Sample-Efficient Robot Motion Learning using Gaussian Process Latent
Variable Models

Juan Antonio Delgado—Guerrerol, Adria Colomé!, and Carme Torras

Abstract— Robotic manipulators are reaching a state where
we could see them in household environments in the following
decade. Nevertheless, such robots need to be easy to instruct by
lay people. This is why kinesthetic teaching has become very
popular in recent years, in which the robot is taught a motion
that is encoded as a parametric function - usually a Movement
Primitive (MP)-. This approach produces trajectories that are
usually suboptimal, and the robot needs to be able to improve
them through trial-and-error. Such optimization is often done
with Policy Search (PS) reinforcement learning, using a given
reward function. PS algorithms can be classified as model-free,
where neither the environment nor the reward function are
modelled, or model-based, which can use a surrogate model of
the reward function and/or a model for the dynamics of the
task.

However, MPs can become very high-dimensional in terms
of parameters, which constitute the search space, so their
optimization often requires too many samples. In this paper, we
assume we have a robot motion task characterized with an MP
of which we cannot model the dynamics. We build a surrogate
model for the reward function, that maps an MP parameter
latent space (obtained through a Mutual-information-weighted
Gaussian Process Latent Variable Model) into a reward. While
we do not model the task dynamics, using mutual information
to shrink the task space makes it more consistent with the
reward and so the policy improvement is faster in terms of
sample efficiency.

I. INTRODUCTION

Learning through demonstration using kinesthetic teaching
(see Fig. [I) and then improving over executions through
reinforcement learning has proved to be a successful ap-
proach in several situations [1]. In Policy Search (PS), the
initial demonstration is fitted into a parametric policy, which
is a generative model. This model - a Movement Primitive
(MP) - is used to generate samples that are evaluated with
a given reward function capable of telling how good a
robotic execution was. These samples and rewards are then
used to obtain a new policy, which will usually maximize
the expected value of the reward function given the policy.
However, these approaches often require a high number of
samples in order to learn sufficiently good motions in high-
dimensional parameter spaces. Therefore, model-based PS is
often used [2], where either a surrogate function estimating

This work was partially developed in the context of the project
CLOTHILDE ("CLOTH manlpulation Learning from DEmonstrations"),
which has received funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme
(Advanced Grant agreement No 741930). This work is also supported by
the Spanish State Research Agency through the Marfa de Maeztu Seal of
Excellence to IRI MDM-2016-0656.

Unstitut de Robotica i Informatica Industrial (IRI),
Barcelona, Spain. [jdelgado,acolome,torras] @iri.upc.edu.

CSIC-UPC,

1

Fig. 1: Kinesthetic teaching of a feeding task.

reward values or a dynamics model of the environment/robot
behaviour are built. Examples of model-based PS that use
both models for the dynamics and the reward functions are
PILCO [3] and Black-DROPS [4].

In this paper, we assume that we are provided with
an MP of a task which can be executed and evaluated,
but whose dynamics can’t be modelled. In such situations,
building a surrogate model with Gaussian Processes for the
reward function and using Upper Confidence Bound (UCB)
optimization can help to converge faster to an improved
solution. However, Bayesian Optimization (BO) techniques
such as UCB do not scale easily to a high dimension, thus
we need to perform dimensionality reduction in the MP
parameter space so as to be able to carry out the optimization.

Dimensionality Reduction (DR) techniques have been used
for learning robot motion [5], [6], [7], [8] and human
movements [9], [10], [11], [12]. These techniques led to
significant improvements by learning tasks in latent spaces.
However, the smallest dimensionality that can be used is
strongly limited by the DR technique used, often a linear
one. This is why, in this work, we resort to Gaussian Process
Latent Variable Models (GPLVM) [13] to perform such DR.

GPLVM has the advantage that it can fine-adjust the latent
space dimension much more than other methods, without
losing too much information. This is because of the way
GPLVM is built: instead of looking for a projection from
the original space to the latent space, it generalizes Dual
Probabilistic Principal Component Analysis (DPPCA) and

Program Input

.) Rewards
Trajectories
<

)]

oV High dim. Space 6 !
ydata ynew :
A :
Q 5
J
(N
e,, Latent Space :
Xdata poomomooonooomood xhew E
\ : ! A J o
' E Optimization o :
L " X-RModel —

Fig. 2: Global scheme of the proposed approach. Trajectories are

evaluated (0) and fit (1) into data vectors Y92 a5 ProMP parameters, these
data are weighted (2) dimension-wise with their mutual information with
rewards. GPLVM (3) finds a latent data model with variables X9 These
data, together with their rewards, are used to build a surrogate model of the
reward function in the latent space, which can estimate the reward directly
from the latent space. UCB exploration is used (4) to generate new samples
in the latent space, which are then used to predict (5) their respective high-
dimensional state value and then executed (6) as trajectories and evaluated.
The outputs of these evaluations and their generators in the latent space are
sent back to the surrogate model of the reward, which will be updated.

finds the values of the latent space variables that maximize
the likelihood with respect to the data. This, together with the
sampling efficiency of Gaussian Processes (GP), allows us
to reduce the dimensionality of the search space by at least
one order of magnitude, significantly speeding up the con-
vergence to a better motion policy. Additionally, we use the
Mutual Information (MI) [14] between the data dimensions
and the reward in order to weigh data and prioritize the fitting
of the reward function instead of the MP parameters. Finally,
we can use UCB to decide which samples to evaluate from
the latent space, project them upwards, execute, evaluate
and then update a surrogate model of the reward function
that maps the latent space parameters to the original reward
function, considered as a black box. Fig. 2] shows a schematic
view of the proposed method.

This paper is organized as follows: Section briefly
introduces the concepts used in the paper, such as Proba-
bilistic Movement Primitives (ProMPs) [15], Gaussian Pro-
cesses (GP) [16], Gaussian Process Latent Variable Models
(GPLVM) [13], Mutual Information (MI) [14] and Upper
Confidence Bound (UCB) [17], [18]. Section defines
the proposed approach and Section presents the results
obtained with this method. Section [V]| concludes the paper
and proposes future directions.

II. PRELIMINARIES
A. Probabilistic Movement Primitives

ProMPs [15] are an overall approach to model, encode
and learn a set of similar motion trajectories that present
time-dependent variances over time. Given a number of basis
functions per Degrees of Freedom (DoF), Ny, ProMPs use
time-dependent Gaussian kernels ®; to encode the state of
a trajectory, ®; being the vector of normalized kernel basis
functions (e.g., uniformly distributed Gaussian basis function
over time). Thus, the position and/or velocity state vector z;
can be represented as

7z, = Plw+e., (N

where \IltT =I.® <I>,§F, I, being the r-dimensional identity
matrix, with r the number of DoFs of the robot, and ®; an
N-dimensional column vector with the Gaussian kernels as-
sociated to one DoF at time ¢. Furthermore, €, is a zero-mean
Gaussian noise and the weights w are also treated as random
variables with a distribution p(w) = N (w|p,,, X.). Given
a set of demonstration trajectories 7, = {2}'};=1. n,, N =
1..V, this distribution can be fitted by obtaining the weights
w,, of each demonstration through least squares. Afterwards,
the parameters of the distribution 8 = {u,,3,,3.}, X,
being the state noise covariance, are fitted by means of
a maximum likelihood estimate, i.e., computing the mean
and covariance of the samples {w1, ..., wy}. Therefore, the
probability of observing a z; is:

p(2:0) = N (2@ 1, 3. + @] Zu@) @)

Due to the probabilistic representation, ProMPs can rep-
resent motion variability while keeping other MP properties
such as rescalation and linear representation with respect to
parameters.

B. Gaussian Processes

A Gaussian Process (GP) [16] f is an infinite-dimension
stochastic process such that, for any finite set of indices
Z1, ..., Tp, the random variables f(x1),..., f(z,) have joint
Gaussian distributions. A GP is completely defined by its
mean function m and covariance function k, which is sym-
metric and positive semi-definite:

f(x) ~ GP(m(x), k(x,x")) 3)

This is the generalization of the multivariate Gaussian
distribution, over vectors, to an infinite-dimension stochastic
process, over functions.

For convenience, the mean function is usually assumed to
be the zero function, m(x) = 0. On the other hand, many
possibilities can be found in the literature for defining the
covariance function k. In this work, the squared exponen-
tial kernel, combined with a vector of automatic relevance
determination, has been used for this purpose:

k(xi,x;) = oexp (—;(xi — xj)Tdiag(E)%(Xi — Xj)) ;
€]

where o is the kernel variance parameter and £ is the length-
scale vector parameter.

Furthermore, Gaussian processes are useful for regression
models, y = f(x) + e. Thus, considering a set of N
observations in matrix form: {X, Y}, with X € RN*Q Y e
RN*P | f can be used to predict the value of yx,1, given
Xn+1, and a noise Gaussian distribution e. By leveraging the
properties of f and the Gaussian identities, one can arrive to
the expression:

Plyn+11X, Y, xn11) =

5
= Nunben), 020 11) + 02, O
where

pe(xns1) = kKT [K + 00 IN] Y (6)

U?(XNJrl) = k(XNJrleNJrl)_k [K+UnozseI]71k
@)
Ki,j = k(l’i,l'j) Z,j = 1N (8)
ki = k(l‘N+1,Ii) i=1..N (9)

C. Gaussian Process Latent Variable Models

GPLVMs can be thought as the combination of GPs,
explained in section |[I-B} and latent variable models. These
models, as a type of feature extraction approach, relate
through a set of parameters the observed data, Y € RV*P,
with a set of so-called latent or hidden variables, X € RV*©,
being () « D for the purpose of dimensionality reduction.
In this way, GPLVMs define a generative mapping from
the latent space to the observation space, whose variable
responses are said to be governed by the latent ones.

Besides, GPLVMs are formulated as a non-linear gen-
eralization of Probabilistic Principal Component Analysis
(PPCA) [13]. Specifically, GPLVMs arise directly from the
formulation of Dual PPCA models, by replacing the inner
product kernel with a non-linear covariance function. These
approaches marginalize the parameters and optimize the
latent variables. Therefore, the marginal likelihood function
p(Y]X, 8) can be expressed as:

p(Y|X,0) =H

)

y:.alX), (10)

where y.q is the d—th column of the data matrix Y,
corresponding to the d—th dimension, and y:7d|X ~

(y fi|0 K+ Unozsej)

Finally, the methodology for training the GPLVM is to
find the maximum a posteriori estimate of X, maximizing
Eq. with respect to the latent variable values and noise
parameters.

GPLVM results in a projection from the higher dimen-
sional space to the latent space, without providing a pro-
jection mapping by itself. Not restricting the mapping to a
certain expression allows GPLVM to fine-tune the values of
the latent space further. Besides, GPLVM does provide a tool
for estimating the higher-dimensional variable y with respect
to the lower dimensional x, by also using Eq. (3).

D. Mutual Information

Mutual Information (MI) [14] is a widespread non-
negative symmetric statistic for quantifying the degree of
dependence between two random variables, being zero if and
only if such variables are independent. In other words, it
measures the amount of information shared by the variables,
reflecting how much information about one of them may
arise, from the knowledge of the other one.

Formally, this concept, which is grounded in information
theory, is defined as the relative entropy between the joint
probability, and the product distributions. Therefore, the mu-
tual information I(X;Y’) between two continuous random
variables with joint density p(X,Y) is:

I(X;Y)=({p(z,y log(p(i)p(;))didy (11)

where p(x) and p(y) are the marginal probabilities with
respect to X and Y, respectively.

Normally, and so it happens in our case, the joint prob-
ability distribution is not known, being only available some
sampled data of the form {x;,¥y;}ic[n]. In such cases, MI
must be estimated from this data set. One straightforward
approach for this purpose consists in partitioning the vari-
ables domain into bins of finite size, and approximate Eq.
(11)), as in [19].

E. Bayesian Optimization and Upper Confidence Bound

Bayesian Optimization [18] addresses the issue of finding
the extrema of objective functions, which have no closed-
form expression, unknown derivatives and convexity, or are
costly to evaluate, as in our case. In such cases, these
approaches result efficient in terms of the number of function
evaluations required to reach convergence [20].

These methods mainly consist of two components: a
stochastic surrogate model fitting the target function f, and
an acquisition function. On the one hand, the surrogate
model takes advantage of the information of accumulated
observations to generate a posterior distribution from a
prior distribution, by means e.g. of Gaussian process, as in
section The surrogate function will usually have more
uncertainty (variance) on those unexplored areas or where
its value is much non-deterministic.

On the other hand, the acquisition function, defined in a
search space Qx < RN*?, uses the surrogate model to
define the utility of evaluating each point of Qx, giving
more importance to points which are likely to have high
objective function values, considering both the surrogate
model prediction and its uncertainty.

Thus, the result of the maximization of the acquisition
function is selected as the next point of the objective function
to be evaluated, being the surrogate model updated accord-
ingly right afterwards. In this way, the acquisition function
is responsible to lead the search for the optimum of the
objective function, in a trade-off frame between exploration
and exploitation.

Upper Confidence Bound is a very intuitive [2] and
efficient [21] acquisition function method, defined by:

UCB(x) = u(x) + ko (x), (12)

where « is a parameter (left to the user) which controls
the importance of exploitation. The new samples are then
generated as:

Xsample = argmaXXEQXUCB (X) (13)

This method results in choosing to sample the point which
presents the highest mean plus x standard deviations value
on the surrogate function model.

III. LEARNING IN LATENT SPACES THROUGH GPLVM

In this section, using the concepts defined in Sec.
we present an approach that is capable of learning high-
dimensional robot motion policies with very few samples.

Given a set of trajectories 7, = {2z}, for trajectories
n = 1..N and timesteps 7 = 1..N;, we will firstly fit
those trajectories to MPs parameters by obtaining, for each
trajectory, w,, that adjust the trajectory according to (1)
(by using least-squares). These weight vectors, capable of
fitting each individual trajectory given the previously fixed
ProMP kernels, are then gathered together as the rows of our
data matrix Y. Therefore, we are performing Dimensionality
Reduction (DR) in the parameter space of the MP, rather
than directly in the space of degrees of freedom of the
robot, as other approaches do [6], [8]. While performing
DR in the space of degrees of freedom is advantageous
in that it provides qualitative information that is directly
interpretable, performing DR in the MP’s parameter space
permits to reduce further and fine-tune the dimensionality of
the latent space [22], which is one of the goals of this work.

We will then use GPLVM on the data stored in matrix
Y. However, while GPLVM was initially conceived for data
visualization [23], we are aiming at further improving the
model given the evaluations of each trajectory through a
reward function:

. RD
R:R” — R (14)
y — R(y).

Therefore, when deriving the GPLVM, we will weigh the
data by using YM' = Y . MI'/? instead of data Y. Here,
MI is the mutual information between the reward function
and each column of the data - i.e., each parameter of the
parameter vector w of the MP. The MI will then be higher
when there is a relation between such parameter (column)
and the reward, and smaller when such parameter does not
have much influence on the reward. Indeed, if we use this
weighting My = MI(y. 4, R) on the log-likelihood, we can
see that optimizing the weighted log-likelihood is equivalent
to using such weighted data as input:

D
log p(Y[X,0) = log | | p(y-alX)"",
d=1

15)

Ymadel Feprojection error

0.175
—— GPLVM + MI

5 0.150 GPLVM
=
5 0.125
c
S 0.100
=]
o
D 0075
g
g 0.050
@
= o025

2 3 : 8 9

4 5 6 7
Latent space dimension
Fig. 3: Mean Euclidean norm of the error on the reprojection of each data

trajectory within a training dataset, comparing GPLVM with MI-weighted
GPLVM.

which can be developed into:

D
log | | p(y:alX)™ =
d=1

D N 1
Z M, [210g27r — log|K| — 2yde1yfd] -
d=1

D
= (%log 2 —log |K|) 2 My
d=1

o) o) -

D D
_ Z Md .C = Z tr (YMITK—lYMIT)
d=1 d=1

(16)

where C' = Zlog 2 — log |K| is a constant, YM! = Y -
diag(M;. p), and diag(M; _p) is a diagonal matrix with the
values of the mutual information between column d of Y and
the rewards at each d-th diagonal position, for d = 1..D.
Therefore, using such weighting on the input data for the
GPLVM allows us to have a significantly smaller error when
calculating the reward of the mean predicted reprojection for
each training motion y,, while not losing much precision
on such reprojection. In Fig. we see the reprojection
error from a dataset using GPLVM with and without MI
weighting for the training dataset, while 30% of data was left
for validation purposes as shown in Fig. d] There, we can
observe that, while the reprojected training points present a
slightly better fitting with MI, this result is worse for the
validation datapoints. However, if we pay attention to the
reward evaluation of the latent space datapoints, reprojected
again to the higher-dimensional space, this gives an idea
of how the rewards are affected by the coding/decoding
operation. We see in Fig. 5] - in logl0 scale - that there
is a slight improvement on the training dataset by using MI,
and at least one order of magnitude of improvement on the
reward evaluations for the validation dataset, as observed in
Fig. [l This means that using such MI to weigh the GPLVM
input results in a model that more reliably represents the
reward function, for which we will build a surrogate model.
Once having built a GPLVM to obtain a proper latent space
representation of data, we will build a surrogate model that

Yvalidation FEprojection error

Reprojection error
g
=]

—— GPLVM + MI
0.10 GPLVM

2 3 4 5 6 7
Latent space dimension

Fig. 4: Mean Euclidean norm of the error on the reprojection of each data
trajectory within a validation dataset, comparing GPLVM with MI-weighted
GPLVM.

Rmodel reprojection log-error

-4
o —_ —— GPLVM + MI
g5 TT—— GPLVM
= -
-8
s
= =7
5]
7]
N
<3
7]
o -9

2 3 4 5 [7 8 9
Latent space dimension
Fig. 5: Mean Euclidean norm of the error (in logl10 scale) on the

evaluation of the reward function of the reprojected value of each data
trajectory within a training dataset, comparing GPLVM with MI-weighted
GPLVM.

Rvatidation reprojection log-error

—— GPLVM + MI
25 GPLVM

Reprojection log-error

2 3 4 5 6 7 E:] 9
Latent space dimension

Fig. 6: Mean Euclidean norm of the error (in logl10 scale) on the
evaluation of the reward function of the reprojected value of each data
trajectory within a validation dataset, comparing GPLVM with MI-weighted
GPLVM.

estimates the reward function to be evaluated for the latent-
space variables rather than in the original higher-dimensional
space:

R:R°?—R

x — R(x). {17

In order to build the surrogate model for the latent space
reward function, we will rely on a Gaussian Process (see
Sec. [I-B) that uses the latent space variables and their
evaluations.

For learning and improving the trajectories, we will then
use UCB (see Sec. [lI-E) to generate new samples. The UCB
will be using the mean and variance provided by the GP

Algorithm 1

Input:

Trajectory data Tﬁ ,n=1.N,j=1.N¢ [=1..Npor
Demonstrated trajectories rewards R,, n = 1..INV
GPLVM latent space dimension @

ProMPs’ kernel matrix W

1: Compute weights w,, with Eq.(T)

2: Assign Y, «— wy,

3: Compute MI: My = MI(y.4,R),d=1..D

4: Reassign GPLVM input data YM! < Y - diag(M;. p)
5: Perform GPLVM(YM) and obtain X,,

6: Train X-R Regression Model R ~ GP(m(-),k(-,-))
7: Define Search region Qx < RV*@

8: for k = 1..N,,c, do

9: Define UCB(x) = pg—1(X) + kog—1(x)

10: Generate new sample x; = arg max UCB(z)

XEQX

—_—
—_

Project x;, to ¥, with Eq. (3)

12: Execute y;, and evaluate R(¥y(xx))

13: Update f, uk, and o with x; and R(xy)
14: end for

surrogate model. As already mentioned in Sec. [[I'E| UCB
suggests to evaluate points, according to the maximization
of Eq. (TI2), in a certain search space Qx.

Each sample Xgmple in the latent space will be used to
estimate the corresponding value in the higher-dimensional
space y(x) with Eq. (), which will be executed and eval-
uated, giving us the real value of the reward function R
associated with Xgmpie. This new sample, and the associated
reward, will then be added to the surrogate model, that will
be updated, before generating new samples. The process is
repeated until convergence or a certain number of samples
have been executed. Algorithm [I] displays the procedure of
the proposed method, while Fig. [2] shows a more schematic
view.

In this work, the search space {2x has been defined as
the minimum axis-aligned hyperrectangle that contains all
latent data, as suggested in [18]. In order to select candidates,
the exploration parameter x in Eq. (I2) has been fixed
for simplification purposes (x = 1). However, less naive
methods for selecting this parameter can be found, as in
[17], [24].

IV. EXPERIMENTATION

In order to show the performance of the proposed method,
we taught a Barret WAM robot 50 trajectories of feeding a
mannequin (see Fig. [T) with the robot going from one initial
area (start position) to a final position area (mannequin head
position), getting food from random positions on the table.
The trajectories of the robot’s end-effector can be seen in Fig.
As input data, we used the position {x,y, z} of the robot’s
end-effector to represent the trajectory, and 11 Gaussians per
Cartesian dimension, resulting in a 33-dimensional parameter
space. Then, we placed a bowl at a particular position and
we defined a reward function by calculating the Euclidean

01
02 453

0.4

4 g5 :
X, 0.6 -0.5
[mj 07 g8 -06

Fig. 7: Robot trajectories obtained through kinesthetic teaching in the 3D
space. Trajectories start from the left side.

distance between the lowest-height point of each trajectory,
the contact point cp, and the bowl center, which is the
objective point op:

R = —dist(cp, 0p)? (18)

In order to use our proposed method in Algorithm (I} we
initially found the problem that the X-R regression model
was identifying the latent data with both originally demon-
strated motions’ rewards and reprojected samples’ rewards,
with poor results. Therefore, as reprojected trajectories were
similar, we then performed and evaluated the reprojection of
10 out of the 50 original demonstrations, by reprojecting their
associated latent space point to the higher-dimensional space
and evaluating it. Then, we built the reward’s surrogate model
with those 10 resampled motions, and iteratively updated it,
with new samples and evaluations through UCB. The results,
both with the MI weighting on the data for GPLVM and
without it, are shown in Fig. @ where we see there is an
improvement when using MI to correct data.

Moreover, we compared these two methods against a state-
of-the-art policy search algorithm: Relative Entropy Policy
Search (REPS) [25]. REPS’s optimization maximizes the
expected reward of a stochastic policy, subject to obtain-
ing a stochastic policy and keeping the Kullback-Leibler
divergence between the old and new policy bounded by
a certain parameter ex 7. Same scaled Fig. [0 shows that,
while REPS optimizes the trajectory and reaches a similar
long-term reward, we see that it requires more samples than
our proposed method for exy = 0.25,1.0. We could check
that trajectories with a high reward were desirable. In fact,
log,,(—R) > 4 implied millimetric precision.

V. CONCLUSION

In this paper, we have proposed an approach to use
Bayesian optimization-based policy search to optimize robot
motion trajectories with a surrogate model of the reward
function. To this end, we have used GPLVM to reduce
the parameter space of robot movement primitives to a
much lower-dimensional space, e.g., going down from a 33-
dimensional parameter space to a 4-dimensional space. In

Trajectory rewards

6
+ GPLVM + MI
+
. GPLVM e Y
Eae= AT
e BT PR Y
g 4 o +“Nﬁ+ il .
) d oy e o e
—_ 1++
b *os p *
U SRR .
8ol s i
. b
.J.:'\.-‘.] +.-‘+
L
1
[1] 50 100 150 200 250
Number of samples
Fig. 8: Samples and their real rewards (in logl0 scale) with GPLVM

and UCB learning, by using MI weighting and not. The initial 50 samples
shown in green correspond to the training dataset. Note that the first 10
samples are re-sampled demonstrations in order to better fit the surrogate
function.

Trajectory rewards

+ REPSe=1.0
x REPS €=0.25 *
51 T +
- . + + T ;o
+ +
© b TS e i
3¢ e P ey T
[% ¥ + et Tt oW LR
- oy by +xx¥<+ tH +
e+ +
k5 R S L TR R
© s XRX KX T % X X
S PR H &X%W@‘M B oo
& k% X X X XX i&* SV,
g R W
.

0 50 100 150 200 250
Number of samples

Fig. 9: Samples and their real rewards (in log10 scale) with REPS with
two different KL divergence bounds, ek = 0.25 and e€xy, = 1.0. The
initial 50 samples shown in green correspond to the training dataset.

such latent space, optimizing the robot’s policy is much more
sample efficient, resulting in a much faster convergence to
an optimal solution, also thanks to weighting the GPLVM
with the mutual information of each dimension with respect
to the rewards observed. The experimental results provided
show that this optimization method converges much faster
than other state-of-the-art methods, such as REPS.

While the initial latent space may restrict the search
space for the policy learning, the prediction used to obtain
the higher-dimensional variables from the latent space sam-
ples can be perturbed, so that exploration would also take
place outside the initial ()-dimensional latent space, and the
GPLVM could be updated after a certain number of samples.
This is left for future work, as well as other approaches to
adapt UCB to higher-dimensional spaces without sampling
too much on the extremes of the sampling regions. More-
over, we plan to expand this work to make it adaptable to
environmental changes that the robot might perceive, using
GPLVM extensions such as Bayesian GPLVM [26],[27], and
to improve the discussion regarding the advantages of our
approach with respect to other state-of-the-art methods.

REFERENCES

[1] M. P. Deisenroth, G. Neumann and J. Peters, “A survey on Policy Search
for Robotics". Foundations and Trends in Robotics, vol 2, pp 1-142,
2013.

[2] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J. B.
Mouret, "A survey on policy search algorithms for learning robot
controllers in a handful of trials". arXiv preprint arXiv:1807.02303,
2018.

[3] M. Deisenroth and C. E. Rasmussen. "PILCO: A model-based and
data-efficient approach to policy search". Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465-472,
2011.

[4] K. Chatzilygeroudis, R. Rama, R. Kaushik, D. Goepp, V. Vassiliades
and J. B. Mouret, "Black-box data-efficient policy search for robotics".
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 51-58, 2017.

[5] S. Bitzer and S. Vijayakumar, “Latent spaces for dynamic movement
primitives." IEEE-RAS Int. Conf. on Humanoid Robots, pp. 574 - 581,
20009.

[6] A. Colomé and C. Torras. "Dimensionality reduction for dynamic
movement primitives and application to bimanual manipulation of
clothes". IEEE Transactions on Robotics, vol. 34, no .3, pp. 602-615,
2018.

[71 A. Colomé, G. Neumann, J. Peters and C. Torras. "Dimensionality
reduction for probabilistic movement primitives", IEEE-RAS Humanoid
Robots, pp. 794-800, 2014.

[8] K.S. Luck, G. Neumann, E. Berger, J. Peters, and H. Ben Amor, "Latent
space policy search for robotics.” IEEE/RSJ Int. Conf. on Intelligent
Robots (IROS), pp. 1434-1440, 2014.

[9] A. Sadamani, A. Ghodsi, D. Kulic, "Discriminative funcitonal analysis
of human movements." Pattern Recognition Letters, vol. 34, pp. 1829-
1839, 2013.

[10] G. Averta, C. Della Santina, E. Battaglia, F. Felici, M, Bianchi,
and A. Bicchi, "Unvealing the principal modes of human upper limb
movements through functional analysis". Frontiers in Robotics and Al,
4:37, 2017.

[11] N. Coffey, A. Harrison, O. Donoghue and K. Hayes, "Common
functional principal components analysis: A new approach to analyzing
human movement data". Human movement science, vol. 30, pp. 1144-
1166, 2011.

[12] W. Dai, "FPCA Based Human-like Trajectory Generating". 2013

[13] N. Lawrence, "Probabilistic non-linear principal component analysis
with Gaussian process latent variable models", Journal of machine
learning research, vol. 6, no. Nov, pp. 1783-1816, 2005.

[14] L. F. Kozachenko, N. N. Leonenko, “Sample Estimate of the Entropy
of a Random Vector”, Probl. Peredachi Inf., vol. 23, no. 2 pp. 9-16,
1987.

[15] A. Paraschos, G Neumann, C. Daniel, and J. Peters, ‘“Probabilistic
movement primitives". In Advances in NIPS, pp. 2616-2624, 2013.
[16] C. E. Rasmussen and C. K. I. Williams, "Gaussian Processes for

Machine Learning", the MIT Press, 2006. ISBN 026218253X.

[17] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, "Gaussian process
optimization in the bandit setting: no regret and experimental design"
International Conference on Machine Learning (ICML), pp 1015-1022,
2010.

[18] E. Brochu, V. M. Cora, N. de Freitas, "A Tutorial on Bayesian Opti-
mization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning", arXiv preprint
arXiv:1012.2599, 2010.

[19] A. Kraskov, H. Stogbauer, and P. Grassberger. "Estimating Mutual
Information", Physical Review E, no. 69, 066138, 2004.

[20] J. Mockus. "Application of Bayesian approach to numerical methods
of global and stochastic optimization", Journal of Global Optimization,
vol. 4, no. 4, pp. 347-365, 1994.

[21] P. Hennig and C.J. Schuler. "Entropy search for information-efficient
global optimization", Journal of Machine Learning Research, vol. 13,
no. Jun, pp.1809-1837, 2012.

[22] A. Colomé and C. Torras. "Dimensionality reduction in learning Gaus-
sian mixture models of movement primitives for contextualized action
selection and adaptation”, IEEE Robotics and Automation Letters, vol.
3, no. 4, pp. 3922-3929, 2018.

[23] N. Lawrence, "Gaussian Process Latent Variable Models for Visu-
alisation of High Dimensional" International Conference on Neural
Information Processing Systems, 2004.

[24] S. Griinewdlder, J.-Y. Audibert, M. Opper and J. Shawe-Taylor,
"Regret Bounds for Gaussian Process Bandit Problems". Journal of
Machine Learning Research, no 9. pp 273-280, 2010.

[25] J. Peters, K. Miilling and Y. Altiin, "Relative Entropy Policy Search".
National Conf. on Artificial Intelligence, track 15, pp. 182-189, 2011.

[26] P. Li, S. Chen, "A review on Gaussian Process Latent Variable
Models". CAAI Transactions on Intelligence Technology, vol. 1, no.
4, pp. 366-376, 2016.

[27] M. K. Titsias, N. D. Lawrence, "Bayesian Gaussian Process Latent
Variable Model". International Conference on Artificial Intelligence and
Statistics, vol. 9 of IMLR:W&CP 9, 2010.

	Introduction
	Preliminaries
	Probabilistic Movement Primitives
	Gaussian Processes
	Gaussian Process Latent Variable Models
	Mutual Information
	Bayesian Optimization and Upper Confidence Bound

	Learning in latent spaces through GPLVM
	Experimentation
	Conclusion
	References

