
Noname manuscript No.
(will be inserted by the editor)

Short-Term Human-Robot Interaction Adaptability in
Real-world Environments

Antonio Andriella1, Carme Torras and Guillem Alenyà
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Abstract In recent years there has been an increasing

interest in deploying robotic systems in public environ-

ments able to effectively interact with people. To prop-

erly work in the wild, such systems should be robust and

be able to deal with complex and unpredictable events

that seldom happen in controlled laboratory conditions.

Moreover, having to deal with untrained users adds fur-

ther complexity to the problem and makes the task of

defining effective interactions especially difficult.

In this work, a Cognitive System that relies on plan-

ning is extended with adaptive capabilities and embed-

ded in a Tiago robot. The result is a system able to

help a person to complete a predefined game by offer-

ing various degrees of assistance. The robot may decide

to change the level of assistance depending on factors

such as the state of the game or the user performance

at a given time. We conducted two days of experiments

during a public fair. We selected random users to in-

teract with the robot and only for one time. We show

that, despite the short-term nature of human-robot in-

teractions, the robot can effectively adapt its way of

providing help, leading to better user performances as

compared to a robot not providing this degree of flexi-

bility.
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Fig. 1: Example of participant playing the Nobel Prize

Winner Puzzle game.

1 Introduction

Nowadays, Human-Robot Interaction (HRI) can be con-

sidered one of the major open research areas in the

Robotics field. HRI is essential for the upcoming gener-

ation of robots that will have to directly interact with

people, assistive and social robots [6] among them.

Robots will be programmed to assist the elderly or

people with disabilities [21], support military forces in

search-and-rescue missions [17] or perform services in

social environments [1].

The latest advances concerning robots in real-world

environments have brought a series of challenges to be

faced. In fact, taking robots out from the laboratory

ecosystem is a complex task as it introduces new prob-

lems related to unpredictable scenarios [11] where it is

necessary for the machines to act autonomously and

irrespective of changes in their surroundings [23]. The

minimal requirements for a robot to be interesting and
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accepted as useful is to be able to catch the users’ at-

tention and to behave in a way that can be easily in-

terpreted. It has to be robust to deal with a number of

unexpected events and, as an essential and not nego-

tiable characteristic, it has to act safely and in a reas-

suring manner. Alongside with those, a system of this

kind must aim for the highest level of flexibility, adapt-

ability, modularity and re-programmability.

A fundamental requirement for robots that need

to interact shortly with many different people is quick

adaptation. Long-term HRI (LTHRI) focuses on social

robots able to interact with the same person over long

periods of time to effect persistent behavioural changes.

In contrast, here we are concerned with short-term HRI

(STHRI) focusing on social robots interacting with new

individuals all the time without prior information about

them. STHRI can be applied in several contexts where

the robot could assume different roles such as reception-

ist, shopping assistant, tour guide or, like in our case,

helper while playing a game.

We define the main aspects of STHRI in our context

following [24]:

– the user does not have any training on how to in-

teract with the robot and he/she is not fully aware

of the robot capabilities;

– each session of interaction involves a different user

(with different age, background, personality, etc);

– in each session, the robot starts learning from scratch

and adapts to that user over time;

– interactions must be effective, i.e., help the user to

complete the game.

In this paper, we present the results of a two-day ex-

periment at the Barcelona Maker Faire 2018 1. Regard-

ing the set-up, each participant visiting our booth was

asked to play a puzzle game, consisting of composing

the name of a Nobel Prize Winner with the assistance

of the robot (see Fig. 1). The game was designed to be

ambiguous enough to require assistance in order to be

solved. For each user, we measured not only the time to

complete the game but also the partial reaction time for

each token to be placed. Finally, a post-questionnaire

was administered to the user to evaluate his/her overall

experience during the game.

Concerning STHRI, we introduced a Cognitive Sys-

tem embedded in a robot able to provide encourage-

ment and several levels of assistance to help the user

during the game. The Cognitive System, enhanced with

an adaptive module is able to adapt to the tracked

user behaviour and, at each stage of the game, select

the most suitable assistive action. In parallel, a safety

checker analyzes every unsafe gesture undertaken by

1 https://barcelona.makerfaire.com/

the user and eventually reacts on it to ensure that no

physical contact with the robot occurs.

In the STHRI context, we address the following re-

search question:

– Can a robot rapidly adapt to a specific user be-

haviour and have an impact on his/her overall per-

formance?

Proposing an answer to this question could con-

tribute to clarify the role of assistive robots for improv-

ing users’ performance in cognitive training exercises,

especially in situations in which the robot has no prior

information about the user and the number of interac-

tions is limited.

This work has been carried out in the framework

of the European Project SOCRATES 2, which focuses

on Robotics in Eldercare. The project aims to address

the issues related to Interaction Quality [5] (IQ) in So-

cial Robotics. Our role in the project is to develop a

Cognitive System embedded in a robot that can be

employed by a caregiver to administer cognitive exer-

cises to people affected by Mild Cognitive Impairment

or Alzheimer’s Disease, adapting the kind of assistance

to the individual user’s needs. For this purpose, as an

interim stage before experimenting the robot with el-

derly people and patients, we decided to validate our

Cognitive System in a real-world environment. At the

same time, there is the need to investigate whether the

robot could meet the users’ expectations. This kind of

context is undoubtedly more complex and challenging

than the laboratory one and it has been chosen as a test

scenario so as to expose the robot to untrained and non-

technical participants, who can offer valuable feedback

and potentially highlight the weaknesses of the system.

2 Related Work

Deploying robot applications in public spaces is still

a challenging task. However, there are some relevant

examples in literature of a robotic platform acting in a

museum, an exhibition hall, a shopping mall and so on.

Chen et al. [9] present a shopping mall service robot,

called Kejia, which is designed for customers guidance,

providing information and entertainment in a real en-

vironment. Kanda et al. [18] develop a robotic guide

for a shopping mall, designed to interact with people

and provide shopping information. Bennewitz et al. [4]

present a robotic system, called Alpha, that makes use

of visual perception, sound source localisation, and speech

recognition, to detect, track and interact with potential

users. Tonkin et al. [27] conduct experiments to validate

2 http://www.socrates-project.eu/

https://barcelona.makerfaire.com/
http://www.socrates-project.eu/


Short-Term Human-Robot Interaction Adaptability in Real-world Environments 3

a robot system in a shopping centre. In their work, they

compare the performance of a robot and a human in

promoting food samples and analyse the effects of the

type of engagement used to achieve this goal.

With the aforementioned works, we share the idea of

validating the robot in real-world environments, where

it could be more exposed to unexpected events and to

a wide variety of users. Contrarily to those works, we

consider the robot as a social companion that provides

assistance for completing a cognitive task rather than

as a tool providing a service.

The majority of works on social assistive robots

(SAR) employed for task learning and training use tech-

niques that require the acquisition of a quite large amount

of data in order to start providing the desired behaviour.

Tsiakas et al. [28] propose a framework based on In-

teractive Reinforcement Learning (IRL) that combines

task performance and engagement to achieve personal-

ization in the context of cognitive training. The robot is

able to select the type of feedback most tailored to the

user to assist him/her to complete the game. Gao et

al. [13] present a robot tutor to assist users in com-

pleting a grid-based logic puzzle. The Reinforcement

Learning (RL) framework presented allows the robot

to select verbal supportive behaviours to maximise the

user’s task performance and positive attitude during

the game. The generation of the appropriate robot be-

haviour for the user is selected using a Multi-Armed

Bandit (MAB) approach. Leite et al. [20] present an em-

pathic social robot that aims to interact with children

in the context of a chess game scenario. Although they

focus on long-term interaction, while we are interested

in short-term one, their system is able to provide differ-

ent levels of assistance based on the user’s positive or

negative valence of feeling. In their work they use one of

the MAB algorithms to define which strategy that max-

imises the reward, has to be selected. Hemminghaus et

al. [15] explore how a social robot can learn and adapt

from a task-oriented interaction with a user, through

different social behaviours. The approach based on RL

is implemented in a memory game scenario, in which

the Furhat robot assists the user in guiding his at-

tention. Gordon et al. [14] present a Tega robot able

to provide personalised tutoring to children learning a

second language through gaming on a tablet. Children’

valence and engagement are combined into a reward

signal used by a RL algorithm that selects personalised

motivation strategies for a given user. Chan et al. [8]

developed a robot called Brian 2.0, which is able to act

as a social motivator providing assistance, encourage-

ment and celebration in a memory game scenario. The

adaptive behaviour of Brian is based on a Hierarchical

Reinforcement Learning (HRL) technique that provides

the robot with the ability to adapt to new people and

learn assistive behaviours.

In line with the aforementioned works, we believe in

the potential employment of a robotic system for cog-

nitive training, stimulation and learning. However, the

presented approaches based on RL algorithms don’t fit

our requirements. RL usually requires a considerable

amount of data before converging to a reasonable solu-

tion. In our context, the number of possible interactions

is not enough to be used in an RL framework, so a dif-

ferent approach needs to be evaluated. To deal with

that, we propose to use planning to model HRI. Using

planning, we are able to embed our own adaptive func-

tion directly in the planner cost function and provide

effective adaptability already from the first interactions.

An interesting approach that doesn’t require a large

amount of data is introduced by Tapus et al. [25]. In

their work, they present an adaptive robotic system

that provides personalised assistance through encour-

agements and companionship to individuals suffering

from Mild Dementia (MD) and Alzheimer’s Disease (AD)

while they are playing a song-discovery game.

Although in the current paper our Cognitive System

interacts with the general public, our final goal is to

have an experienced and robust system able to provide

cognitive training to patients suffering from MD and

AD. Inspired by the system presented in [25], we take

into account in our adaptive algorithm not only the

reaction time and the number of mistakes but also the

levels of assistance provided and the game complexity.

Differently from their system, we don’t run a supervised

learning process to calibrate the levels of assistance for

a given user; we learn this information directly during

the interactions with the user. Moreover, the levels of

assistance we developed are more complex (we combine

speech with more complex robot motions) and different

in that the game we propose is a board game.

Differing from the related work presented so far,

here we are interested in STHRI. One approach to deal

with STHRI is to use automated planning to manage

the interactions between the robot and the user. Us-

ing planning has several advantages in compactness of

the representation and correctness of the solution pro-

vided in a given state. There are few works that use

planning for modelling HRI. For example, a Human-

Aware Planning is presented by Tomic et al. [26]. The

system permits modelling and planning with social con-

straints. In the same direction is the work of Nardi et

al. [22] where the returned plan is modified such that

social norms expressed as rules can be satisfied. A rele-

vant paper on planning is presented by Alami et al. [2].

They develop a robotic framework that has the ability

to manage the interaction with a human, which means
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Fig. 2: Architecture of the proposed Cognitive System.

not only it is able to accomplish its task but also to

produce behaviour that supports engagement with the

user. To do so, they integrate the management of hu-

man interaction as part of the robot architecture. Lalle-

ment et al. [19] present a Human Aware Task Planner

(HATP), which is based on hierarchical task planning.

According to [19], HATP offers a user-friendly domain

representation language inspired by popular program-

ming languages, offering the possibility to even be used

by people with no specific skills in automated planning.

An interesting work on the usage of planning for STHRI

is the one presented by Sanelli et al. [24]. In their pa-

per, they describe a method and an implementation of

a robotic system using conditional planning for gener-

ating short-term interactions by a robot deployed in a

public space.

Although we decided to use classical planning with-

out including directly the user’s actions in the domain,

we share with [24] the idea of using planning for mod-

elling STHRI, since we consider it is an effective ap-

proach to deal with non-expert, untrained users.

3 System Platform Design

In this section, we introduce the Cognitive System, a

framework that is embodied in a robot, which is able

to perceive, adapt and react to user behaviour. The

architecture is presented in Fig. 2. As it is shown, there

are three main layers.

– Perception layer: it is responsible to provide the

Cognitive System with the information regarding

the game state, detecting and recognizing the to-

kens on the board, and the user actions by tracking

his/her hands during the game.

– Behaviour layer: it is the core layer that man-

ages the information coming from the perception

layer. The perceived environment is translated into

a symbolic representation that is used to model HRI

through high-level planning. This layer contains the

Adaptive Module that selects the most suited ac-

tion of assistance for a given user based on their

performance and the game state. Moreover, a Safety

Checker is implemented to react to unexpected un-

safe user actions.

– Robotic layer: it is the lowest level in charge of

translating the planner dispatched actions into low-

level motions of the robot combined eventually with

speech.

3.1 Perception Layer

The perception system is based on an RGB-D camera

together with algorithms to monitor in real-time the

state of the board and the user’s hands movements.

The board state is defined as a set {L1, L2, ..., L20}
where each location Li might contain a token k. Each

token k is labelled with a given letter ( where k ∈
{A,B,C,D,E,G, I,O,R,U}).

The token shape is detected using Circle Hough

Transform (CHT) [29]. The main idea behind this tech-

nique is to find circles in imperfect image input based

on a “voting” in the Hough parameter space and then

select the local maxima. Once a token is detected, we

use an Adaptive Template-Matching algorithm to rec-

ognize the different letters. This technique provides an

acceptable trade-off between speed and accuracy and it

is robust to changes in orientation, which is the most

frequent issue that can occur in our scenario. The devel-

oped algorithm doesn’t tackle the problem that could

arise if tokens appeared at different scales, since the

distance between the camera and the board is fixed.

The user’s hand movement is detected using the

depth sensor of the RGB-D camera. To simplify percep-

tion, the camera is placed on top looking downwards.

Thus, with a simple threshold on the depth we can re-

move the background (board, tokens, and everything

else below them). In this way, we can define a shape

detector with a few geometrical features in order to de-

tect an arm and a hand. This kind of scenario reduces a

lot the possibility of getting false positives (see Fig. 1).

First, because of the way the camera is oriented. Sec-

ond, because naturally only hands or arms are going to

enter the workspace. Nonetheless, false positives due to

other detected shapes, noise generated from the inaccu-

racy of the camera, and spots are detected and removed
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with a simple filter based on size and shape.

3.2 Behavioural Layer

The behavioural layer is the core of our framework. In

our previous work [3], we already demonstrated the pos-

sibility of modelling an HRI problem using the Planning

Domain Definition Language (PDDL 2.1 [12]). In that

work, FF-Metric [16] was used as planner and evaluated

to manage the interactions between the robot and the

user. Here we use the same logic formalism (PDDL) to

define the entire game domain. PDDL can be consid-

ered a standard language for encoding classical plan-

ning tasks. To automate the planning process we used

ROSPlan [7]. This framework supports PDDL activity

planning, consisting of a domain defining the actions

used for planning, and a problem file that contains a

description of the initial state and goal(s) of the plan.

ROSPlan supports different planning solvers, here we

use the temporal planner POPF [10]. The Adaptive

Module is integrated into ROSPlan and provides rea-

soning capabilities to the entire framework. The Plan-

ner is able to select, given the current representation of

the state (user actions history and status of the game),

the most suitable action of assistance. Since the prob-

lem of finding the most adequate action is modelled as

an optimisation problem, at each step t of the game,

the POPF planner looks for the path with the mini-

mum cost.

The cost A′(s) of performing the action of assistance

s is defined as:

A′(s)← A(s) + α · [C(s)+ γ ·R(s)−A(s)] (1)

where A(s) is the cost at the previous iteration, C(s)

is the total time cost, including the time to perform an

action of assistance by the robot, the reaction time of

the user and eventually the time to move back a token

to its initial location by the robot, and the γ and α

parameters are useful to tune the algorithm action’s

selection. The γ value defines how much significance

is assigned to the outcome of the action of assistance

s at a given step. If this parameter is close to 0 then

the system will consider mainly the global cost C(s)

while if it is close to 1 then the system will give more

importance to the outcomes of the previous actions in

the estimation of the next state. The α value defines

to which extent the newly acquired information will

replace the previous one. If this parameter is close to

0 then the system will use very little the information

about the previous actions s, while if α factor is close

to 1, it would make the system to consider the most the

recent actions.

A key role is played by the reward function R(s),

which defines the amount of reward or penalty given to

an action of assistance s after a user performs a move.

R(s) can be seen as a reward in the case the user per-

forms the correct move or, on the contrary, as a penalty

in the case the user makes the wrong move. This func-

tion balances the reward/penalty keeping into account

the current game difficulty and the level of assistance

provided. To gain a better intuition of R(s) we can con-

sider two different scenarios.

In the first scenario, we consider the case in which

the user is at the very early stages of the game, we sup-

pose the robot provides the user with encouragement

(Level 1 Table 1), and then he moves the correct to-

ken. In this case, his reward will be considerably high,

considering the complexity of the game (maximum at

the very beginning) and the lowest level of assistance

provided. On the contrary, if the user makes a mistake

he will not be penalized so much, since in the very early

stages a mistake can be acceptable.

In the second scenario, we consider the case in which

the user is at the very final stages of the game, suppose

the robot provides the user with a suggestion (Level 2

of Table 1), and then he moves the correct token. In

this case, his reward will be quite small considering the

complexity of the game (easy at the very end) and the

level of assistance provided. On the contrary, if the user

moves the wrong token, the penalization will be quite

high since now the game is easier and the assistance

provided enough for the user to succeed.

It is important to highlight that the Adaptive Mod-

ule does not have any prior knowledge of the user and

it can start from the level of assistance defined by the

experimenter. In that specific context, we set it up to

the intermediate level (Level 2 of Table 1). During the

interactions with the user, the robot learns from his

behaviour which actions are really effective for his per-

formance and uses them to assist him.

In addition to the Adaptive Module, a Safety Checker

has been included into the behavioural layer to guar-

antee that all the actions executed by the robot will

be safe for the user. Using the information from the

perception layer, hands are detected and tracked when

the robot is moving. As soon as the hands are detected

in the workspace of the robot, it requests the user to

remove them such that its actions can be executed with-

out the risk to hit him. The robot will first attempt to

persuade the user to have a more safe attitude but if he

still keeps on his unsafe behaviour during the interac-

tions, it can decide to stop the game and ask the exper-

imenter to intervene. For the sake of completeness, we

included this module since we are working on a more

general Cognitive System that will interact with older
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Voice /
Gesture

Assistance
Level

Robot
Interaction

Example of behaviour

Verbal Instruction

Hello, I’m SOCRATES. We will play the game together.
The goal is to compose the name of a Nobel Prize Winner of 5 letters.
I can provide you assistance so don’t worry
if you don’t move the correct token
Let’s start!

Verbal 1 Neutral It’s your turn, please move one of the tokens on the board!
Verbal 1 Encouragement Hey! Remember you have to compose a word of 5 letters!
Verbal 1 Encouragement Hey! The solution is the name of a very well know Nobel Prize Winner!

Both 2 Suggest subset
Hey, I will give you a hint: the solution can be one of these C, R, E.
Try to move one of these tokens!

Both 2 Suggest subset
Hey, try to follow my hand. The solution can be one of these ....
Pick one of these tokens!

Both 2 Suggest subset
Hey, keep in account my suggestions ...
Try one of these tokens C, R, E.
Please move the token in the correct position!

Both 3 Suggest solution
Hey the correct letter is this one ...
Please move the token in the correct position

Both 3 Fully assistive
The correct letter is this one ....
Please pick the token I’m offering you and move in the correct position

Verbal Correct move Congratulations, you have made a successful move.

Both Wrong move
You didn’t move the correct token but don’t worry I will move it back
and I will assist you again

Table 1: Robot’s levels of assistance.

adults with mental impairments. In this specific con-

text, during the experiments, the Safety Checker has

never stopped the robot actions since the participants

understood the robot actions timing and the risks that

can arise from the contact with the robot.

3.3 Robotics Layer

PDDL actions are mapped directly to ROSPlan action

components that refine the actions into low-level com-
mands. This layer is responsible for the low-level actions

of the robot. It implements the speech and the gestures

related to the assistive actions. As reported in Table 1,

the actions of assistance that the robot can provide to

the user during the interactions are:

1. Level 1 (only speech):

Neutral: the robot tells the user that it is his turn.

Encouragement: the robot tries to provide hints in

order for the user to perform the correct move.

2. Level 2 (speech with gestures):

Suggest subset: The robot combining voice and ges-

tures points to an area of the board where the cor-

rect token is. By default, the number of tokens cov-

ered by this action is three. In Fig. 3a, the robot

suggests a subset of solutions. Here the correct to-

ken is “U” and the robot moves its arm horizontally

from left to right on letters “G” “U” and “B”.

3. Level 3 (speech with gestures):

Suggest solution: Combing voice and gestures, the

robot points to the exact location where the correct

token is. In Fig. 3b, the robot points with its arm

in the direction of the correct token “I”.

Fully assistive: The robot picks the correct token

and offers it to the user. In Fig. 3c, the robot tells

the user that it will pick the correct token (“A” in

this case) and will offer it to him.

As it is possible to note in Table 1, the robot has

different ways of applying the same level of assistance.

Once a level has been selected, the robot randomly se-

lects one of the alternatives. We envisage, for long-term

experiments, to gather user preferences and use them

for the selection.

Besides the assistive actions, the robot can greet the

user if a correct move has been performed, or move the

token back to its original location if the performed move

is incorrect, as reported in the last two rows of Table 1.

4 Research Questions and Hypotheses

In this study, we are interested in evaluating whether

and to which extent an adaptive robot would affect the

participants’ performance and their overall experience

while they are playing a puzzle board game. We ex-

plore how the participants perceive the robot and how

the selected robot’s actions of assistance are suited to

a user, given a state of the game. Moreover, we aim

to validate how the robot can adapt not only to differ-

ent users but also based on the game complexity. As
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(a) (b)

(c)

Fig. 3: Example of robot’s assistive actions. In Fig. 3a, the robot suggests a subset of solutions, moving its arm

horizontally pointing over the tokens. In Fig. 3b, the robot suggests where the correct token is, pointing its arm

in the direction of the token. In Fig. 3c, the robot picks the correct token and offers it to the user.

secondary research questions, we are interested in: i)

evaluating the impact of interaction modalities on user

performance, ii) comparing the performance of people

of different ages and background. In order to evaluate

our research questions, we test the following hypotheses

in an experimental setting created in an international

fair in an uncontrolled environment with untrained peo-

ple:

– Hypothesis 1: Participants that will receive assis-

tance from an adaptive robot will perform better

than participants that don’t.

– Hypothesis 2: In a very noisy environment, the

multi-modality of the robot’s interaction has an im-

pact. Participants not equipped with an external

headset will perform worse from the ones that re-

ceived speech assistance via a headset device.

– Hypothesis 3: Participants with engineering and

HRI background can perform better that partici-

pants with a different background.

– Hypothesis 4: Younger participants can perform

faster than older ones.

Fig. 4: The three actors involved in the experiments:

the Tiago robot, the experimenter and a participant.

5 Experimental Design

5.1 Game Design: Puzzle Game

The Nobel Prize Winner puzzle game consists of a board

of 20 cells and 10 tokens, each with a different letter as

shown in Fig. 1. The tokens are randomly located in the

last two rows of the board. The objective of the game is

to compose a 5-letter Nobel Prize Winner name using
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Gender Female Male
# participants 11 18

Background Both Engineering HRI Others
# participants 3 5 7 14

Age 18-25 26-30 31-35 36-40 41-50 51-60
# participants 4 3 3 5 7 7

Table 2: Information about the participants involved in the experiment.

Yes No
Did you encounter a similar game before? 6 23

Did you participate in similar robot experiments before? 3 26

Table 3: Summary table of the pre-questionnaire.

all the tokens available on the board while making as

fewest mistakes as possible and minimizing the robot

intervention. In each turn, the user chooses one of the

letters and places it on one of the squares available in

the first row where the name has to be composed. The

name needs to be formed sequentially, starting from the

first letter. If the tokens are placed correctly, the robot

greets the user and lets her/him continue. Otherwise, it

picks the wrongly placed token and moves it back to its

initial location while giving the user additional assis-

tance. Then the participant shall have another chance

to complete the task. For each user’s attempt, only one

hint at a time is provided by the robot. In our scenario,

there are only two possible solutions: Curie and Dirac.

The maximum number of attempts available for each

token is 4. If the participant fails for the fourth time,

the robot then moves the correct token on her/his be-

half. To speed up interactions and shorten the game

duration, the robot will provide further assistance if

the user performs no actions within 15 s.

For each game session, we store in a database the

total number of mistakes and the elapsed time. On top

of that, for each token we record the number of at-

tempts and the user’s reaction time, that is, the time

needed for the user to pick a token and place it on a

different square. The game has been designed with the

adequate complexity to require assistance for its resolu-

tion. The degree of complexity comes mostly from the

10 letters available, which generate ambiguity on the

word to compose. Other factors that make the game

more challenging are the names to guess (CURIE or

DIRAC), which are not so popular for the general pub-

lic, and the fact that there was only one possible so-

lution for the task (one of the two Nobel Prize names

was set by the experimenter as the goal for each partic-

ular session). In other words, the chance for the user to

select the correct token without any help is very low,

especially at the very early stages.

5.2 Participants Analysis

The study was conducted during the MakerFaire 2018

in Barcelona, an event for makers, scientific and tech-

nological research groups and companies to promote

interaction among people of different areas and inte-

gration of Science and Technology. We were assigned

a booth where we set up our scenario as shown in

Fig. 4. The attendees varied greatly in their age (a

lot of middle age people and a considerable number

of young people were present, as reported in Table 2).

Most people spoke Spanish with a small representation

from other European countries. 40 participants played

the Puzzle game with the robot. From the total num-

ber of experiments, only 29 are reported in this study.

Among the 11 that were excluded, in 4 cases the par-

ticipants decided to quit before the end of the game

and in other 7 cases there were problems related to the

robotic platform. Pre-questionnaires were distributed

among all participants in order to understand whether

they had or not any prior experience with this kind of

experiments, specifically with robotic systems. The re-

port is shown in Table 3. Participants were recruited in

accordance with the goal of our study (see Sec. 4), keep-

ing numbers balanced based on age and background.

As we expected, the variance between the partici-

pants is quite high and we can consider the population

participating in the experiment a representative sample

to validate our system.

5.3 Procedure

The experiments were conducted in a booth with un-

controlled light conditions and in a noisy environment

where hundreds of visitors were wondering around. Upon

arrival, each participant was welcomed by the experi-

menter, who provided her/him with the basic guide-
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lines. Each participant was requested to fill out an in-

formed consent form. Next, the experimenter explained

the objective of the game and the kind of movements

the robot was able to perform without going into de-

tails. They were told to respect any robot’s delay, such

as the time waiting for each move, feedback and, where

appropriate, assistance. Furthermore, the participants

were requested to complete the game with the lowest

number of mistakes possible while minimizing their re-

action time for each move.

Next, participants were asked to sit at a table with

a board on top already setup to start the game (see

Fig. 1). A Tiago robot was placed opposite to them

and they were told it would take care of providing in-

formation about the game. The entire game session was

filmed as the participants had already allowed their ses-

sion to be recorded in video.

5.4 Post-Experiment Questionnaire Analysis

After each session, we asked the participant to fill in a

questionnaire about their perceived interaction with the

robot. The questionnaire contains the following ques-

tions:

– Interacting with the robot in the game was likeable

– Interacting with the robot in the game was distract-

ful

– Interacting with the robot in the game was comfort-

able

– Interacting with the robot in the game was useful

– Which modality have you preferred the most?

The objective of those questions was to evaluate the

overall experience of the user during the game. All ques-

tionnaire measures are on a 6-point scale
{
Strongly Dis-

agree (1), Disagree (2), Somewhat Disagree (3), Some-

what Agree (4), Agree (5), Strongly Agree (6)
}
.

6 Experimental Conditions

In this section, we define under which conditions the

experiments have been conducted.

In order to keep under control the possible impact

on the user’s performance of the tokens’ initial loca-

tions, we decided to use always the same initial tokens

distribution. As it can be observed in Fig. 1 the se-

quence of the tokens is as follows: “G”, “A”, “U”, “B”,

“E” (third row),“C” “D” “I” “O” “R” (fourth row).

In this way, the initial conditions are identical for all

participants.

Between subjects, we changed three variables: i) robot

adaptability, ii) robot speech setting, and iii) game so-

lution.

In NO ADAPTABILITY condition, a group of par-

ticipants plays the game with a robot that provides

always a constant level of assistance (Level 2, see Ta-

ble 1). In contrast, in ADAPTABILITY condition, a

group of participants plays with an adaptive robot that

selects assistance using Eq. 1.

In NO HEADSET condition, a group of participants

plays the game with no external support for listening to

the robot voice. In contrast, in WITH HEADSET con-

dition, a group of participants plays the game wearing

a headset to better understand the robot instructions.

Finally, in GAME SOLUTION condition, the par-

ticipants can play the game with two possible outcomes.

In the first case, the solution is “CURIE” while in the

other case the solution is “DIRAC”. More details on

how these conditions are evaluated, will be provided in

Sec. 7.

7 Experimental Results

In this section, we summarize and analyze the results of

the experiments so as to address the research questions

presented in Sec. 4.

We performed two experiments. In the first one (Sec.

7.1), the goal was to validate our main research ques-

tion, that is, whether and to which extent an adaptive

robot could affect the users’ performance. In the second

one, we tackled hypothesis 2 (Sec. 7.2), that is, evalu-

ate how interaction modalities could affect the users’

performance in an extremely noisy environment. Using

the data collected in the first experiment, we also at-

tempted to address the other remaining hypotheses: i)

establishing if having a background in Engineering/HRI

turned out in better performance (Sec. 7.3) and ii) eval-

uating if and how younger subjects could complete the

game faster than older subjects (Sec. 7.4).

7.1 Hypothesis 1: Participants that receive

assistance from an adaptive robot will perform better

than participants that receive assistance from a

non-adaptive robot.

The fist experiment was designed to evaluate the robot’s

adaptability (ADAPTABILITY/NO ADAPTABILITY

condition).

We recruited 24 participants and split them into

two groups. In the first group, namely A, 12 partici-

pants played the game in which the solution was CURIE
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Group #Participants Solution Adaptability Headset
A1 6 Curie NO YES
A2 6 Curie YES YES
B1 6 Dirac NO YES
B2 6 Dirac YES YES

Table 4: Groups setting for Hypothesis 1

(GAME SOLUTION condition). Similarly, in the sec-

ond group, namely B, 12 participants played the game

in which the solution was DIRAC (GAME SOLUTION

condition). All participants were wearing headset to

better listen to the robot instructions (WITH HEAD-

SET condition). The groups setting is reported in Ta-

ble 4.

In order to have a baseline for comparing results, we

additionally split groups A and B respectively into two

sub-groups (see Table 4). Groups A1 and B1 interacted

with a robot which provided always the same level of as-

sistance (Level 2 of Table 1), regardless on the user per-

formance (NO ADAPTABILITY condition). Instead,

groups A2 and B2 interacted with a robot which was

enhanced with adaptive capabilities (ADAPTABILITY

condition), as presented in Sec. 3.2. In this case, the

robot is able to shape its behaviour around the user’s re-

sponses, by altering dynamically the level of assistance.

The objective was to compare the results in terms of hu-

man performances between groups A1/B1 and A2/B2,

specifically, reaction time and percentage of mistakes

for each move.

Fig. 5a shows results in terms of average reaction

time for each correct move of group A1 mean reaction

time 10.88 s) and A2 (mean reaction time 6.22 s) while

in Fig. 5c results on the average percentage of mistakes

are shown for the same groups (A1 mean percentage

of mistakes 46% and A2 mean percentage of mistakes

21.38%). Participants of Group A2 performed better

on each single move (average reaction time and average

percentage of mistakes) and completed the game in less

time compared to group A1. For our initial hypothesis

to be valid, we need to demonstrate that the variation

in reaction time for each move between the two groups

is significant and it is due to the different levels of assis-

tance provided by the robot rather than to randomness.

To do so, we perform the ANOVA analysis since data

are normally distributed (Shapiro-Wilk test p=0.954).

The result obtained in this case for a significance level

of α= 0.05 is F0.05[1, 10] = 4.96 and p=0.025. Thus, our

hypothesis is validated by the results.

Figs. 5b and 5d show the results for group B1 (mean

reaction time 10.62 s and mean percentage of mistakes

46%) and B2 (mean reaction time 8.74 s and mean per-

centage of mistakes 33.25%). The same considerations

are valid here. The results collected during the interac-

tion with the robot, in terms of reaction time, are again

validating our hypothesis: for α=0.05, F0.05[1, 10] =

4.96, p=0.05 (Shapiro-Wilk test p=0.8851). We can con-

clude that an adaptive robot can be effective with game

scenarios where complexity forces users to require as-

sistance to complete the game successfully.

In Fig. 6 we report the analysis on the average per-

centage of times a level of assistance has been provided

to the user in order to move the correct token. It is

worth noticing that if a move does not appear on one

of the levels, it means that the robot has not provided

that level of assistance for that token. An interesting

trend observable in the plots in Fig. 5a and Fig. 5b is

that the average user reaction time for the third token

(group A2) and the fourth token (group B2), respec-

tively is higher than we expected.

For the participants in group A2 the same behaviour

is visible with letter “R”. We envisage that this can be

due to a reducing level of assistance provided by the

robot. As it can be observed in Fig. 6a with the sec-

ond (orange bar) and third move (yellow bar), the per-

centage of times Level 3 is provided starts decreasing

in favour of Level 2 that, on the contrary, is increasing.

This is mainly because the game is becoming easier and

the user did perform well during the previous interac-

tions. Moreover, due to the tokens initial location, it

seems to be challenging for the participants to under-

stand, when Level 2 is provided (that suggests a subset

of solutions), which letter among “I” “O” and “R” is

the one to choose.

Participants in group B2 display an increase in reac-

tion time on letter “A”. We envisage the reason can be

related to the tokens initial distribution on the board.

In fact, when the third token has to be moved (let-

ter “R”) (Fig. 6b yellow bar), the subset of solutions

given by Level 2 consists of “O” and “R”, since the

letter “I” has already been moved (second move “I”).

On the contrary, with letter “R” (Fig. 6b violet bar), if

the robot decides to provide a suggestion (Level 2), it

takes a bit longer for the participant to select the cor-

rect move, given that the choice now is between three

tokens. Analogously to the case of group A2, it can

also be due to the levels of assistance provided. In the

final stages, when most of the tokens have been already

moved, the robot’s attitude is to furnish a lower de-

gree of assistance. In other words, during this stage,

the majority of support comes from Level 1 and 2 and

only partially from Level 3, as it can be observed in

Fig. 6b.

As a last remark, it is worth noticing that in Fig. 5c

and 5d, the average percentage of mistakes is very sim-

ilar for the last token (“E” for CURIE and “C” for

DIRAC), independently of the robot adaptive logic.
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(a) Curie average reaction time (s) (b) Dirac average reaction time (s)

(c) Curie average percentage mistakes (d) Dirac average percentage mistakes

Fig. 5: Figs. 5a-5c and Figs. 5b-5d show the results in terms of average reaction time and percentage of mistakes

for groups A1 (blue line circle mark) and A2 (red line cross mark) playing with CURIE and groups B1 (blue line
circle mark) and B2 (red line cross mark) playing with DIRAC, respectively.

Score in %
Questions 1 2 3 4 5 6 Mean (1-6)

Interacting with the robot in the game was likeable 0 8.3 16.6 16.6 25 33.3 4.58
Interacting with the robot in the game was distractful 16.6 16.6 16.6 25 8.3 16.6 3.41

Interacting with the robot in the game was comfortable 0 8.3 8.3 33.3 25 25 4.5
Interacting with the robot in the game was useful 8.3 0 16.6 8.3 41.6 25 4.5

Table 5: Summary table of the post-questionnaire (Sec. 5.4) for the participants in group A1 and B1 which played

with no adaptive robot.

Score in %
Questions 1 2 3 4 5 6 Mean (1-6)

Interacting with the robot in the game was likeable 0 0 8.3 8.3 16.6 66.6 5.41
Interacting with the robot in the game was distractful 50.0 16.6 0 0 8.3 25 2.75

Interacting with the robot in the game was comfortable 0 0 8.3 25 16.6 50 5.08
Interacting with the robot in the game was useful 0 8.3 0 8.3 25 58.3 5.25

Table 6: Summary table of the post-questionnaire (Sec. 5.4) for the participants in group A2 and B2 which played

with a robot providing adaptive levels of assistance.
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(a) (b)

Fig. 6: Results in terms of the average percentage of times the adaptive robot provides a level of assistance (Level

1, Level 2 and Level 3) for each correct token. Fig. 6a shows the results for the participants in group A2 while

Fig. 6b shows the results for the participants in group B2.

(a) Curie vs Dirac average reaction time (s) (b) Curie vs Dirac average percentage mistakes

Fig. 7: Figs. 7a and 7b show the results in terms of average reaction time and percentage of mistakes of groups

A2 (Curie, blue line circle mark) and B2 (Dirac, red line cross mark), respectively.

This is an expected scenario: when the game becomes

easier, no matter which assistance the robot provides,

the probability to guess the correct move is high. On

top of that, the robot might be on the same level of

assistance (Level 2) during this time.

Although most people enjoyed playing with the robot,

there is a considerable difference between group A1 and

group B1 and group A2 and group B2 as regards to the

overall experience during the game.

The post-questionnaires handed to the participants

after the game confirm our initial hypothesis. As re-

ported in Tables 5 and 6, participants playing with the

adaptive robot had better experience overall. In partic-

ular, groups A2 and B2 appreciated more interacting

with the robot as they thought the robot assistance

was useful for completing the game.

To evaluate the system more precisely, we confront

the results of groups A2 and B2 to confirm that the

effectiveness of the robot adaptability is not only evi-

dent when comparing it with their baselines (group A1

and B1) but also when there is a difference in the diffi-

culty of the game. As it is possible to notice in Figs. 7a

and 7b, there is a difference, in term of average reac-

tion time and percentage of mistakes on each move,

between the two groups that play the game supported

by adaptive assistance. The participants from group A2
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perform faster and with fewer mistakes. We believe this

may be due to the word to guess. The Nobel prize win-

ner Marie Sk lodowska Curie seems to be more known

than Paul Adrien Maurice Dirac. When the word to

guess is Curie, some participants are able to guess the

name before waiting to move the last token.

In Fig. 6 we report the average percentage of times

a level of assistance has been provided during a game

session for groups A2 and B2, respectively. As observ-

able, the levels of assistance provided are quite differ-

ent. The reason behind the robot’s different behaviours

is due, not only to the evident difference in the number

of mistakes (Fig. 7b), but also to the reaction time of

the participants (Fig. 7a). The time a participant takes

to perform a move has a considerable impact on the

selection of the robot’s next helping action.

For instance, suppose we have two users (Bill and

Bob) performing the same, but Bill takes more time to

move (higher reaction time) than Bob. In the case of

Bill, the robot is more willing to change its levels of as-

sistance than with Bob. Although it seems a reasonable

behaviour, sometimes does not appear to be the most

effective solution. For example, if a user plays badly but

quite fast, the system needs a few steps before deciding

to engage with him using additional support.

As reported in Fig. 6, the levels of assistance re-

ceived by the participants of groups A2 (see Fig. 6a) and

B2 (see Fig. 6b) are quite different. As shown, for group

A2 the levels of assistance are constant until the third

move (see Fig. 6a yellow bar) when the robot starts

decreasing the assistance applied (decreasing Level 3

bars, increasing Level 2 bars) and this trend continues

during the next moves. It can be appreciated how the

robot starts introducing the lowest level of assistance

in response to a better and faster performance by the

participants due to less complex conditions (see Fig. 6a

violet and green bars).

A different robot’s assistive behaviour is shown for

participants in group B2. Most of the participants re-

quire more assistance (Level 3) to succeed in the task,

as compared to A2. Since users struggle to guess the

correct token in the first two moves, the robot provides

increasing assistance (see Fig. 6b blue and orange bars).

Then, after the second correct move, the robot starts

switching its assistance in favour of a less supportive

action (Level 1 yellow bar, Fig. 6b).

This last comparison between group A2 (game with

Curie) and B2 (game with Dirac) shows how a robotic

system is able to adapt not only to the user’s perfor-

mance but also to the game complexity.

Group #Participants Solution Adaptability Headset
C 5 Curie YES NO

D=A2 6 Curie YES YES

Table 7: Groups setting for Hypothesis 2

7.2 Hypothesis 2: In a very noisy environment, the

multimodality of the robot interaction has an impact.

Participants not equipped with an external headset

will perform worse than the ones that receive speech

assistance via a headset device.

In this second experiment, we aimed to assess to which

extent the interaction modalities are helping the user

throughout the game when the robot instructions are

not clear because of poor sound conditions. We divided

the participants into two groups: the first one, namely

C, with 5 participants and a second group, namely D,

with 6 participants (note that group D is the same as

group A2 in the previous experiment) as reported in

Table 7. Both groups interacted with an adaptive robot

(ADAPTIVE condition) and played a game whose so-

lution is CURIE (GAME SOLUTION condition). Par-

ticipants of group C interacted with the robot with-

out wearing an external headset (NO HEADSET con-

dition), while participants of group D interacted with

the robot with an external headset (HEADSET con-

dition). We expected, since the environment was very

noisy, that users of group C would experience difficulties

to understand the instructions and the assistance pro-

vided by the robot, and this would have consequences

on the performance.

In Fig. 8a, we compare the average reaction time

of groups C and D to guess the correct letter. In the

case of participants in group C (see Fig. 8a blue line,

mean reaction time 8.862 s), the time they take to per-

form a correct move is greater than the time taken by

users with headset (mean reaction time 6.22 s). Also in

this case, data are normally distributed (Shapiro-Wilk

test p=0.9564), so we can apply ANOVA. The result

obtained in this case for α= 0.05 is F0.05[1, 9] = 5.12

and p=0.09.

Along the same line, during the first move, the time-

out (15 s) did elapse several times for the subjects in

group C. This is caused mainly by their lack of under-

standing of the robot instructions. Only in the follow-

ing moves, when they started getting used to the robot

and its gestures, their performances improved, eventu-

ally reaching almost the same reaction time (4th and

5th moves). In Fig. 8b, we compare the average percent-

age of mistakes for each move made by the two groups

( mean percentage of mistakes for group C is 32.76%

and for group D is 21.38%). Here it is clear that, in

the first move, having the headset on or not doesn’t
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(a) Headset vs No Headset reaction time (s) (b) Headset vs No Headset percentage of mistakes

Fig. 8: Figs. 8a and 8b show results in terms of average reaction time and percentage of mistakes of group C

involving participants interacting with the robot without wearing an external headset (blue line dot mark) and

group D with participants wearing an external headset (red line cross mark).

(a) (b)

Fig. 9: Results in terms of the average percentage of times the adaptive robot provides a level of assistance (Level

1, Level 2 and Level 3) for each correct token. Fig. 9a shows the results for the participants in group C while

Fig. 9b shows the results for the participants in group D.

1 2 3 4 5 6
Interacting with the robot in the game was likeable 0 20 20 40 20 0

Interacting with the robot in the game was distractful 40 20 20 20 0 0
Interacting with the robot in the game was comfortable 0 0 0 40 40 20

Interacting with the robot in the game was useful 0 20 20 40 20 0

Gesture Speech Both
Which modality have you preferred the most? 80 0 20

Table 8: Summary table of the post-questionnaire (Sec. 5.4) for the participants in group C, which played the

game whose solution is Curie with the assistance of an adaptive robot.
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1 2 3 4 5 6
Interacting with the robot in the game was likeable 0 0 0 33 33 33

Interacting with the robot in the game was distractful 70 15 15 0 0 0
Interacting with the robot in the game was comfortable 0 0 0 0 33 67

Interacting with the robot in the game was useful 0 0 0 0 50 50

Gesture Speech Both
Which modality have you preferred the most? 50 17.5 32.5

Table 9: Summary table of the post-questionnaire (Sec. 5.4) for the participants in group D, which played the

game whose solution is Curie with the assistance of an adaptive robot.

affect the number of mistakes produced. However, the

situation completely changes in the next moves, when

participants wearing an external headset make less mis-

takes (Fig. 8b red line) than the participants of group

C (Fig. 8b blue line).

Fig. 9 compares the percentage of times a level of

assistance has been provided for each move to group C

(Fig. 9a) and group D (Fig. 9b), respectively.

The trends are quite different for the two groups.

The failure rate of participants in group C is greater, as

we have already seen in Fig. 8b (blue line) and they take

more time to perform the correct move (Fig. 8a, blue

line). This results in a need of constant support with

the highest level of assistance (Level 3, Fig. 9a). For the

same reason, the lowest level of assistance was never ini-

tiated for group C. A different evaluation comes up for

group D. In this case, the percentage of times the high-

est level of assistance has been given, decreases from the

first letter to the fifth one. Observe that, in the fourth

and the fifth moves (Fig. 9 violet and green bars), as

the game becomes easier and the subject performs bet-

ter, the robot applies more frequently the lowest level

of assistance (Level 1 red bar).

The post-questionnaire filled in by the participants

of groups C and D also confirm our initial hypothesis.

In Tables 8 and 9 we report the results: the users that

were able to listen properly to the robot thanks to the

headsets had a better experience with the robot (see

Table 9). At the question related to which interaction

type they liked the most, the participants of group C

expressed a clear preference for gesture (see Table 8).

That was the expected result given the indoor noise

contamination. Conversely, participants of group D did

not express a clear preference (see Table 9).

7.3 Hypothesis 3: Participants with engineering and

HRI background can perform better than others with

different backgrounds.

In order to verify this hypothesis, we analyzed all the

data collected in the first experiment and we grouped

the related results by participants’ background. By do-

ing so, we aimed to evaluate whether and to which ex-

tent participants with technical background can per-

form better than the others. This assumption is based

on the kind of experiment we proposed. Each partici-

pant could play the game only one time. This limita-

tion makes impossible for the user to learn about the

robot behaviour. Analysing performances of the two

groups members can lead us to further insights such

as obtaining a deeper comprehension on how the as-

sistance provided is perceived and/or whether the sys-

tem in play is logically understood by each user. We

report in Table 10 the different groups split by the

participants conditions related to Sec. 6. It is impor-

tant to say first that grouping the participants only

by their background might lead to wrong evaluations

since other conditions can affect the results. However,

we can see that, each sub-group Ei is balanced with

the corresponding Fi, and also the total amount of par-

ticipant of group E is equal to group F. From the re-

sults reported in Table 10, we can already notice that,

for what concerns average completion time and num-

ber of mistakes, there are very few differences between

subgroups Ei and Fi. In other words, as the trend is

clear, we decided to merge the sub-groups as reported

in Table 11. Then, we divided the participants into two

groups: the first one, namely E, with 12 subjects coming

from HRI/Engineering background and the second one,

namely F, with 12 subjects with other backgrounds.

Note that, in this experiment, we excluded the 5 par-

ticipants (group C of Sec. 7.2), that played the game

under condition NO HEADSET.

The results of this experiment are resumed in Fig. 10.

As expected, the participants of group E could perform

better but mainly in the first stages of the game. How-

ever, after few interactions, the average reaction time

and the percentage of mistakes of group F (mean re-

action time 8.94 s and mean percentage of mistakes

44.2%) equalizes the ones of group E ( mean reaction

time 8.65 s and mean percentage of mistakes 41.92%).

The results are proved to be significant by performing
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Group #Users Solution Adaptability Headset Background Tot time #mistakes
E1 2 Curie YES YES HRI/Eng 30.7 3.3
F1 4 Curie YES YES Other 31.5 3.8
E2 3 Curie NO YES HRI/Eng 53.6 6.1
F2 3 Curie NO YES Other 55.2 6.3
E3 4 Dirac YES YES HRI/Eng 43.1 4.1
F3 2 Dirac YES YES Other 44.3 4.4
E4 2 Dirac NO YES HRI/Eng 53.2 6.4
F4 4 Dirac NO YES Other 53.9 6.5

Table 10: Summary table of users performance (mean elapsed time (s) and number of mistakes during a game

session) grouped by users experimental conditions and users background.

(a) Engineering and HRI background vs Others reaction
time (s)

(b) Engineering and HRI background vs Others percent-
age of mistakes

Fig. 10: Figs. 10a and 10b show results in terms of average reaction time and percentage of mistakes of group

E involving participants with Engineering/HRI background (red line cross mark) and group F with participants

with others background types (blue line dot mark).

Group #User Solution Adaptability Headset Background
E 12 Curie/Dirac YES/NO YES HRI/Eng
F 12 Curie/Dirac YES/NO YES Other

Table 11: Groups setting for Hypothesis 3

an analysis of variance in terms of average reaction time

with each move. The probability of the null hypothesis

for α= 0.05, F0.05[1, 22] = 4.3 is p=0.006.

In conclusion, the two groups performed almost the

same, with the most significant difference during the

initial stages. We can conclude, from the collected data,

that the diversity in participants background does not

contribute to a significant difference in the interaction

with the robot, due to the natural behaviour expressed

by the latter during the interactions.

7.4 Hypothesis 4: Younger participants can perform

faster than older one.

In this section, as in Sec. 7.3, we analysed the data

collected in the first experiment. The objective was to

evaluate whether age has an impact on the user’s per-

formance expressed as time and number of mistakes. In

Table 12, we show each sub-groups divided by the con-

ditions under which the participants played the game.

As in the previous section, since the correlation and the

trend between the sub-groups is clear and the number

balanced, we performed a merge based on age range.

Therefore, we divided the participants into two groups:

group G with 11 participants with age between 18 and

39 and group H with 13 participants with age between

40 and 60 (as reported in Table 13).

Results of Fig. 11a confirm our initial hypothesis:

group G (mean reaction time 6.42 s) is faster than group

H ( mean reaction time 8.025 s). Finally, to validate our



Short-Term Human-Robot Interaction Adaptability in Real-world Environments 17

Group #Users Solution Adaptability Headset Age Tot time #mistakes
G1 2 Curie YES YES 18-39 28.3 4.4
H1 4 Curie YES YES 40-60 33.8 3.1
G2 3 Curie NO YES 18-39 50.4 7.1
H2 3 Curie NO YES 40-60 59.3 5.3
G3 3 Dirac YES YES 18-39 38.3 4.6
H3 4 Dirac YES YES 40-60 49.1 3.5
G4 3 Dirac NO YES 18-39 47.3 8.4
H4 2 Dirac NO YES 40-60 57.7 6.2

Table 12: Summary table of users performance (mean elapsed time (s) and number of mistakes during a game

session) grouped by users’ experimental conditions and users’ age.

(a) 18-39 vs 40-60 reaction time (s) (b) 18-39 vs 40-60 number of mistakes

Fig. 11: Figs. 11a and 11b show results in terms of average reaction time and percentage of mistakes of group G

involving participants with age between 18 and 39 (blue line dot mark) and group H with participants with age

between 40 and 60 (red line cross mark).

Group #Users Solution Adaptability Headset Age
G 11 Curie/Dirac YES/NO YES 18-39
H 13 Curie/Dirac YES/NO YES 40-60

Table 13: Groups setting for Hypothesis 4

assumptions, we run an analysis on variance (ANOVA).

The probability of the null hypothesis to be true for α=

0.05, F0.05[1, 22] = 4.21 is p=0.005.

An interesting result, that turns out comparing the

percentage of mistakes (see Fig. 11b), is that users of

group H (mean percentage of mistakes 32%) made less

mistakes than group G (mean percentage of mistakes

45%). We believe this could be due to the interaction

routine deployed by the robot. The participants of group

G were more inclined to move tokens without waiting

for the robot assistance. On the contrary, the partici-

pants of group H pondered a bit more on the next move

to perform, so to take the maximum advantage of the

support provided by the robot.

8 Lessons Learned

Aside from the user study, we had also the objective of

evaluating our robotic platform in a real environment

while exposed to the common public in very short-term

experiments to avoid user adaptation to the robot. The

most relevant lessons learned are:

– Prioritise the interaction modalities. The ges-

tures interaction modality of the robot is sometimes

perceived as too slow and time-consuming compared

to speech. Even if it doesn’t affect the user perfor-

mance, since the time is computed when the robot

supportive action ends, the participants preferred

faster ways of interaction.

– Synchronization between speech and gestures

matters. Speech and gesture interactions need to

be perfectly synchronized, otherwise the strength

provided by combining these two modalities may be

undermined. Moreover, this is an essential require-
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ment to provide the user with the impression of a

natural interaction.

– Perception system needs to be reliable. If the

perception system relies on vision, it needs to be

tested in more extreme conditions in the labora-

tory, since these conditions are the most common

in the real world. A false positive in the detection

has a huge impact on the entire system and that

is not acceptable in applications that are supposed

to work autonomously and deal with people. For

instance, in the proposed board gaming context, a

recognition of a wrong token can lead the system

to a completely different representation of the cur-

rent state of the environment and, consequently, the

robot will behave differently than expected. In the

proposed experiment, to prevent this kind of fail-

ures we fine-tuned the parameters of the algorithms

presented in Sec. 3.1 to guarantee the constant de-

tection and recognition of all the tokens.

– Robustness to catch unexpected user’s be-

haviour. The Cognitive System needs the ability

to deal with unexpected events. For instance, mov-

ing more than one token at a time is not allowed

by the system and by the rules of the game, but

some people are eager to complete the game as fast

as possible, sometimes just to challenge the system

or to validate its reliability. Moreover, if the system

would be able to understand the intention of the

user, it might decide not to provide any assistance

when the participant decides to move another token

just after he made a move. In other words, the robot

should not interfere with the user; on the contrary,

it should be able to interpret when he needs help

because he is not able to make the correct move.

9 Conclusions and Future Work

In this work we have presented a Cognitive System,

embedded in a robot, which aims at supporting, en-

couraging and socially interacting with users while they

are playing a game in the context of a general public

venue. We believe that the deployment of robots in real-

world environments is an essential requirement for re-

searchers in order to better understand the weaknesses

and the limitations of their systems. Experimental re-

sults and especially the lessons learned in those sce-

narios are what leads to technological advancement in

HRI.

We exposed the entire system to a two-day-long ex-

perimentation in a real-world environment, where the

robot interacted with several untrained participants.

The importance of STHRI in the context of board gam-

ing has thus been investigated with a special focus on its

effectiveness for improving user performance and over-

all experience during the game.

The results on STHRI adaptability provide evidence

on how the robot can adapt to the learned user be-

haviour during only the interactions of one game session

and be effective to improve user performance (Hypoth-

esis 1, Sec. 7.1). Moreover, we obtained some interest-

ing insights from our experimental results that can be

used as a starting point for future work. First, the inter-

action modalities can make the difference in improving

users’ performance when the environment is very noisy

and the instructions to the user are not provided clearly

(Hypothesis 2, Sec. 7.2). Second, people with different

backgrounds can have almost the same performance as

people with HRI and engineering background, meaning

that the robot levels of assistance are not only effective

but also easy to understand by a generic untrained user

(Hypothesis 3, Sec. 7.3). Third, younger participants

can perform moves faster but with worse results than

older participants (Hypothesis 4, Sec. 7.4).

We intend to carry out future work in two direc-

tions. On the robotics side, we will improve our system

by addressing the lessons learned during the experi-

ments and reported in Sec. 8. On the user-study side,

we are preparing the evaluation of the current robotic

system in an extended user study with patients affected

by MD and AD. This longitudinal study will allow us

to eventually provide a useful tool for therapists and

caregivers working in health-care facilities. In this way,

we aim to reduce the caregivers’ burden and workload.

Furthermore, the long-term user study will allow us to

extend and evaluate the adaptability of our system in

long-term interaction. In this context, the robot needs

to take into account the entire history of user’s actions

and be able to quickly react to the user’s performance

changes over time. Also, user’s engagement is an essen-

tial requirement for long-term interaction. To this end,

we aim to extend the robot with the capability to learn

the user’s preferences on each level of assistance.

In conclusion, this work is an effort at developing an

effective embodied assistive system in a real scenario,

trying to address the issues that arise in an uncontrolled

environment and with untrained users.
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