
Online Action Recognition

Alejandro Suárez-Hernández, 1 Javier Segovia-Aguas, 1,2 Carme Torras, 1 Guillem Alenyà1

1 IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
2 Universitat Pompeu Fabra

asuarez@iri.upc.edu, javier.segovia@upf.edu, torras@iri.upc.edu, galenya@iri.upc.edu

Abstract
Recognition in planning seeks to find agent intentions, goals
or activities given a set of observations and a knowledge li-
brary (e.g. goal states, plans or domain theories). In this work
we introduce the problem of Online Action Recognition. It
consists in recognizing, in an open world, the planning action
that best explains a partially observable state transition from a
knowledge library of first-order S TRIPS actions, which is ini-
tially empty. We frame this as an optimization problem, and
propose two algorithms to address it: Action Unification (AU)
and Online Action Recognition through Unification (OARU).
The former builds on logic unification and generalizes two in-
put actions using weighted partial MaxSAT. The latter looks
for an action within the library that explains an observed tran-
sition. If there is such action, it generalizes it making use of
AU, building in this way an AU hierarchy. Otherwise, OARU
inserts a Trivial Grounded Action (TGA) in the library that
explains just that transition. We report results on benchmarks
from the International Planning Competition and PDDLGym,
where OARU recognizes actions accurately with respect to
expert knowledge, and shows real-time performance.

Introduction
The prediction of the most likely actions, plans or goals
of an agent, has been a topic of interest in the plan-
ning community since the work by Ramı́rez and Geffner
(2009), which posed the recognition task via planning given
a domain theory and a set of observations. Other work
adopted this convention of recognition as planning for re-
lated tasks, i.e. goal recognition and environment design
(Keren, Gal, and Karpas 2014), production and recogni-
tion of context-free grammars (Segovia-Aguas, Jiménez,
and Jonsson 2017a), classification o f p lanning instances
in generalized plans (Segovia-Aguas, Jiménez, and Jons-
son 2017b), counter-planning (Pozanco et al. 2018), model
recognition (Aineto et al. 2019) and recognition with noisy
observations (Sohrabi, Riabov, and Udrea 2016; Aineto,
Jimenez, and Onaindia 2020).

In this paper, we address the problem of Online Action
Recognition (OAR), which consists in recognizing the ac-
tions performed by an agent in an open-world, given a state
transition and a knowledge library of first-order STRIPS
actions (also known as domain theory). We restrict OAR to

Action Unification

Action Unification Hierarchy

Online Action Recognition through Unification

Transition

Trivial Grounded Action

action-100

params: X0, X1, X2, X3, X4

pre: at(X3,X2), clear(X1),
is-player(X3), location(X1),
location(X2), move-dir(X1,X2,X0),
move-dir(X2,X1,X4), thing(X3)

add: at(X3,X1), clear(X2)

del: at(X3,X2), clear(X1)

action-96

params: X0, X1, X2, X3, X4

pre: at(X3,X2), clear(X1),
is-nongoal(X2), is-player(X3),
location(X1), location(X2),
move-dir(X1,X2,X0),
move-dir(X2,X1,X4), thing(X3)

add: at(X3,X1), clear(X2)

del: at(X3,X2), clear(X1)

cluster-23

dist.: 3.00
action-99

params:

pre: at(player-01,pos-5-6),
clear(pos-6-6), is-goal(pos-5-6),
is-nongoal(pos-6-6),
is-player(player-01),
location(pos-5-6),
location(pos-6-6),
move-dir(pos-5-6,pos-6-6,dir-right),
move-dir(pos-6-6,pos-5-6,dir-left),
thing(player-01)

add: at(player-01,pos-6-6)?,
clear(pos-5-6)

del: at(player-01,pos-5-6),
clear(pos-6-6)

Figure 1: Illustration of AU and OARU in sokoban.

symbolic inputs and deterministic action effects. However,
we set an initially empty knowledge library that must be
inductively filled from partially observable transitions. We
describe an algorithm called Action Unification (AU), re-
lated to syntactic logic unification (Snyder 2001). AU gen-
eralizes two actions using an encoding to Weighted Partial
MaxSAT (WPMS). We also propose Online Action Recogni-
tion through Unification (OARU), an algorithm that makes
repeated use of AU to merge ad-hoc explanations of the tran-
sitions into its action library. In the following, we use ac-
tion as a generic category; schema or model for parameter-
ized actions; grounded action for parameter-less actions; and
Trivial Grounded Action (TGA) for ad-hoc actions derived
directly from observations.

Example 1. Figure 1 uses sokoban (Junghanns and Scha-
effer 1997) to illustrate AU and OARU. The whole AU
hi-erarchy, which summarizes the history of merged
actions, is in the top. We zoom in one part, showing: (1)
action-96, a schema already present in OARU’s
library; (2) a TGA action-99, constructed from the
transition depicted graph-ically at the bottom; and (3) a 5-
ary schema action-100 produced by AU, which
generalizes the previous two ac-tions. The transition
corresponds to the character moving to the right. AU has
determined that the distance between action-96 and
action-99 is 3. Later, we will see that this distance is
calculated in terms of relaxed precondition pred-icates.
Some predicates have a question mark indicating that they
are uncertain due to the open world setting. We will also see
how this uncertainty can be dispelled through AU. Over-all,
the example shows how OARU surmised from the past
that the player could not move from a goal cell, and corrects
this assumption when shown otherwise.

The contributions of this work are: (1) a formal method
for generalizing two planning actions with the AU algo-
rithm, which deals with an NP-Hard problem; (2) a scal-
able, accurate and suitable for real-time usage algorithm to
recognize and acquire general schemata from partially ob-
servable state transitions, named OARU; and (3) an eval-
uation of acquired knowledge libraries with expert hand-
crafted benchmarks from the International Planning Compe-
tition (IPC) (Muise 2016) and PDDLGym (Silver and Chit-
nis 2020).

Related Work
The problem of OAR relates to plan, activity and intent
recognition (PAIR) (Sukthankar et al. 2014) and learning ac-
tion models (Arora et al. 2018). The recognition in PAIR
is defined a s a p rediction t ask o f t he m ost p lausible fu-
ture, i.e. the most probable plan or goal an agent will
pursue (Ramı́rez and Geffner 2009; Ramı́rez and Geffner
2010), while our recognition task serves as an explanation
of the past (Chakraborti et al. 2017; Aineto et al. 2019;
Aineto, Jimenez, and Onaindia 2020). Also, model-based
approaches for recognition assume a knowledge library with
goals, plans or domain theories is known beforehand. We
release the problem from this assumption, where the knowl-
edge is acquired in an incremental online fashion.

We refer to learning the representation of the world dy-
namics as the problem of learning action models, which has
been a topic of interest for long time (Gil 1994; Benson
1995; Wang 1995). STRIPS-like actions have been learned
with algorithms such as ARMS (Yang, Wu, and Jiang 2007)
with a weighted MaxSAT; SLAF (Amir and Chang 2008)
with an online SAT solver that computes the CNF for-
mula compatible with partial observations; LOCM (Cress-
well, McCluskey, and West 2009; Cresswell and Gregory
2011; Gregory and Cresswell 2015) computing finite state
machines of object sorts; FAMA (Aineto, Jiménez, and On-
aindia 2018; Aineto, Celorrio, and Onaindia 2019) learning
from minimal observability with an off-the-shelf classical
planner; and Representation Discovery (Bonet and Geffner

2020) that learns with a SAT solver from plain graphs. In
the latter, only action labels are known, while in the rest of
approaches, the name and parameters of each declarative ac-
tion are known, which strictly constraints the learning prob-
lem. In our case, no prior labels and parameters bound the
problem, like in Suárez-Hernández et al. (2020), but induc-
tively learned with every new partially observable state tran-
sition.

The work by Amado et al. (2018) proposes the LatPlan
algorithm for goal recognition. It first learns grounded ac-
tion models in the latent space from images, such as AMA2
(Asai and Fukunaga 2018). However, grounded actions are
generated without soundness guarantees, may not generalize
to other instances, and the learning method requires observ-
ing all possible non-symbolic transitions, while OARU in-
puts are symbolic, computes actions which do not require to
observe all state transitions and generalize to other instances.

Preliminaries
Let us first introduce preliminary notation on first-order
logic and unification, and weighted partial MaxSAT.

First-order logic
The formal language to describe relations between constant
symbols is known as first-order logic or predicate logic.
Propositional logic is subsumed by first-order logic in that
propositions are specific interpretations of relations over
constant symbols. The syntax of a first-order language con-
sists of a (possibly) infinite set of logical terms (mathemat-
ical objects) and well-formed formulae (mathematical facts)
denoted as T and F , respectively.
Definition 1 (First-Order Logical Term). A first-order
logical term t ∈ T is recursively defined as t =
c|v|fn(t1, . . . , tn) where t is either a constant symbol c ∈ C,
a variable symbol v ∈ V , or a functional symbol fn with n
arguments s.t. ti ∈ T for all 1 ≤ i ≤ n.
Definition 2 (Well-Formed Formula). A well-formed for-
mula (wff) ϕ ∈ F is inductively defined as a predicate (or
atomic formula) ϕ = pn(t1, . . . , tn); a negation ¬ϕ; a log-
ical connective conjunction ϕ ∧ ψ, disjunction ϕ ∨ ψ, im-
plication ϕ → ψ, or biconditional ϕ ↔ ψ s.t. ψ is also a
wff; or a quantifier ∀vϕ or ∃vϕ, for universal and existential
quantification of a wff ϕ and variable v ∈ V , respectively.

The first-order semantics is a structure which consists of
an interpretation function I and a universe D with the non-
empty set of all objects. The set of objects is used to ascribe
meaning to terms and formulae with an interpretation func-
tion but, while terms are interpreted into objects, predicates
and other formulae have boolean interpretations. The inter-
pretation over a logical term I(t) is an assigned function
to term t which maps a tuple of already interpreted argu-
ments of n objects in Dn to a single object in D. Hence,
the interpretation of constant terms is I(c) : D0 → D,
from variables is I(v) : D1 → D, and functional symbols
is I(f) : Dn → D, which maps 0, 1 and n objects into
one, respectively. The interpretation of an n-ary predicate is
I(p) : Dn → {true, false}. The interpretation over a well-
formed formula I(ϕ) consists of: (1) the interpretation of

variables and functionals given a set of objects D; and (2)
the boolean evaluation of predicate interpretations, and log-
ical connectives. In this paper we only focus on constant,
variables and first-order predicate symbols such as follows:

Example 2. In Figure 1, there are 7 predicate sym-
bols {at2, clear1, is-player1, location1, move-dir3,
thing1}, 5 variables {X0, X1, X2, X3, X4} and 5
constants {player-01, pos-5-6, pos-6-6, dir-left,
dir-right}. In the first state shown, the player is in po-
sition pos-5-6, so I(at2(player-01, pos-5-6)) = true.
In the second one, it is no longer there, so the same in-
terpretation is false. Predicates with variable arguments
such as at(X1, X0) require an interpretation of variables
X1 and X0 before evaluation (known as grounding), e.g.
{I(X0) = player-01, I(X1) = pos-5-6}.

First-Order Unification
The problem of first-order unification (unification for short)
consists in making both sides of a set of equations syn-
tactically equal (Snyder 2001). Then, the unification prob-
lem is defined as a set of potential equations U = {l1

.
=

r1, . . . , ln
.
= rn} where each left and right-hand sides are

first-order logical terms li, ri ∈ T .
A substitution σ : V → T is a function that maps vari-

ables into terms, and its notation is {v1 → t1, . . . , vn → tn}
where each vi ∈ V and ti ∈ T . An instance of a term t is tσ
and expanded as t{v1 → t1, . . . , vn → tn}, where all vari-
able substitutions are applied simultaneously. Two terms l
and r of a potential equation l .

= r are syntactically equal
if exists a substitution σ such that lσ ≡ rσ, where ≡ stands
for syntactically equivalent.

Example 3 (Substitution). Given a pair of constants
player , loc ∈ C and variables v1, v2 ∈ V , the poten-
tial equation at(v1, loc)

.
= at(player, v2) is syntacti-

cally equivalent when the substitution is σ = {v1 →
player, v2 → loc}.

The substitution of terms is also named a unifier. A solu-
tion to U is a unifier σ if liσ ≡ riσ for all 1 ≤ i ≤ n. In the
context of this paper, we are interested only in the unification
of predicates without nested arguments (i.e. no functions).

Weighted Partial MaxSAT (WPMS)
A literal l is a boolean variable l = x or its negation l = ¬x.
A clause c is a disjunction of literals, and a weighted clause
(c, w) extends the clause c with a natural number w ∈ N
(or ∞) which represents the cost of not satisfying (c, w).
In WPMS, a weighted clause is either hard if the weight is
infinite, and soft otherwise.

In contrast to (partial Max) SAT where the input for-
mula is described in conjunctive normal form (conjunc-
tions of clauses), the input to a WPMS problem is a
set of weighted clauses Φ = {(c1, w1), . . . , (cn, wn)},
which may be divided into Φs = {(c1, w1), . . . , (cm, wm)}
and Φh = {(cm+1,∞), . . . , (cn,∞)}, for soft and hard
weighted clause sets, respectively. Then, Φ = Φs ∪ Φh.

Let vars(Φ) be the set of all boolean variables in Φ. A
truth assignment is the interpretation of boolean variables

into 0 or 1, i.e. I : vars(Φ) → {0, 1}. Then, the truth as-
signment for a set of weighted clauses Φ is:

I(Φ) =

m∑
i=1

wi(1− I(ci)). (1)

Therefore, WPMS is the problem of finding an optimal
assignment I∗(Φ) (Ansótegui and Gabas 2013), such that
the hard clauses are satisfied and Equation 1 is minimized:

I∗(Φ) = min{I(Φ)|I : vars(Φ)→ {0, 1}}. (2)

The optimal assignment of Equation 2 could be inferred
from I∗(vars(Φ)). Also, note that Equation 1 only iterates
over soft clauses, since falsifying a hard clause would result
in infinite cost and the solution would be invalid.

STRIPS Action Model
This work aims at recognizing the action models A in a do-
main represented with the STRIPS fragment of the Planning
Domain Definition Language (PDDL) (McDermott et al.
1998; Haslum et al. 2019) and negations. An action schema
α ∈ A is defined by a 3-tuple α = 〈headα, preα, eff α〉
where:

• headα is the name of the action and a set of variables
V ′ ⊆ V referenced in preα and eff α,

• preα is a well-formed formula with a conjunction of liter-
als that represent the action preconditions,

• eff α is the list of effects which consists of literals that
are updated either to true (add/positive effect) or false
(delete/negative effect). Often, eff α is splitted into addα
and delα lists.

Online Action Recognition
The problem of Action Recognition is a trivial task under
certain assumptions such as fully observable transitions, fi-
nite set of relations and objects that are known to be true
(closed-world assumption), and a complete knowledge li-
brary of STRIPS action models to represent the possible in-
teractions between an agent and the world. From an observer
perspective, the action applied by an agent would be easily
identified with a naive linear algorithm that loops over the
set of grounded actions. Nevertheless, the problem becomes
more complex when the knowledge library only contains ac-
tion signatures (set of action symbols with their arity) and
transitions are partially observable. Then, the action models
must be learned (Amir and Chang 2008; Mourao et al. 2012;
Aineto, Jiménez, and Onaindia 2018). The problem is even
harder when the knowledge library starts empty and the in-
terpretation of the each relation between objects is unknown
beforehand (open-world assumption) (Minker 1982). We fo-
cus on the online version of the latter paradigm.

Input: set of observations
Inputs consist of observations over a set of transitions. Im-
plicitly, each transition is a (s, a, s′) triplet, where that s is
the previous state, a is the action applied by an agent, and s′
is the successor state. However, in OAR, the action applied

by the agent is never observed, so each transition observation
is o = (s, s′). When the input consists of a set of observa-
tions O, each observation o ∈ O is sequentially processed
following the order in which they were observed.

We use a factored state representation where each state
s is defined by a set of predicates pn(d1, . . . , dn) (or their
negation), such that pn is a predicate symbol of arity n, and
every di ∈ D for 1 ≤ i ≤ n is an object in the universe.

In an open world, a grounded predicate pn(d1, . . . , dn) is
known to be true if each di ∈ C and it is explicitly true in
a given state s (resp. ¬pn(d1, . . . , dn)). Therefore, a state
s is fully observable if for every predicate and constants,
there is an interpretation Is(pn(d1, . . . , dn)) which maps the
grounded predicate either to true or false. Thus, a state s is
partially observable if there is no such interpretation Is for
all known predicates and constants.

Next, we introduce some definitions over ϕ =
pn(d1, . . . , dn) that will become handy:
• A function type(ϕ) := pn.
• A function argi(ϕ) := di.
• A function ιs(ϕ) := true iff Is(ϕ) is defined, else false.

Output: first-order STRIPS action model
The output for each observation o ∈ O is a grounded ac-
tion a composed of the action model α ∈ A and its sub-
stitution σ ∈ Σ. We denote as Dα the set of objects (either
constants or variables) referenced within α’s effects and pre-
conditions. An action a is said to be grounded or instanti-
ated when the variables in headα are substituted by a tuple
of constants from D of equal size. We denote this by ασ,
where σ ∈ Σ is an object substitution (and thus Σ is the
set of all possible substitutions), as those introduced earlier.
This nomenclature extends naturally to the substitution of
arbitrary objects, not just variables. We adopt the conven-
tion that if σ does not define an explicit substitution for an
object d ∈ Dα, then its application leaves all references to d
unchanged.

A solution to the problem is then a grounded action a,
such that a = ασ where α ∈ A and σ ∈ Σ, which com-
pletes the observation (s, s′) into (s, a, s′) and the following
conditions hold:
Condition 1 (Valid Preconditions). The interpretation eval-
uates the preconditions to true, i.e. Is(prea) = >, in other
words, the action preconditions hold in the previous state,
i.e. prea ⊆ s.
Condition 2 (Valid Transition). The successor state s′ is
a direct consequence from applying a in s, such that s′ =
(s \ dela) ∪ adda.

Problem statement
The OAR problem is tabular in that background theories,
such as schemata A, are unknown. Indeed, the problem
is twofold, where the action is recognized if exists in the
knowledge library, otherwise learns a new action model
(Arora et al. 2018) and unifies it with previous knowledge.
Definition 3 (Online Action Recognition). The OAR prob-
lem consists in finding a function P : O → A × Σ that

sequentially maps each observation o ∈ O into an action
α ∈ A, and a substitution σ ∈ Σ s.t. Conditions 1 and 2
hold. If α /∈ A initially, a new α must be learned.

Methodology
The main algorithm is OARU. It starts with the set of pred-
icate symbols but neither universe nor action library knowl-
edge are known (i.e. D = ∅ and A = ∅). Both are greedily
learned with every new observation o = (s, s′) as follows:

1. For each pair of consecutive states s and s′, it generates a
Trivial Grounded Action (TGA) a that explains this tran-
sition, but does not generalize.

2. OARU merges a with the closest action in α ∈ A via Ac-
tion Unification (AU) using a weighted partial MaxSAT,
which results in a new action α′ and a grounding σ.

3. OARU recognizes grounded action a′ = α′σ as the un-
derlying action that produced observation o.

Construction of Trivial Grounded Actions

A TGA is a grounded STRIPS action a that explains just one
transition from s to s′. Hence, s′ can be reached if a is ap-
plied to s, but does not generalized to other states. This may
be also denoted by s a−→ s′. To construct a in a full observ-
ability setting, we set the conjunction of the predicates in s
as the precondition, i.e. prea = s. The effects are defined as
an add list adda = (s′ \ s), and a delete list dela = (s \ s′).
To extend this basic construction to support partial observ-
ability, we consider uncertain predicates in s and s′ as po-
tentially true and false, and mark their occurrences within
prea, adda and dela and effect as uncertain1.

The preconditions and effects of any action can be joined
into a single set La of labeled predicates, each defined by a
triplet χ = (ϕ, l, k), where:

• ϕ = pn(d1, . . . , dn) is a predicate as defined earlier,

• l ∈ {PRE,ADD,DEL} is the label to denote either the
precondition, add or delete list,

• k is either true if the predicate is known to belong to l with
total certainty, or false if it is unknown.

Notice that La is sufficient to represent a, since the param-
eters of a can be constructed as the union of all the variables
appearing in La (i.e. all variables in Da).

The k flag of a labeled predicate is set depending on
whether ϕ is known in s and s′.

Example 4. Consider sokoban, and a predicate ϕ =
at(agent, pos-1-1). Suppose Is(ϕ) = true, but ιs′(ϕ) =
false (i.e. the location of the agent is known to be (1,1) in s,
but this is not known with certainty in s′). Then, the created
TGA contains a labeled predicate χ = (ϕ,DEL, false) be-
cause it is unknown whether ϕ is removed in the transition.

1The full details are given in the extended version of this article
in arXiv.org

arXiv.org

Action Unification with Weighted Partial MaxSAT
Let us focus on Action Unification (AU), OARU’s mecha-
nism to merge a TGA into its action library.

AU’s goal is to find an action αu that generalizes α1 and
α2, if it exists. We say that αu generalizes α1 and α2 if
there are two substitutions σ1, σ2 such that α′i = αuσi,
eff α′

i
= eff αi

and preα′
i
|= preαi

for i ∈ {1, 2}. Intuitively,
αu preserves the effects of α1 and α2, while its precondi-
tions are relaxations of preα1

and preα2
, lifting some ob-

jects in the process. First, we seek to preserve as many pred-
icates in the precondition as possible. Second, among all the
αu actions with maximal preconditions, we want one with
the least number of new parameters. This relaxation/lifting
mechanism makes αu applicable in a wider range of situa-
tions. So far, we have described AU as a dual-objective op-
timization problem.

To perform AU given α1 and α2, we encode as a WPMS
the problem of finding an injective partial function τ :
Dα1

→ Dα2
such that τ(o1) = o2 implies that o1 and o2

will map to the same object in αu. If o1 = o2 = o ∈ C, the
reference to o is maintained within αu as a constant. Other-
wise, o1 and o2 will be lifted. We say that two labeled pred-
icates χ1 = (ϕ1, l1, k1) ∈ Lα1

and χ2 = (ϕ2, l2, k2) ∈ Lα2

match iff l1 = l2, type(ϕ1) = type(ϕ2) = pn, and
τ(argi(ϕ1)) = argi(ϕ2) for 1 ≤ i ≤ n. We denote as
Mα1,α2 the set of tuples (χ1, χ2) of potential matches. We
say that a labeled predicate χ ∈ Lαi is preserved if it has a
match in the other action. A labeled predicate is preserved as
certain if it is matched with a certain one. In order of priori-
ties, our conditions for τ are: (1) all certain effect predicate
are preserved; (2) as many precondition and uncertain pred-
icates as possible are preserved; and (3) as fewer parameters
as possible are introduced.

In the WPMS encoding, denoted as Φα1,α2
, we use the

following decision variables:
• xo1,o2 for oi ∈ Dαi , means that τ maps o1 to o2,
• yχ1,χ2 for (χ1, χ2) ∈ Mα1,α2 , means that χ1 matches χ2,
• zi,χi s.t. i ∈ {1, 2}, χi ∈ Lαi , means that χi is preserved.

We define four constraints that must be satisfied (Hard),
and two constraints to be optimized (Soft):

(H1) τ is an injective partial function, so ∀o1, o2:
At-Most-1({xo1,o′2 | ∀o

′
2}),

At-Most-1({xo′1,o2 | ∀o
′
1}).

(3)

(H2) Two potential matches (ϕ1, . . .) and (ϕ2, . . .), from
α1 and α2 respectively, match iff τ maps every ith argu-
ment of ϕ1 to the corresponding ith argument of ϕ2:

yχ1,χ2
⇔

∧
i

xargi(ϕ1),argi(ϕ2). (4)

(H3) A labeled predicate χi ∈ Lαi
is preserved iff it has

at least one match in the other action:

z1,χ1
⇔

∨
χ′
2

yχ1,χ′
2
,

z2,χ2 ⇔
∨
χ′
1

yχ′
1,χ2

.
(5)

(H4) Preserve non uncertain effects (i.e. χi =
(ϕi, li, true) ∈ Lαi , with li 6= PRE):

zi,χi
. (6)

(S1) (Weight=1) Avoid lifting objects, i.e. ∀o1, o2 ∈ C s.t.
o1 6= o2:

¬xo1,o2 . (7)

(S2) (Weight=Wbig) Preserve preconditions and uncer-
tain effects (i.e. χi = (ϕi, li, ki) with li = PRE ∨ ¬ki):

zi,χi . (8)

For compactness, (H2) and (H3) have not been expressed
in Clausal Normal Form (CNF), but transforming them to
CNF is trivial through the Tseitin transformation (Tseitin
1983). In (H1), At-Most-1 forbids more than one of the lit-
erals in the given set to become true. We use the quadratic
encoding. Different weights are given to (S1) and (S2).Wbig

must be large enough so that preserving predicates has pri-
ority over avoiding the introduction of parameters. Wbig ≥
min(|Dα1

|, |Dα2
|) + 1 accomplishes this. Let us highlight

that I∗(Φα1,α2
) may be interpreted as a scaled distance be-

tween α1 and α2:

I∗(Φα1,α2
) = Wbig ·Nnp +Nparam ,

distα1,α2
= I∗(Φ)/Wbig ,

(9)

where Nnp is the number of non-preserved predicates, and
Nparam is the number of introduced parameters. distα1,α2

has an intuitive meaning: its integer part represents the
number of eliminated predicates (Nnp) while its fractional
part is proportional to the number of introduced parameters
(Nparam/Wbig). If α1 and α2 cannot be unified, we define
distα1,α2

=∞.

Complexity of Action Unification. We have proposed an
approach for AU that requires a reduction to a WPMS prob-
lem. However, WPMS is known to be NP-Hard, so it is rea-
sonable to wonder if AU is in a more tractable complexity
class. We claim that this is not the case.
Theorem 1. Action Unification’s problem is NP-Hard.2

Despite the worst-case complexity of AU, we show that,
in practice, real-time performance is possible.

Online Action Recognition through Unification
OARU shows similarities to Hierarchical Clustering (HC).
Actions act as data points, and AU computes distances and
builds clusters. Unlike in standard HC, we may cluster only
actions whose effects can be preserved.

OARU’s recognition subroutine is outlined in Algo-
rithm 1. This subroutine updates |A| on the basis of a
new observation o = (s, s′), and explains s → s′ with a
grounded action. It starts building a TGA a from o (line 1).
After initializing some bookkeeping variables (line 2), it ob-
tains, if possible, the closest action to a from |A|, and the re-
sult of AU (lines 3-8). If a could be unified to at least some
α ∈ A, α is replaced by the unified action α′, and a′ (the

2Proof in extended article in arXiv.org

arXiv.org

Algorithm 1 OARU
Input: Observation o = (s, s′), action library A
Output: Grounded action a′ s.t. s a′−→ s′

1: a← BuildTGA(s, s′)
2: α← ∅, α′ ← ∅, dmin ←∞
3: for all β ∈ A do
4: (αu, distβ,a)← ActionUnification(β, a)
5: if distβ,a < dmin then
6: α← β, α′ ← αu, dmin ← distβ,a
7: end if
8: end for
9: if α′ 6= ∅ then

10: Remove α from A
11: a′ ← α′σ, with σ s.t. eff α′σ = eff a
12: Add α′ to A
13: else
14: a′ ← a
15: Add a to A
16: end if
17: return a′

return value) is set to the grounding of α′ that fills the gap in
o (lines 9-12). Otherwise, the TGA is assigned to the return
value and added as is to |A| (lines 13-16).

In practice, we also have a top-level procedure that ini-
tializes A to an empty set and runs Algorithm 1 for each
observation it encounters. OARU fills A progressively, and
outputs the grounded action that explains each transition.

Evaluation
We have implemented3 and evaluated4 OARU in a bench-
mark of 9 domains (Muise 2016; Silver and Chitnis 2020).
We have conducted two sets of experiments: with full and
with partial observability. We use goal-oriented traces, i.e.
list of pairs of consecutive states where a goal condition
holds in the last state, so that all relevant actions are pro-
duced.

For each domain, OARU observes the transitions that
arise while solving 8 problems in succession. Each problem
depicts a different number of objects and, thus, has a differ-
ent impact in the number of variables and clauses that AU
needs to encode5. For each domain, we report:

• |A|: final size of OARU’s library.

• |O|: total number of transitions across the 8 problems.

• T: Average CPU time taken by Algorithm 1.

• M: Peak memory usage for solving AU.

• Prec.: Precision of a recognized action ag , compared to
the grounded action aref that was used to perform the tran-

3https://github.com/sprkrd/sat strips learn
4Machine specifications: AMD Ryzen 7 3700X @ 3.6GHz,

32GB of DDR4 RAM CL15 @ 3200MHz.
5See extended article for domain and problem characteristics

Table 1: Results with (a) full and (b) partial observability. T
is in milliseconds, M in MB, and Prec. and Rec. in %.

Domain |A| |O| T M Prec. Rec.

blocks 4 96 14± 5 1.0 100± 1 100± 0

depot 5 300 70± 57 1.7 92± 12 96± 5

elevator 3 147 31± 32 1.6 87± 11 73± 10

gripper 3 262 46± 30 1.7 100± 3 100± 0

minecraft 4 23 7± 4 1.5 97± 6 100± 0

onearmedgripper 3 284 38± 21 1.7 100± 3 100± 0

rearrangement 4 42 19± 11 1.7 93± 9 97± 5

sokoban 4 598 49± 24 1.7 90± 3 91± 2

travel 5 48 22± 17 1.9 84± 15 89± 11

(a)

Domain |A| |O| T M Prec. Rec.

blocks 4 96 16± 7 1.3 90± 15 99± 6

depot 5 300 120± 66 3.8 88± 15 95± 7

elevator 3 147 48± 26 5.3 83± 22 66± 19

gripper 3 262 45± 25 5.2 96± 10 100± 2

minecraft 4 23 30± 27 5.4 65± 23 99± 6

onearmedgripper 3 284 32± 14 5.4 95± 10 100± 3

rearrangement 4 42 28± 15 5.5 80± 20 96± 7

sokoban 4 598 158± 146 13 89± 12 86± 5

travel 5 48 91± 114 16 68± 27 85± 10

(b)

sition. It is the ratio of correct labeled predicates in ag:

Precaref (ag) = 100
|Lag ∩ Laref |
|Lag |

. (10)

• Rec.: Average recall (%) of ag compared to aref. It is the
ratio of predicates in aref that have been captured by ag:

Recaref(ag) = 100
|Lag ∩ Laref |
|Laref |

. (11)

T and M are performance-related (quantitative evaluation).
Prec. and Rec. measure the correctness and completeness
of ag (qualitative evaluation). We report both evaluations for
full and partial observability in Table 1.

Let us focus first on the full-observability results (Ta-
ble 1a). Times are in general well below 1 second. Therefore,
our claim about the real-time potential of OARU holds, as
long as the throughput of observations is reasonably limited
(e.g. a few seconds between observations). Memory require-
ments are also within a reasonable bound, requiring in the
order of a few MBs to solve AU. However, we have found
that some domains are challenging to OARU when it has just
started with an empty A. For instance, OARU cannot cope
with gripper in a timely fashion if it starts with a problem
with 20 objects or more. This is understandable, because the
size of the WPMS encoding grows quadratically with the
matches of predicates and objects. We believe this is not a

https://github.com/sprkrd/sat_strips_learn

0 200 400 600
Step

2
4
6
8

10
12
14
16

#U
pd

at
es

elevator
depot
sokoban

(a)

0 200 400 600
Step

0
5

10
15
20
25
30
35
40

#U
pd

at
es

elevator
depot
sokoban

(b)

Figure 2: Accumulated updates for three domains in (a) full
and (b) partial observability.

huge setback, since it is very natural to ramp up the number
of objects progressively. Additional performance is achieved
through some optimizations not described here, like a broad
phase stage in Algorithm 1 to avoid a full call to AU when
it is obvious that actions cannot be unified.

We see in general that the recall is very large. The reason
lies in how OARU works. In deterministic settings, effects
are almost always identified with high accuracy, while pre-
conditions are relaxed as little as possible. In 5 cases the
recall is lower than 100%. In 3 of those, moreover, |A| is
not equal to the number of actions in the expert’s domain or
Ground Truth Model (GTM). In elevator (GTM with 4 ac-
tions), there are two very similar actions for going up and
down that only differ in one predicate of the precondition.
OARU recognizes them as a generic move up or down ac-
tion and discards that predicate. On the other hand, sokoban
(GTM with 3 actions) contains an action for moving stones
to non-goal positions that deletes an at-goal(·) predicate
which is not necessarily in the state. Thus, its deletion is
not always observed, and OARU fills |A| with two different
actions that address different contexts. Travel (GTM with 4
actions) presents a similar situation, but for adding an al-
ready present predicate. The 2 remaining cases (rearrange-
ment and depot) have lower than 100% recalls for similar
reasons, but their |A| is equal to their GTM’s.

The precision is not as high as the recall because
OARU holds onto precondition predicates that are not
present in the GTM, but are confirmed by all the ob-
served transitions. For instance, grid-based worlds with
adjacency predicates, like sokoban, show symmetries. To
move from pos-5-6 to pos-6-6, a predicate such as
move-dir(pos-5-6, pos-6-6, dir-right) must hold true.
However, OARU observes that, whenever that happens, the
predicate move-dir(pos-6-6, pos-5-6, dir-left) is also
true. However, the GTM lists only one adjacency precondi-
tion. In most cases, OARU is not incorrect from a semantic
standpoint, but the precision metric counts it as an error.

Table 1b shows the results for partial observability. These
have been obtained making parts of the state ignored by
OARU at random. Namely, the interpretation of from 0 to
5 predicates has been removed. Results are averaged over
5 executions of the 8 problems for all the domains. We

see penalties in the performance. This is most evident in
sokoban, because all problems present more than 50 objects.
The introduction of uncertain predicates drives up the num-
ber of potential matches significantly. Other domains show
smaller increases in recognition times and memory require-
ments. Precision and recall have suffered, but are not signifi-
cantly worse than the full observability results. We have also
experimented with greater proportions of unknown predi-
cates (0 to 10). OARU starts requiring large computational
times for AU in elevator and sokoban (in the order of sev-
eral minutes). As we would expect, partial observability has
a much larger computational burden. A way to address all
these problems is to start with smaller problems and build
|A| progressively.

Figure 2 shows how often A is updated (via action ad-
dition or replacement) in three domains. The X axis shows
the number of steps taken, while the Y axis shows the ac-
cumulated number of updates. We consider that an update
is made only when a TGA is not entirely subsumed by an
action already present in A (i.e. either a parameter is added
or a labeled predicate is removed). Notice that A stabilizes
early on for elevator. For sokoban, it plateaus half-way to-
wards the final number of steps, and depot at approximately
two thirds. The drop in the rise rate of the curves shows that,
early on, A is empty and is updated rather frequently with
new observations. However, asA is filled, OARU sees more
actions and comes up with good general schemata that gen-
eralize all the transitions that could happen. The shapes of
the full and partial observability curves are very similar. The
most notable differences are in the scale and that the partial
observability curves do not entirely plateau, but still exhibit
some small jumps towards the final steps. This is intuitive:
partial observations cause an increased number of updates,
and that A does not stabilize until later.

Discussion and Conclusions
In this paper, we have proposed OARU, an algorithm for
recognizing STRIPS action models from partially observable
state transitions. It uses AU to merge observations into its
action library, constructing an action hierarchy and improv-
ing its action models through generalization. OARU shows
a high computing performance and the recognized actions
have strong similarities to expert handcrafted models. Thus,
OARU ability to learn without action signatures makes it a
promising contender to other model learning approaches.

As future work we consider to learn more expressive ac-
tions with generalized planning (Jiménez, Segovia-Aguas,
and Jonsson 2019), and refine actions with negative ex-
amples (Aguas, Jiménez, and Jonsson 2020). Allow noisy
observations extracted from sensor sampling (Yang 2009)
which would make it suitable for more realistic applica-
tions on the wild. Also recognizing hidden variables and
intermediate states in action sequences with Bayesian in-
ference (Aineto, Jimenez, and Onaindia 2020). Finally, we
think there is a great potential for an application-ready
methodology adopting OARU’s philosophy to learn from
low-level data, i.e. robot motions (Konidaris, Kaelbling, and
Lozano-Perez 2018), images (Asai and Fukunaga 2018) or
graphs (Bonet and Geffner 2020).

Acknowledgments
The research leading to these results has received funding
from the EU H2020 research and innovation programme
under grant agreement no.731761, IMAGINE; the Hu-
MoUR project TIN2017-90086-R (AEI/FEDER, UE); and
AEI through the Marı́a de Maeztu Seal of Excellence to
IRI (MDM-2016-0656). Javier Segovia-Aguas was also par-
tially supported by TAILOR, a project funded by EU H2020
research and innovation programme no. 952215, an ERC
Advanced Grant no. 885107, and grant TIN-2015-67959-P
from MINECO, Spain.

References
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2020. General-
ized Planning with Positive and Negative Examples. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
9949–9956.
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. AIJ 275: 104–
137.
Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning
STRIPS action models with classical planning. In ICAPS.
Aineto, D.; Jimenez, S.; and Onaindia, E. 2020. Observa-
tion Decoding with Sensor Models: Recognition Tasks via
Classical Planning. In ICAPS, volume 30, 11–19.
Aineto, D.; Jiménez, S.; Onaindia, E.; and Ramı́rez, M.
2019. Model Recognition as Planning. In ICAPS, 13–21.
Amado, L.; Pereira, R. F.; Aires, J.; Magnaguagno, M.;
Granada, R.; and Meneguzzi, F. 2018. Goal recognition in
latent space. In IJCNN, 1–8. IEEE.
Amir, E.; and Chang, A. 2008. Learning partially observable
deterministic action models. JAIR 33: 349–402.
Ansótegui, C.; and Gabas, J. 2013. Solving (Weighted) Par-
tial MaxSAT with ILP. In CPAIOR, volume 13, 403–409.
Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018. A review of learning planning action models. The
Knowledge Engineering Review 33.
Asai, M.; and Fukunaga, A. 2018. Classical Planning in
Deep Latent Space: Bridging the Subsymbolic-Symbolic
Boundary. In McIlraith, S. A.; and Weinberger, K. Q., eds.,
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 6094–6101.
Benson, S. 1995. Inductive learning of reactive action mod-
els. In Machine Learning Proceedings 1995, 47–54. Else-
vier.
Bonet, B.; and Geffner, H. 2020. Learning first-order sym-
bolic representations for planning from the structure of the
state space. In ECAI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI, 156–
163.
Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In ICAPS.

Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009. Ac-
quisition of Object-Centred Domain Models from Planning
Examples. In ICAPS.

Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Machine
Learning Proceedings 1994, 87–95. Elsevier.

Gregory, P.; and Cresswell, S. 2015. Domain Model Acqui-
sition in the Presence of Static Relations in the LOP System.
In ICAPS, 97–105.

Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An introduction to the planning domain definition
language. Synthesis Lectures on Artificial Intelligence and
Machine Learning 13(2): 1–187.

Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A re-
view of generalized planning. The Knowledge Engineering
Review 34.

Junghanns, A.; and Schaeffer, J. 1997. Sokoban: A challeng-
ing single-agent search problem. In In IJCAI Workshop on
Using Games as an Experimental Testbed for AI Reasearch.
Citeseer.

Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. JAIR 61: 215–289.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language. Artificial Intelligence
.

Minker, J. 1982. On indefinite databases and the closed
world assumption. In International Conference on Auto-
mated Deduction, 292–308. Springer.

Mourao, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. ArXiv preprint arXiv:1210.4889.

Muise, C. 2016. Planning.Domains. In ICAPS - Demonstra-
tions. URL http://www.haz.ca/papers/planning-domains-
icaps16.pdf.

Pozanco, A.; Yolanda, E.; Fernández, S.; and Borrajo, D.
2018. Counterplanning using Goal Recognition and Land-
marks. In IJCAI, 4808–4814.

Ramı́rez, M.; and Geffner, H. 2009. Plan recognition as
planning. In IJCAI, 1778–1783.

Ramı́rez, M.; and Geffner, H. 2010. Probabilistic Plan
Recognition Using Off-the-Shelf Classical Planners. In Fox,
M.; and Poole, D., eds., Proceedings of the AAAI Conference
on Artificial Intelligence.

Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2017a.
Generating context-free grammars using classical planning.
In IJCAI, 4391–4397.

Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2017b. Un-
supervised classification of planning instances. In ICAPS,
452–460.

http://www.haz.ca/papers/planning-domains-icaps16.pdf
http://www.haz.ca/papers/planning-domains-icaps16.pdf

Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym
Environments from PDDL Problems. arXiv preprint
arXiv:2002.06432.
Snyder, F. B.-W. 2001. Unification theory. Handbook of
automated reasoning 1: 447–533.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In IJCAI, 3258–3264.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D.; and
Goldman, R. P. 2014. Plan, activity, and intent recognition:
Theory and practice. Newnes.
Suárez-Hernández, A.; Segovia-Aguas, J.; Torras, C.; and
Alenyà, G. 2020. STRIPS Action Discovery. arXiv preprint
arXiv:2001.11457.
Tseitin, G. S. 1983. On the complexity of derivation in
propositional calculus. In Automation of reasoning, 466–
483. Springer.
Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
Machine Learning Proceedings 1995, 549–557. Elsevier.
Yang, Q. 2009. Activity recognition: linking low-level sen-
sors to high-level intelligence. In IJCAI, volume 9, 20–25.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. AIJ
171(2-3): 107–143.

	Introduction
	Related Work
	Preliminaries
	First-order logic
	First-Order Unification
	Weighted Partial MaxSAT (WPMS)
	Strips Action Model

	Online Action Recognition
	Input: set of observations
	Output: first-order Strips action model
	Problem statement

	Methodology
	Construction of Trivial Grounded Actions
	Action Unification with Weighted Partial MaxSAT
	Online Action Recognition through Unification

	Evaluation
	Discussion and Conclusions
	 Acknowledgments

