inside the network are depicted in Fig. 9

and 10 for both periods (set 1 comprises the nodes from 146
to 153, and set 2 from 155 to 168).

First, the data is downsampled to each hour by computing
the average of the value measurements inside. Then, the 57
hours of data without leak are used to fit the models described
in (4) for each node equipped with a sensor by means of the
least squares fitting technique, which in this case leads to ten
pressure models to predict the internal pressure under no leak
conditions through the inlet operational conditions.

To calculate the shortest weighted pipe distance contained
in the D̄ matrix, the underlying network graph G is used but
now considering it as undirected. Then, to fill in the matrix,
the Dijkstra’s Algorithm [37] is used to compute the shortest
weighted pipe distance between each pair of nodes.

To estimate the pressure in the nodes inside the network
which have no pressure sensors installed the Kriging interpo-
lation technique has been implemented by means of the DACE
Matlab toolbox [23]. The total number of clusters K(W), w,
is seven.

The proposed leak localization technique is applied to the
Madrid DMA1 real case, where the real leak is placed in the
node 165. At the end of the 28 hours that the leak lasted,
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Fig. 9: Madrid DMA1 pressure measurements (set 1) without
leak (before black line) and with leak (after black line).
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Fig. 10: Madrid DMA1 pressure measurements (set 2) without
leak (before black line) and with leak (after black line).

the method provides the node 44 as the candidate to be the
leaking node. Compared to the leak location, the candidate
node presents a geometric linear distance of 120.8 meters, a
pipe distance of 132.8 meters to the real leak location. The
result is depicted in Fig. 11, where a zoomed representation
of an area of the network surrounding the real leak location
and including the proposed candidate node is presented.

The results obtained by the proposed method (labeled
as ”DS”), the proposed method without considering cluster
hypothesis (labeled as ”Bayesian”) and the Angle method [36]
(labeled as ”Angle”) are presented in Table I. In this table, it
can be noted that the proposed method provides better results
(measured in linear and pipe distance to the leaky node) than
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Fig. 11: Leak localization results in Madrid DMA1 real case.

TABLE I: Madrid DMA1 leak localization results comparison.

Method Linear distance [m] Pipe distance [m]
DS 120.8 132.8
Bayesian 276.2 474.1
Angle 303.3 363.4

the other two methods.

B. Madrid DMA2

Madrid DMA2 is a medium to large network formed by one
reservoir that feeds the network by elevation, 1031 consumer
nodes and 1100 pipes. Ten pressure sensors are placed inside
at nodes with indexes 886, 877, 864, 971, 880, 898, 917, 933,
943 and 948. The topology and the location of the sensors
installed is depicted in Fig. 12.

Measurements have been taken starting the 30th of January
of 2017 at 2:00 am until the 31st of January of 2017 at 11:28
pm under no leak conditions and data with a controlled leak
of setpoint magnitude of 2 [l/s] were taken from the 1st of R2-

C8

R2-
C6

February of 2017 at 6:00 pm until the 2nd of February of 2017
at 11:58 am. The inlet measurements and the leak flow rate
are depicted in Fig. 13, in addition a detail of the leak flow
is provided in Fig.14.

R2-
C8

The pressure measurements inside the network are depicted
in Fig. 15 and 16.
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Fig. 12: Madrid DMA2 topological network.
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Fig. 13: Madrid DMA2 inlet flow, leak flow and pressure rate
measurements without leak (before black line) and with leak
(after black line).
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Fig. 14: Madrid DMA2 leak flow detail
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Fig. 15: Madrid DMA2 pressure measurements (set 1) without
leak (before black line) and with leak (after black line).
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Fig. 16: Madrid DMA2 pressure measurements (set 2) without
leak (before black line) and with leak (after black line).
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Fig. 17: Leak localization results in Madrid DMA2 real case.

As in the previous case study, the hourly average is com-
puted and the first 54 hours are used to fit the ten pressure
models. In this case, 16 clusters K(W) have been generated.
The diagnosis through the 18 hours of leaky data points to the
node 5 as candidate whereas the leak is actually in the node
882. In this case, the geometric linear distance is 93.4 meters
while the pipe distance is 98.8 meters to the real leak location.
The result is depicted in Fig. 17.

The results obtained by the proposed method and the other
two methods are presented in Table II. In this table, it can
be noted that the proposed method provides better results
(measured in linear and pipe distance to the leaky node) than
the other two methods.

TABLE II: Madrid DMA2 leak localization results compari-
son.

Method Linear distance [m] Pipe distance [m]
DS 93.4 98.8
Bayesian 506.9 758.8
Angle 594.6 679.2
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C. Results Discussion

From the leak localization results obtained in the two real
DMAs of Madrid summarized in Tables I and II, we can
state that the proposed method outperforms the Angle method
presented in [36]. The proposed method is based on the fact
that when a leak occurs, there is a loss of pressure across
the network, specially in the places where the additional flow
produced by the leak passes through the network until arrives
to the leak location. This loss of pressure is observed by
means the differences (residuals) between estimated pressures
(considering non-leak scenario) and actual pressures measured
in inner sensors. The pressures of non-measured inner nodes
are estimated by the Kriging method, therefore there is anR2-

C1 additional error in the computation of the residuals of non-
measured nodes that increases with the distance of these
nodes from sensed nodes. This additional error can produce
a deviation in the leak localization to nodes that are closer to
sensed nodes. The additional information of clusters by means
of the Dempster-Shafer reasoning improves significantly the
accuracy in the leak localization. Finally, in absolute terms,
the accuracy obtained by the proposed method (around 100[m]
of error in the leak localization) is considered reasonable for
the water companies because it is possible to send operators to
search and exactly pinpoint the leak through acoustic sensors
in this bounded area of the DMA, since this technique is too
time-consuming to be applied across all the DMA.

VI. CONCLUSIONS

In this paper, a new methodology for a data-driven leak
localization problem in water distribution networks has been
presented and tested. The proposed approach is based on the
hydraulic characteristics that appear when a leak in a particular
place of the network occurs. A data-driven model has been
used for the prediction of internal pressures without leak based
on past measurements. The Kriging interpolation has been
proposed to overcome the problem of limited sensor mea-
surements in the network. The application of the Dempster-
Shafer reasoning is proposed to enhance the leak localization
performance by taking into account the time evolution of the
residuals. The method has been successfully tested in two
DMAs of real water network providing better leak localization
results compared to two other alternative methods. One of
them considers the same approach but using a time reasoning
based on the Bayes rule while the other is based in the use
a hydraulic model to generate leak signatures to be matched
with current measurements according the Angle metric. Both
methods are outperformed by the proposed approach.

The performance of the proposed methodology has been
successfully tested with real measurement data from three
DMAs of the Madrid WDN.

As a future work, the proposed leak localization method
will be tested in other DMAs with different topologies
and sizes. In addition, it will be interesting to investigate theR1-

C1 application of the proposed data-driven approach to monitor
water pollution. Also, the case of multiple leaks occurring at
the same time will be considered.
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