Chapter 2
Fault-tolerant Control of a Service Robot
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In this chapter, the problem of fault-tolerant control of a service robot is addressed.
The proposed approach is based on using a fault estimation scheme based on an
Robust Unknown-Input Observer (RUIO) that allows to estimate the fault as well as
the robot state. This fault estimation scheme is integrated with the control algorithm
that is based on a observer-based state feedback control. After the fault occurrence,
from the fault estimation, a feedforward control action is added to the feedback
control action to compensate the fault effect. To cope with the robot non-linearity,
its non-linear model is transformed into a Takagi-Sugeno model. Then, the state-
feedback and RUIO are designed using an LMI-based approach considering a gain-
scheduling scheme. To illustrate the proposed fault-tolerant scheme a mobile service
robot TIAGo, developed by PAL robotics, is used.

2.1 Introduction

Over the last few years service robots have been increasingly introduced in our daily
lives (see as e.g. Figure 2.1). According to the International Federation of Robotics
(IFR), since 2016 there has been a yearly increase of 15% on its sales [1].

Although service robots have been designed to successfully perform tasks on
highly dynamic and unpredictable anthropic domains some faults can appear. A
wide range of faults can be considered regarding interaction, such as misleading
interpretations of the human actions or unexpected scenarios beyond nominal opera-
tion. Also, their inherent complexity make them prone to failures at all their levels,
from the low-level actuators and sensors to the high-level decision layers. All these
factors can lead to a degradation on the performance of the robot or imply critical
damage to it, that might even jeopardise its safety. Thus, their ability to autonomously
overcome most of these situations in a safe and efficient manner must play a fundamen-
tal role in their implementation.
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Figure 2.1 TIAGo robot in a domestic environment.

2.1.1 State of the art

Fault Detection and Diagnosis (FDD) field has been widely studied for many years
on classic control problems [2]. Only on certain generic robotic platforms some of
these approaches have been successfully applied, like for wheeled mobile robots [3],
being still considered as a relative new field of study for robotic systems.

Current FDD techniques for robots can be classified into three different categories
according to their common key characteristics [4]:

Data-driven: rely on the extraction and processing of data from different parts of
the system, in order to detect and determine a faulty behaviour. One example
is the work presented in Reference [5], where a Neural Network is trained and
integrated within a Sliding Mode Control structure to enhance its robustness.

Model-based: depend on a priori analytical model that depicts the behaviour of
a certain fault in the system or the nominal behaviour of the system itself.
By comparison of the expected performance given by the model against the
current one, faults can be detected and isolated. In Reference [6], a residual is
computed using a dynamical model of a 7-DOF robotic arm to detect and obtain
information on unexpected collisions to determine suitable reaction strategies.

Knowledge-based: mimic the behaviour of a human expert, directly associating
certain evidences with their corresponding faults. Some of this methods are
seen as hybrid techniques that combine Data-Driven and Model-Based approaches.
On this line, in Reference [7], a two-layered structure is used, where a model
aims at detection and a decision tree (Data-driven) at isolation of different
actuator faults.
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On the suggested classification, key advantages and weaknesses of the different
approaches are worth to be pointed out. It should be mentioned that this classification
does not draw clear boundaries between the different groups but determine certain
general characteristics that are usually present, which have been considered on this
remark.

The main drawback of Model-based techniques is the use of a model itself.
For some robotic platforms is extremely complex to determine analytic expressions
that describe their behaviour or establish relationship between their components.
This issue is even more significant when trying to describe interactions with the
environment or the effect of a fault in the unaffected parts, for example. Here Data-
Driven approaches present their main advantage, as no knowledge about the robot
is assumed and relies on data of the particular robot where the method is applied
to. But most Data-Driven methods require a high computational expense which
might make them unfeasible for an on-board and on-line implementation that some
robots could require (e.g. an spatial exploration robot). When a learning phase
(supervised or unsupervised) is involved, part (or all) of it is carried out offline, as
in Reference [8] where high dimensional data of a robotic arm is recorded to obtain
dimensional reduction transformations and train a binary Support Vector Machine
(SVM) model to be used online. It should be considered that online learning allows
to obtain a dynamic method able to capture unexpected behaviours. Computational
cost issue can also appear on some Model-based methods but is usually overcome by
simplification or reformulation of the model, as in Reference [9], where a modification
of the classical Newton-Euler is introduced in order to reduce its computation time
for on-line execution purposes. Some Knowledge-based approaches that consist on
combining Data and Model-Driven methods are able to establish a trade-off between
the discussed issues, and suggest feasible solutions for FDD on robotic systems.

Regarding the characteristics that are required for service robots, autonomy is
one of the most relevant ones. Service robots have to usually perform without the
intervention of a human that supervises its actions or include a human in its operation
loop that is not a robotic expert [10]. Thereby, being able to detect faults, identify
them and overcome their effect on the execution of a task is crucial to achieve
autonomy. As FDD methods should operate on a supervision level concurrently with
all the techniques used for the desired performance, the computational demand on the
method plays an important role on its implementation. High demanding processes
might interfere with others and be the source of faults themselves. Thus, according to
the discussion above, Model-Based approaches are preferred, although Data-Driven
methods can be also applied if they have a low-computational burden or some of its
implementation is carried out offline.
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2.1.2  Objectives

In this chapter, the problem of fault-tolerant control of the TIAGo humanoid robot
by PAL Robotics [11] is addressed. Specifically and as a proof of concept, the focus
has been put into its 2-DOF head subsystem, to tackle the scenario where external
forces (e.g. a mass, a contact with a human) generate torques on its joints such that
desired configurations aren’t reached.

Figure 2.2 TIAGo Robotic Platform by Pal Robotics.

The proposed Model-based approach relies on a Takagi-Sugeno (TS) model of
the robot, in order to cope with its non-linearity. From it, a state-feedback plus feed-
forward control strategy will be designed using a fault estimation scheme based on a
Robust Unknown-Input Observer (RUIO). To obtain the desired performance of the
implemented method, a combination of Linear Matrix Inequalities and Equalities
(LMI and LME, respectively) is used for the design. Additionally, the affecting fault
is estimated using a reference model and its compensation will be included within the
control loop, in order to overcome possible errors derived from the design process.
All the procedures will be developed in the discrete-time domain, in order to bring
the implementation on the real platform together with the proposed approach.
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2.2 Takagi-Sugeno Model

2.2.1 Robot model

The method presented in this chapter considers the implementation of a fault detection
and isolation (FDI) scheme by means of a Model-based approach. Thereby, an
analytic model which describes the behaviour of our system has to be determined.
As aforementioned, the target system on this chapter is the 2-DOF Head subsystem
of the TIAGo robotic platform, presented in Figure 2.3. This type of systems are
usually named Pan and Tilt structures, where the Pan movement corresponds to the
rotation around an axis and the Tilt to the rotation around its perpendicular one.
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Figure 2.3 TIAGOo’s head subsystem representation as a two-manipulator link.

To obtain this analytic model, the Newton-Euler method [12] has been applied
considering the system as a two-link manipulator with two rotational joints 6; (i =
1,2), represented on the left part of Figure 2.3. For the sake of brevity this process is
omitted, presenting only on this chapter the final expression for the model’s dynamics.

The model can be stated in the so called configuration-space form, which gives
the joints torque vector 7 as a function of 8, 0 and 0, which are the joint acceleration,
velocity and position vectors

T=M(0)6+B(6)[06] +C(6)[6%]+G(8) 2.1

where M(0),x, describes the mass matrix of the manipulator, B(8),.u(n—1)/2 the
Coriolis terms, C(0),x, the centrifugal coefficients and G(0),x; the gravity effects;
being the number of joints n = 2.
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Applying Equation (2.1) on TIAGo’s head model:

T _ Izzl + I”nzd% + IxeC% + IyyZS% - MQd%C(zez)z 0 61
T 0 L, +mpd?| |6,
n [—26‘25‘2(1”2 —[.y}(;)z) +m2d2s(462)} 9-1 9-2 2.2)

N 0 0] [67 N 0
C2S2(IXXZ7Iyy2)7%m2dé%s(492) 0 922 § —mpdss(260) |

Terms in the form I,,, where a = xx,yy,zz and i = 1,2, correspond to the inertial
tensor diagonal values of the links.

In order to simplify the expression into a shorter more intuitive manner, all the
expressions have been arranged into constant and variable-dependant terms, obtaining:

A 1 P L P S R
(2.3)

From this form, the model equations of the head subsystem can be derived for
the joint accelerations and velocities:

61 =~ 2t 616+ o

6 = 107 +{n - T 2.4)
b1 =46 '
6, =40,.

Considering the complete equations and arrangements from Equations (2.2) and
(2.3), terms can be further arranged as follows: (2.5), (2.6) and (2.7)

0(62) = —21(6,), (2.5)
Y(62) = a+B(6,), (2.6)
0(6,,61) =5(6,)6,. Q2.7)

The non-linear model from Equation (2.4) can be expressed in the state-space
linear-parameter varying formulation (considering the states as scheduling parameters),
according to its general expression:

x(t+1) =Ax)x(r)+B(x)u(r)+d(x,1) 28)
¥(t) = C(x)x(1) +D(x)u(r).
Regarding TIAGo’s physical system deployment, it is considered the input action
u as the joints torque 7 and the system output y as the joint position 8 given by
internal sensor measurements. The state vector x has been defined as [0 6, 6, 92]T,
so Equations (2.4) and term arrangements from (2.5) to (2.7) can be stated according
to (2.8), obtaining the following model representation:



Fault-tolerant Control of a Service Robot 7

_(p(GZ)el) 1
o) 0 S 00 [6] [ver © o
22 _ (0(92259” 0 0 0 . gz + 0 E |:Tl:| 4 - é
1 1 0 0 ol |% 0 0 [ 0
6, 0 1 0 0 6, 0 0 0
61
6] [0 0 1 0] |6
{92]_[0 0 0 1] 0, 2.9)
6,

In order to ease the development of the system model, matrix d(x,¢) will be
neglected until Section 4, where its effect will be further analysed.

It should be also pointed out that the physical model imposes limits on the
joint variables, summarised in Table 2.1, on which the Takagi-Sugeno model will
be developed on the next subsection.

Table 2.1 Value limits for the TIAGo head
subsystem variables.

State Min Max
heads

0 0 rad/s 3rad/s

6 0 rad/s 3 rad/s

6, 750 750

6, -60 ¢ 45°¢

2.2.2 Takagi-Sugeno formulation

Fuzzy logic, introduced by L.A.Zadeh [13], in contrast with classical Boolean logic
does not define the output of a decision as binary (Yes/No, 1/0), but gives a degree
of belonging of the output to the extreme values of the decision, according to a set
of rules. This definition has been widely used in the Artificial Intelligence field as an
approximation of the human decision-making process, where in most cases admits a
range of possibilities between the limits.

Takagi-Sugeno Models [14] (henceforth TS Models), named after their designers
apply the concept of fuzzy logic to the description of non-linear dynamics of the
systems by a set of rules, associated to linear descriptions. Overall model is obtained
by blending this linear systems according to their rules.

t)
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In our case, the TS Model starts with the obtained system representation from
Equation (2.9), which includes non-linearities that make the direct application of
classical control strategies unfeasible. Firstly, non-linear terms are embedded on the
so called premise variables z;. For our particular case, these terms have been already
arranged in (2.6) and (2.7), being z; = ¥(6,) and 2o = @ (6, 6;).

The concept of sector non-linearity has been used in the construction of the TS
model to assure its exact representation. Its objective is to find sectors in the system
state space where the non-linear behaviour lies. As these terms include parameters
and variables which are bounded in the physical system, sectors can be defined
in local regions, delimited by these bounds. From the limits of 6,6,,0, and 6,
presented in Table 2.1, our premise variables bounds can be found, included in Table
2.2.

Table 2.2 Upper and lower bounds of the
premise variables for the TS

Sformulation.
Premise variables Min Max
21 =79(6y) . 0.0055 0.0091
2= 0(60,,6)) -0.0110 0.0110

Thereby, (local) sector non-linearity approach [16] is applied to reformulate the
premise variables according to their limits, by means of the membership functions.
These functions represent the degree of belonging to the upper or lower bounds
according to a certain trend, defined in the fuzzy logic field as fuzzy sets. For this
problem, linear membership functions have been considered, formulated for the ith
premise variable as follows:

zi = M;1(2i)Zi +M;p(zi)zi where M 1(z;) = Z_l zl’ M;>(z) = Z_l j (2.10)
i —2i i —2Zi

Figure 2.4 presents the graphical representation of Equation 2.10.

@-2n 2

Figure 2.4 Graphical representation of the linear membership function.
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Aforementioned fuzzy rules can be stated using the defined membership functions.
These rules have the form of /FF — THEN structures where premise variables z;
are evaluated w.r.t. the membership functions. The number of rules N is equal
to 27, being p the number of chosen premise variables, as they consider all the
possible permutations between the limits of z;. Thereby, each rule is associated with
a linear system that describes the behaviour of the freezed original system on the
corresponding limits. For the addressed system, its fuzzy rules and associated linear
systems have been stated below.

Model rule 1
IF z;is "Max” and zp is "Max” THEN x(r+1) =A;x(¢) + Bju(r)

0 —-@/y 0 0 I/y 0
B 0/2¢ 0 0 0 10 1/&
Ar=17 o oo BTlo ol
0 1 0 0 0 0
Model rule 2
IF zyis "Min” and zpis "Max” THEN x(r+1) = Ayx(t) + Bou(r)
0 —¢/7 00 1/7 0
B 9/2& 0 0 0 10 1/&
A= 17 0 0 0 B=1o o[
0 1 0 0 0 0
Model rule 3
IF zjis ”"Max” and z is ’Min” THEN x(f+ 1) = A3x(¢) + B3u(r)
0 -¢/y 0 0 I/y 0
. (Z)/Zé 0 0 0 10 1/6
As=17 0 00 Bs=1¢9 o
0 1 0 0 0 0
Model rule 4

IF z;is ”Min” and zp is "Min” THEN x(¢r+1
0 —¢/y 00 {

g6 07 0 0 o 1/E
As= 17 0 0 0 Ba=149 0
0 1 00 0 0
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Finally, the defuzzyfication step has to be carried out to completely represent the
system according to the defined fuzzy rules and sets. This process gives a complete
representation of the system behaviour according to its fuzzy rules. Thereby, the
system is described by a weighted sum of all the limit systems considered on the
fuzzy rules. See [16] for more details.

For the considered TIAGo’s head subsystem, this defuzzification process has
to be applied only for system’s A and B matrices, as they both depend on premise
variables:

—4

K1) = (ep(0) A (1) + Bu1)] @11
n=1

x4+ 1) = Az (6))x(t) + B(zy (1) u(2) 2.12)

where

hi(zp(t)) =My 1(z1) M1 (22) ha(zp(t)) =My 2(z1) - M1 (22)

ha(zp(t)) =M (z21) Map(z2)  ha(zp(t)) = Mi2(z1) - Ma2(22)

2.3 Control Design

2.3.1 Parallel Distributed Control

As it has been presented, TS Models are based upon a set of rules which enclose the
behaviour of a non-linear system using linear descriptions on its bounds. Thereby, its
performance can be described at a certain instant by a combination of the membership
to these bounds. Following this concept, a control strategy for a system can be
defined as a set of linear control laws defined at its limit operation points, being the
system control at a certain point defined as a combination of these limit controllers.
This concept was initially presented in [15] by Kang and Sugeno under the name of
Parallel Distributed Compensation (PDC from now on).

The PDC offers a procedure to design a control strategy from a given TS model
using linear techniques. For each one of the fuzzy rules defined for the model, a
control rule can be stated sharing the same premise variables and their corresponding
fuzzy sets (membership functions). For this chapter, a state-feedback control has
been used as the linear control strategy. From the already presented TS model for
the considered system in this chapter, control rules have been stated as follows:

Control rule 1

IF z;is "Max” and zpis "Max” THEN u(t) = —Kx(1),

Control rule 2
IF z;is "Min” and zpis "Max” THEN u(t) = —Kyx(t),
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Control rule 3
IF zjis "Max” and z; is "Min” THEN u(t) = —K3x(t),

Control rule 4
IF z;is”Min” and zp is "Min” THEN u(t) = —Kux(t).

As for the TS models, the defuzzyfication step is applied on the control action
vector u(t), using the same procedure and A, functions from the TS model:

N=4
u(t) = — ; hi(zp (1)) [Kix(t)] = —K (2, (1))x(1) (2.13)

The key point of PDC is to design the feedback control gains K, assuring stability
and a certain number of performance specifications. Although this strategy only
implies the definition of the system in the limit operation points (bounds of our
premise variables), the design has to consider global design conditions.

According to Lyapunov’s theory, global asymptotically stability exists for a set
of subsystems if there exists a common positive definite matrix P for all the sub-
systems such that the following condition holds [16]:

ATPA;—P<0 Vi=1,2,.N (2.14)

Considering the defuzzified system expression from Equation (2.11) and the state-
feedback control formulation, global asymptotically stable condition is assured if
the folowing expressions hold.
(A; —BiK;)"P(A; — BiK;) — P < 0, Vi=1,2,..N (2.15)
G[;PGij—P<0, Vi<j<N st hnhj#¢ (2.16)

where

Gii— (Ai—Bin)+(Aj—BjKi)
ij= > .

The solution for stated inequalities is found by means of the Linear Matrix
Inequalities based approach (LMIs from now on). This method implies the formulation
of the problem in a set of inequality constraints that define convex sets. Henceforth,
all the design conditions that imply inequalities will be directly formulated as LMIs.
The reader is referred to Reference [17] for further details on LMIs, as they are out
of the scope of this chapter.

2.3.2  Optimal Control Design

Robotic applications quite often require optimal performance in order to minimise
costs in terms of resources and time consumption [12] as well as present some
characteristics on their output(s) related with their application. This issue has been



12 Fault Diagnosis and Fault-Tolerant Control of Robotic Systems

tackled on this chapter through the formulation of an optimal design oriented to
achieve certain performance indexes.

Regarding optimality, the design is stated as a Linear Quadratic Control (LQC
from now on) problem, stated in the desired discrete time domain. The gains K; of the
state feecbak control (2.13) are found such that the following quadratic performance
criterion is minimized:

J(t) = i [x(6)" Ox(t) +u(t)" Ru(r)], (2.17)
0

where matrix Q allows to control convergence speed of the states towards their
references while matrix R is selected to limit the control effort required.

For the considered PDC, the minimisation problem is subjected to a set of LMIs
included in Reference [16].In these optimality conditions and on the previously
stated ones, there exist a significant number of LMIs to be fulfilled, due to the
inclusion of all the possible A; and B; permutations. This might arise some tractability
and feasibility problems on finding a solution, specially when applied to high order
systems [16]. To avoid these issues, the system has been re-stated such that B;
remains constant, by means of the Apkarian filter [18].

Apkarian filtering consists on pre/post applying a fast enough dynamic filter,
such that it does not interfere system own dynamics, with the following form:

Xf ZAfJCf—FBfo

| _ |-y 0] |u n y 0
| |0 -y (%] 0 vy
where y represents the filter gain and uy the new control variable vector. Pre-

appliance of this filter has been chosen in the considered case, increasing the system
matrices order, as follows:

{Mn ] (2.18)

u T

 _|Ai B 5_ |0 A
A,-:[O Af}, B,»_{BJ, G=I[c 0]. (2.19)

As it can be seen, B; term is allocated on the A;, remaining B; constant according to
v for all TS Model rules.

Applied on the considered system in this chapter, the A; are now formulated in
such form. Fuzzy model (and rules) maintain the same structure, as they have been
defined only regarding the premise variables definitions.

Considering this new formulation, the aforementioned LQC optimization problem
can be stated into the following LMIs [19]:

-y YAT-wB[ v wl
A)Y — BiW; -Y 0 0
0'%y 0 —I 0
Wi 0 0 —R1

<0 (2.20)
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[7;1 II/] <0 2.21)

where Y = P~ and W; = KY, stating the problem to minimise ¥, which represents
the upper bound for the LQC criterion from (2.17).

2.4 Fault and State Estimation

2.4.1 Robust Unknown Input Observer

The main purpose of the work presented in this chapter is to apply a systematic
approach for the design of a control strategy for non-linear systems, focusing on
those related with robotic platforms. In these cases, besides stability and optimality
conditions, some specific performance characteristics are desired. Furthermore, in
those environments where robots have to perform along with human beings or even
collaborate with them. Then, the robustness and fault-tolerance of the chosen control
strategy is essential to avoid behaviours that do not take into account the entropy of
the unknown surroundings or might even harm a person. An initial step has been
taken to confront this challenge by means of a Robust Observer for Unknown Inputs
(RUIO from now on) for TS Models, presented by Chadli and Karimi [20].

The RUIO presents an observer structure for TS Models which allows decoupling
its state estimation from the effects of possible unknown disturbances (faults) or
inputs that might affect the system. Its design is based on sufficient conditions that
assure this behaviour, stated in terms of Linear Matrix Equalities (LMEs) and the
already presented LMIs. For this observer, the considered TS model includes the
effects of unknown disturbances and inputs as follows:

y()  =Cx(t) + Fd(r) +Jw(r) : (2.22)

{x(t +1) =YY hilz) (Ax(t) + Biu(t) + Rid (1) + Hw (1))
where d(t) stands for the unknown input vector and w(t) for the external disturbance
vector. R; and F represents the influence of d(¢) in the system behaviour, and H; and
J the influence of w(t).

The existence of a solution for the problem is assured if the following necessary
and sufficient condition is fulfilled:

CR, CH, [FJ

rank _F, —J, 0

_ EoJy
] = rank |:Rv H] + rank[F J], (2.23)

where F, and J, are diagonal matrices with F and J as diagonal terms, and H, and
R, are the horizontal concatenation of all the H; and R; column matrices.
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One of the main improvements of the RUIO with respect to previous similar
techniques, for example the one presented in Reference [21], is the relaxation on the
necessary and sufficient condition(s). As the aforementioned matrices which model
the influence of the unknown terms are given from design, they can be adjusted so
(2.23) holds considering the C matrix of the system. The RUIO structure has the
following form

r(t+1) = Y hi(zi) (Nir(t) + Giu(t) + Liy(1)) (2.24)
r(t) -

where r(t) correspond to the RUIO internal state vector and the same set of deffuzifi-
cation functions %;(z(¢)) of the TS model are considered. Matrices N;, G;, L; and E
are the observer gains to be determined. The design problem is based on assuring
an asymptotic stability of the dynamics of the observer, so the estimation error
converges to zero as time tends to infinite, disregarding the magnitude of the unknown
inputs and disturbances. According to [21], this behaviour is satisfied if there exist
matrices X; > 0, S,V and W; such that the LMI and LME conditions below hold:

¢i ~V—-AT(V+sC)T —cTw! <0,
_yT _ W _y_yT
VI —(V +SC)A; —W,C X;—V-V (2.25)
where ¢ = —X; + (V +SC)A; — WiC + AT (V +5C)T —CcTWT,
(V +SC)R; = WiF, (2.26)
(V+SC)H; = Wi, (2.27)
S[FJ)=0. (2.28)

Observer gains from Equation (2.24) are determined from the found solution
according to the following expressions:

E=V"ls, (2.29)
G;=(I+V~'SC)B;, (2.30)
N = (I+V~1sC)A; — VWi, (2.31)
L=V~ 'W,— NE. (2.32)

It should be noted from Equation (2.22) that the system has not been formulated
using the Apkarian filter for the RUIO design. In this case, LMIs only considering
system matrices A; and C, so there is not an increase on the problem complexity due
to variant B;.
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2.4.2  Fault concept and design implications

Regarding this robotic platform and the literature insights into faults classification
and sources [22], two main types of faults that could affect the TIAGo head subsystem
and that could be overcome using the presented scheme have been distinguished:

1. Sensor measurement error, existing a difference between the given measures
for 6; and 6, and their real values.

2. External forces affecting the system in both rotation axis, that will appear in
terms of torques in the rotational joints.

Recalling the obtained expression of the system behaviour from Equation (2.9),
there exists a term included in d(x,7) that is described as function of 6,. From
Equation (2.1), it can be noticed that it is derived from the effect of the mass of
the second body on the second rotational joint, which produces a torque variable
with the distance between its Center Of Gravity (COG) and the joint axis. In Figure
2.5, this phenomenon is graphically depicted.

Figure 2.5 Induced torque on 0, by the effect of the distance between the COG
and the rotation axis.

Thereby, this term can be understood as a second type fault, and only this
definition has been considered on the presented work on this chapter. Future work
could be carried out on the first one using a similar scheme.

Using this definition, aforementioned R;, H;, F and J matrices from the RUIO
structure can be designed such that they agree with the effects of the faults. From
stated concepts in the RUIO, the fault will affect the system as an unknown input
(torque) d(t), being w(¢) null (and consequently H; and J). Matrix F will be also
null as the fault does not occur on the system output.

This last consideration does not imply that joint angles will not be affected by
faults. By construction, our state variables and its derivatives are joint accelerations,
velocities and positions. If d(t) is a torque, affects in the computation of 8, so
6 and 0 will perceive this effect even if it has not been injected directly on their
calculation. Thereby, R; variables have been set as unitary column vectors for all
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the N subsystems, as the fault will present the same behaviour disregarding the
operational point of the system.

2.4.3  Fault estimation and compensation

The presented RUIO scheme is able to decouple the estimation of the system’s states
from unknown inputs or disturbances that might degrade the performance of the
system, i.e. faults in this work. Using this decoupled estimation, faults are overcame
internally by the classical state-feedback mechanism.

This behaviour is highly desired for autonomous robotic platforms as it has been
discussed, but also information about fault characteristics could be useful in order
to evaluate further measures to be taken according to it. Taking as an illustrative
example a robotic arm affected by a sensor fault, information about its effects could
lead to an isolation of the faulty sensor or maybe other further measures that allow
the robot achieve its goal disregarding the fault (if it isn’t critical). But also if the
robotic arm is collaborating along with a human and a direct contact, undesired or
desired, happens unexpectedly for the robot, information about the detected effects
could be crucial to avoid harming the person or to gather data that specifies the task
to be performed together.

This latter example where unknown forces might occur agrees with the aforemen-
tioned concept of fault considered in this chapter, and justifies the importance of
estimating its magnitude. Thus, in this work the estimation of its value and isolation
has been studied and included to the developed scheme.

For this purpose a reference control structure is introduced within the presented
approach, which consists on the aforementioned state-feedback scheme where the
head subsystem has been substituted by a continuous time model implemented accor-
ding to the system description described on Equation (2.9), but without the d(x,¢)
term nor other faults. Desired positions of 8; and 6, for the real system are also set
to the reference structure, so the corresponding states for a non-faulty behaviour are
obtained. Using the estimation of the states £y, from the RUIO and the computation
of the system matrices, the value of the disturbance can be obtained as the difference
between the reference and the real system:

d(t) = Oalige (1 +1) = 25,5 (1 + 1), (2.33)

where O, matrix is defined so d has the components of the disturbance in both axis
dg, and dy,, corresponding to the differences on the first and second components of
x(t+1), and

R (1) = A(Rsys) Eiys (1) + By Jugys (1) + d, (2.34)
Ko f(t+1) = AQxref)Xref (1) + B(Xre ) Uref (1),
standing ‘sys’ and ‘ref’ subindexes for variables of the current system and of the
reference structure, respectively. The superindex ‘a’ points out that the values at

t + 1 are obtained by means of the analytic model of the TIAGo head subsystem,
which is considered as a close enough approximation of the evolution of the states.
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The active compensation mechanism consists on the direct injection of the opposite
value of d into the control action transferred to the head subsystem. Presumably, with
this procedure the state-feedback plus RUIO control scheme will regard only for the
part of control actions related with the nominal operation (i.e. movement between
different setpoints), as the disturbance will be compensated by the injection of its
estimation.

2.5 Fault-tolerant Scheme

In this section, all the different components of the presented approach along this
chapter are integrated into the general fault-tolerant scheme presented in Figure 2.6.

Xref State [
Augmentation|« - - ;
H =
tate- 8 E
feedback Xp(t+1) - z
Toor (£ — 1) c
! Q
24}
Q
z
73|
I~
L 2 : e
Feed-forward Apkarian F------ ; TIAGo head &
scaling [;'l subsystem
tter | 7,,+() |analytical model
Biges (1)
Desired positions
. Fault
(setpoints) o .
estimation o
gdm (f)
Feed-forward
scaling d(x, 1)
— Y
Apkarian Tays ) + ‘_fz\ N 4
U (1) filter f---------- . S = (t)’ =]
_ A Hosys : compLsys E
: 2
Uty oys (1 Tyt = D o
: o+ 2
State-feedback Or(t+ 1) =
PDC :
A H
f® o et | £
Augmentation« RUIO

Figure 2.6 Schematic representation of the complete fault-tolerant control
approach on discrete time.
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At each time instant, the desired positions for both axis 6, are externally given
(e.g. by a task planner layer) to both the reference and the main control structures.
A corresponding control action is computed for the desired positions by means of
a feedforward scaling matrix M [19], which depends on the current states (of the
respective structure) according to the following expression:

M(zy(t)) = [C(I+BK (z,(1)) — A(zp(t))) "B~ (2.35)

recalling that z,(t) corresponds to the set of defined premise variables (computed
from x(r)) and K(z,(t)) to the state-feedback gain from PDC.

State-feedback PDC computes the feedback control action u () from the augmen-
ted state space taking into account the introduction of the Apkarian filter:

0
x(r)—{ X(t) }— 01(1) (2.36)
_ =| o) |- .

It should be noted that for the main control structure, a decoupled estimation of
the states £(¢) is given by the RUIO, which is the one to be used on the augmented
states, as the TIAGo head subsystem only provides as output the angular positions.

The value of the control action u.(¢) is computed as the difference between
Uges(t) and ugy(t), and the control torque 7(r) is obtained by applying the discrete
time formulation of the Apkarian filter. In parallel, the magnitude of the faults on
both axis are estimated according to Equations (2.33) and (2.34) from £,,(¢) and
Xref(t). Their counter values are injected on Ty(¢), obtaining the compensated
control torque Teomp sys(f) that is sent to the TIAGo Head Subsystem, affected by
d(x,t) (which is assumed to include all possible faults in both axis in this scheme).

Finally, both the TIAGo head real subsytem and its model from the reference
structure, update their outputs on the respective injected control torques for the next
time instant # + 1. As already mention before, the real subsystem only provides the
value of 0;(t+ 1) and 6,(r + 1), but for the reference structure all states are known
as its part of the implementation.
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2.6 Application results

To evaluate the proposed fault-tolerant control approach for the addressed problem,
a simulator has been implemented using MATLAB programming environment [23].
The TIAGo head subsystem has been included into the implementation as model in
continuous-time, using the analytic expressions and physical parameters and limits
of the real components. The Dormand-Prince method [24] has been applied to solve
these differential analytic expressions.

For the discrete-time implementation, classical Euler discretization method has
been used, for a sampling time 7y = 10 [ms]. Apkarian filter has been designed
considering this implementation, and it has been determined that its gain y has to be
less or equal to 1 /7 in order to avoid consistency related problems between samples
from consecutive time instants on its application.

The design of the PDC and the RUIO, according to the aforementioned LMIs
and LME:s, has been solved using YALMIP toolbox [25] [26] and SEDUMI optimisa-
tion software [27]. Additional LMIs regarding pole placement have been included
on the design stage, in order to achieve fast response time and zero overshooting on
the PDC, and to avoid couplings between RUIO and the subsystem dynamics (10
times faster). The reader is referred to Reference [17] for more details on them.

According to the given description of the faults considered in this chapter, a
single scenario is contemplated for all the results to be shown. On the Pan (6) axis,
a constant positive torque of dg, =4 N -m is injected at ¢ = 20 s (half of the complete
simulation time). For the Tilt (6,) one, only the aforementioned variable-dependant
effect of the mass of the second link on 6, is present during all the simulation.
The desired positions for 6; and 6, are their upper and lower limits, respectively
(included in Table 2.1). At ¢ = 20 s, position references change to half of these
value.

To demonstrate the effectiveness of the proposed solution, results have been
obtained for methods that incrementally incorporate all the presented techniques
towards the final fault-tolerant control scheme. Thus, the approach is proved against
the results of partial solutions in a incremental improvement fashion. Initially, from
the basic control structure only including the state-feedback PDC, the feedforward
scaling matrix and the Apkarian filter, a classical Luenberger observer [17] is used
to estimate the system states. Then, it is substituted by the RUIO, and finally the
reference control structure and the fault estimation is included. In this latter case, the
fault estimation mechanism is evaluated with and without its compensation.



20  Fault Diagnosis and Fault-Tolerant Control of Robotic Systems

2.6.1 Basic control structure with Luenberger observer

The design of the Luenberger observer has been performed applying the LQC problem
as in the State-Feedback PDC. Also the same aforementioned additional pole placement
LMI conditions for the RUIO have been applied. In Figure 2.7, the evolution of the
system states along the simulation on an scenario without faults (but maintaining the
position references) are included, to be used for determining differences with respect

to 1t.
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Figure 2.7 System states evolution on a non-fault scenario using the basic control
structure with Luenberger observer.

Figure 2.8 shows the same results for the common fault scenario. As expected,
the classical Luenberger observer does not decouple the effects of the fault(s) affecting
the system in any of the axis, producing a noticeable error in the estimation of the
state variables. Also, oscillatory behaviours during the transitory appear in both axis
with respect to results on Figure 2.7, due to the injection of unseen faults within the
control structure. It should be pointed out that as a result from the coupling effects
between both axis, even when there is no fault torque on 0y, the oscillatory behaviour
still remains. Regarding the angular velocities, besides the oscillatory behaviour,
there exist a difference between their estimated and real value also produced due to
the effect of the fault.
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Figure 2.8 System states evolution on fault scenario using the basic control
structure with Luenberger observer.

2.6.2 Basic control structure with RUIO

From previous control structure, the substitution of the classical Luenberger observer
by the RUIO leads to a overall reduction of the estimation errors along with the
cancellation of the oscillatory phenomena on both axis, as it is shown on Figure 2.9.

Although there is a remarkable improvement with respect to the previous control
structure, the presented behaviour does not correspond with the expected one as the
position errors are not null. The RUIO was supposed to completely decouple the
effect of the disturbance from the system states by design, as the LMI conditions
assure that the estimation error converges to zero. As in the results on Figure 2.8,
a nearly equal estimation error appears on both angular velocities. Further analysis
has been performed on this issue, finding that it might be related with the design, as
SEDUMI presents limitied capabilities to solve strict LME.
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2.6.3 Complete fault-tolerant control scheme

With the complete fault-tolerant control scheme, magnitude of faults can be estimated
using the reference control structure. In Figure 2.10, the magnitude of the estimated
injected torques are presented without including its compensation mechanism. They
converge to the real values of the injected faults for both axis, achieving their complete
isolation disregarding the existing coupling effects between axis. Oscillatory effects
appear during the transitory phase on both estimations, being more significant on the
Tilt axis due to the dependency of the affecting fault on 6,.

Results in Figure 2.12 correspond to the evolution of the system states for the
final control scheme compensating the estimated faults. The evolution of the estima-
tions for this case are included in Figure 2.11.

91 92
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0 —-—- Position reference
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0 : ‘ ‘ 1.4 : ‘ ‘
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Figure 2.9 System’s states evolution on fault scenario using the basic control
structure with RUIO.
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Figure 2.10 Fault estimation in Pan and Tilt axis without including its
compensation mechanism.
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Figure 2.11 Fault estimation in Pan and Tilt axis including its compensation
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Obtained results present an improvement with respect to the previous control
structure, but still the position error isn’t null as expected, and there exist a (slightly
reduced) difference between estimated and real position velocities. The cause behind
this issue for this case is related with the error on the faults’ estimation: magnitudes
converge to approximately half the values of the current faults being injected. Further
analysis has been performed, revealing that the estimation within the compensation
mechanism has not fast enough dynamics to avoid that part of the disturbance is
assumed by the RUIO. Thus, the aforementioned problem derived from the design is
induced into the solution, and errors do not converge to zero.
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Figure 2.12  System states evolution on fault scenario using the complete
fault-tolerant control scheme.

Finally, it should be pointed out that some strategies have been evaluated to
overcome this problem, for example weighting the injected estimations by gains
greater than the unit in order to initially over compensate it as in Reference [28].
This strategy led to an improvement in the results, but oscillatory effects (as those
present on the Tilt axis estimation on Figure 2.11) compromised the stability of the
control scheme, so it had to be discarded.
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2.7 Conclusions

In this chapter, the proposed fault-tolerant Model-based control approach for the
head subsystem of a TIAGo humanoid robot has been proved to tackle the stated
problem. Although results show that the problem isn’t completely answered, used
methodology presents a first line of action towards a final fulfilling solution, upon
which improvements can be made.

As future work, the proposed scheme will be implemented in the real system
available at our labs. Other research opportunities regarding this problem can be
related with gaining more information on the fault itself (for example, in the case of
an unexpected collisions, its point of contact) and its integration within a complete
autonomous architecture.
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