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Relative Localization for Aerial Manipulation
with PL-SLAM
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Abstract This chapter explains a precise SLAM technique, PL-SLAM, that allows
to simultaneously process points and lines and tackle situations where point-only
based methods are prone to fail, like poorly textured scenes or motion blurred im-
ages where feature points are vanished out. The method is remarkably robust against
image noise, and that it outperforms state-of-the-art methods for point based contour
alignment. The method can run in real-time and in a low cost hardware.

1 Introduction

The precise localization of an aerial robot is crucial for manipulation. In this sec-
tion, we tackle the task of precise localization relative to a close up workspace for
robot inspection and manipulation. The method requires robustness to poorly tex-
tured surfaces and, when the tracker is lost, relocalize the robot when passing over
an already seen area. SLAM methods have proven effective to accurately estimate
trajectories while keeping record of previously seen areas.

Since the groundbreaking Parallel Tracking And Mapping (PTAM) [3] algorithm
was introduced by Klein and Murray in 2007, many other real-time visual SLAM
approaches have been proposed, including the feature point-based ORB-SLAM [5],
and the direct-based methods LSD-SLAM [2] and RGBD-SLAM [1] that optimize
directly over image pixels. Among them, the ORB-SLAM seems to be the current
state-of-the-art, yielding better accuracy than the direct methods counterparts. How-
ever, it is prone to fail when dealing with poorly textured frames or when feature
points are temporary vanished out due to, e.g., motion blur. This kind of situations
are often encountered in man-made workspaces. However, despite the lack of reli-
able feature points, these environments may still contain a number of lines that can
be used in a similar way.

Building upon the ORB-SLAM framework, we present PL-SLAM (Point and
Line SLAM) [6], a solution that can simultaneously leverage points and lines in-
formation. Lines are parameterized by their endpoints, whose exact location in the



Table 1 Symbols used in the development of the PL-SLAM method.

Definition Symbol

2D detections of lines endpoints [P Q} Ps;q, € R?
Homogeneous 2D coordinates of endpoints detections p,,q, € R? pg, qg cR?
Detected line coefficients

Line reprojection error Eiine
Camera calibration matrix (internal parameters)

i-th camera parameters, 6; = R;, t; 0;
Projection of P into the image plane of camera (6,K) n(P,6,K)
Detected line reprojection error Eline.d
Detected point to line error EpLa
Projection of the j-th point X; € R3 into the i-th keyframe X j
Estimation error for X; in i-th keyframe €ij

Cost function to minimize during Bundle Adjustment C

Hubert robust cost function p
Covariance matrices for the detection scales Q;;, Q; js Q7 j

image plane is estimated following a two-step optimization process. This represen-
tation is robust to occlusions and mis-detections and enables integrating the line rep-
resentation within the SLAM machinery. The resulting approach is very accurate in
poorly textured environments, and also, improves the performance of ORB-SLAM
in highly textured sequences.

2 PL-SLAM method

PL-SLAM pipeline highly resembles that of ORB-SLAM, in which we have inte-
grated the information provided by line features (see Fig. 1). We next briefly review
the main building blocks in which line operations are performed. For a description
of the operations involving point features, the reader is referred to [5]. First, point
and line features are detected using [8] an LSD [11], respectively. Then, after having
obtained an initial set of map-to-image point and line feature pairs, all features of
the local map are projected onto the image to find further correspondences. If the
image contains sufficient new information about the environment, it is flagged as a
keyframe and its corresponding points and lines are triangulated and added to the
map. To discard possible outliers, features seen from less than three viewpoints or
in less than 25% of the frames from which they were expected to be seen are dis-
carded too (culling). Point and line features position in the map are optimized with
a local BA. Note in Fig. 1 that we do not use lines for loop closing. Matching lines
across the whole map is too computationally expensive. Hence, only point features
are used for loop detection.

We next describe the line parameterization and error function as well as their
integration within the main building blocks of the SLAM pipeline, namely bundle
adjustment and global re-localization.



In order to extend the ORB-SLAM [5] to lines, we need a proper definition of
the reprojection error and line parameterization. Following [10], let P,Q € R3 be
the 3D endpoints of a line, py,qq € R? their 2D detections in the image plane, and
pg,qg € R3 theirs corresponding homogeneous coordinates. From the latter we can
obtain the normalized line coefficients as:
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The line reprojection error Ey is then defined as the sum of point-to-line dis-
tances Ej between the projected line segment endpoints, and the detected line in the
image plane (see Fig. 2-right). That is:

Eline(Pa Qa la O,K) = Eg] (P’la 07K) +E§I(Q7la 97 K)a (2)
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Fig. 1 PL-SLAM pipeline, an extension of the ORB-SLAM [5] pipeline. The system is composed
by three main threads: Tracking, Local Mapping and Loop Closing. The Tracking thread estimates
the camera position and decides when to add new keyframes. Then, Local Mapping adds the new
keyframe information into the map and optimizes it with BA. The Loop Closing thread is constantly
checking for loops and correcting them.
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where 1 are the detected line coefficients, (P, 0,K) represents the projection of
the endpoint P onto the image plane, given the internal camera calibration matrix
K, and the camera parameters 8 = {R,t} that includes the rotation and translation
parameters, respectively.

Note that in practice, due to real conditions such as line occlusions or mis-
detections, the image detected endpoints py and q4 will not match the projections
of the endpoints P and Q (see Fig. 2-left). Therefore, we define the defected line
reprojection error as:

Biine.d(Pa> 4a>1) = B a(Pa:1) + B a(qa, D), 4)

where 1 is the projected 3D line coefficients and the detected point-to-line error is
Epia(pg,1) =1"py.

Based on the methodology proposed in [10], a recursion over the detected repro-
jection line error will be applied in order to optimize the pose parameters 6 while
approximating Ejiqe ¢ to the line error Ej;pe defined on Eq. (2).

The camera pose parameters 6 = {R,t} are optimized at each frame with a Bun-
dle Adjustment with Points and Lines strategy that constrains 0 to lie in the SE(3)
group. For doing this, we build upon the framework of the ORB-SLAM [5] but
besides feature point observations, we include the lines as defined in the previous
subsection. We next define the specific cost function we propose to be optimized by
the BA that combines the two types of geometric entities.

LetX; e IR3 be the generic j-th point of the map. For the i-th keyframe, this point
can be projected onto the image plane as:
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Fig. 2 Left: Notation. Let P,Q € R? be the 3D endpoints of a 3D line, p,q € R? their projected
2D endpoints to the image plane and 1 the projected line coefficients. py,qq € R? the 2D endpoints
of a detected line, Py, Qg € R3 their real 3D endpoints, and 1 the detected line coefficients. X € R3
is a 3D point and X € R? its corresponding 2D projection. Right: Line-based reprojection error.
dy and d, represent the line reprojection error, and d| and d} the detected line reprojection error
between a detected 2D line (blue solid) and the corresponding projected 3D line (pink dashed).
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where 6; = {R;,t;} denotes the specific pose of the i-th keyframe. Given an obser-
vation x; ; of this point, we define following 3D error:

€ij =Xij—Xij- (6)

Similarly, let us denote by P; and Q; the endpoints of the j-th map line segment.
The corresponding image projections (expressed in homogeneous coordinates) onto
the same keyframe can be written as:

ﬁ:l]:n.(P]aeHK)’ (7)

Then, given the image observations p; ; and q; ; of the j-th line endpoints, we use

Eq. (1) to estimate the coefficients of the observed line T, j- We define the following
error vectors for the line:

e ;=) (K'p})), 9)
e/, =) (K'q})). (10)

The errors (9, 10) are in fact instances of the point-to-line error (3). As explained
in [10] they are not constant w.r.t. shift of the endpoints P;, Q; along the corre-
sponding 3D line, which serves as implicit regularization allowing us to use such a
non-minimal line parametrization in the BA.

Observe that representing lines using their endpoints we obtain comparable error
representations for points and lines. We can therefore build a unified cost function
that integrates each of the error terms as:

C=)pr (eIJQifjleid + e;,jTQ?,fle?,j + e;'ijTQZflem
i,j
where p is the Huber robust cost function and €, ;, .Q; i .Qf' ; are the covariance
matrices associated to the scale at which the keypoints and line endpoints were
detected, respectively.

An important component of any SLAM method is the Global Relocalization, an
approach to relocalize the camera when the tracker is lost. This is typically achieved
by means of a PnP algorithm, that estimates the pose of the current (lost) frame given
correspondences with 3D map points appearing in previous keyframes. On top of the
PnP method, a RANSAC strategy is used to reject outliers correspondences.

In the ORB-SLAM, the specific PnP method that is used is the EPnP [4], which
however, only accepts point correspondences as inputs. In order to make the ap-
proach appropriate to handle lines for relocalization, we replace the EPnP by the
recently published EPnPL [10], which minimizes the detected line reprojection er-
ror of Eq. (4).



Absolute KeyFrame Trajectory RMSE [cm]

TUMRGB-D | PL-SLAM |PL-SLAM| o5 ) M| pTAMY |LSD-SLAM'|RGBD-SLAM!
Sequence  |Classic Init| Line Init

flxyz 121 1.46 138 .15 9.00 134
2xyz 043 1.49 0.54 02 2.15 2,61
f1_floor 7.59 9.42 871 5 38.07 351
2360 kidnap | 3.92 60.11 499 2.63 5 3933
f3long office | 1.97 533 4.05 - 38.53 5
£3_nstr_tex_far a(ﬁ‘f;f?e‘;y 37.60 ag:t’;ile‘éy 3474 | 1831 ;
f3_nstr_tex_near 2.06 1.58 2.88 2.74 7.54 -
f3 _str_tex_far 0.89 1.25 0.98 0.93 7.95 -
f3_str_tex_near 1.25 7.47 1.5451 1.04 - -
f2_desk_person 1.99 6.34 5.95 - 31.73 6.97
3ositxyz 0.066 9.03 0.08 0.83 773 N
f3osithalfsph | 1.31 9.05 148 5 587 N
Bowalkxyz | 154 [UTOEUY) g - 12.44 -
f3_walk_halfsph|  1.60 ag:t’éffe‘;y 2.09 . ; .

Table 2 Localization accuracy in the TUM RGB-D Benchmark [9]

Furthermore, EPnPL is robust to partial line occlusion and mis-detections. This is
achieved by means of a two-step procedure in which first minimizes the reprojection
error of the detected lines and estimates the line endpoints py, q4. These points, are
then shifted along the line in order to match the projections py, qq of the 3D model
endpoints P, Q (see Fig. 2). Once these matches are established, the camera pose
can be reliably estimated.

3 Experiments for validation of the method

To validate the method, Table 2 presents the the localization accuracy of PL-
SLAM [6] against other state-of-the-art Visual SLAM methods, including ORB-
SLAM [5], PTAM [3], LSD-SLAM [2] and RGBD-SLAM [1] using the TUM
RGB-D benchmark [9]. The metric used for the comparison is the Absolute Tra-
jectory Error (ATE), provided by the evaluation script of the benchmark. Before
computing the error, all trajectories are aligned using a similarity warp except for
the RGBD-SLAM [1] which is aligned by a rigid body transformation. All experi-
ments were carried out with an Intel Core 17-4790 (4 cores @3.6 GHz), 8Gb RAM
and ROS Hydro [7]. Due to the randomness of the some stages of the pipeline, e.g.,
initialization, position optimization or global relocalization, all experiments were
run five times and we report the median of all executions.
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Fig. 3 ORB-SLAM [5] vs PL-SLAM [6]. Comparison of the trajectories obtained using the state-
of-the-art point-based method ORB-SLAM and the proposed PL-SLAM, in a TUM RGB-D se-
quence. The black dotted line shows the ground truth, the blue dashed line is the trajectory obtained
with ORB-SLAM, and the green solid line is the trajectory obtained with PL-SLAM. Note how the
use of lines consistently improves the accuracy of the estimated trajectory.

Note that PL-SLAM consistently improves the trajectory accuracy of ORB-
SLAM in all sequences (see Fig. 3 for a comparison example). Indeed, it yields the
best result in all but two sequences, for which PTAM performs slightly better. Nev-
ertheless, PTAM turned not to be so reliable, as in 5 out of all 12 sequences it lost
track. LSD-SLAM and RGBD-SLAM also lost track in 3 and 7 sequences, respec-
tively. PL-SLAM builds upon the architecture of the state-of-the-art ORB-SLAM
and modifies its original pipeline to operate with line features without significantly
compromising its efficiency.

Real-life experiments where done in the Karting experimental site where most
of the methods where tested in real-life conditions in the AEROARMS project. The
method was implemented using a monochromatic camera located at the bottom of
the aerial robot. Fig. 4 shows the points and lines detected using the PL-SLAM,
and the trajectory followed by the aerial robot before (BSC) and after (ASC) scale
convergence. The scale is computed in the beginning of the fly to obtain the real
scale and once the estimated map scale has converged, we compare the estimated
distance of the robot from the ground against the real one. To obtain the real height,
a laser pointer was installed in the bottom of the robot pointing to the ground and
corrected with the relative angles of the robot.

The Karting presents a challenging scenario as it contains: (1) visual features at
a long distance and (2) apparent lines. Long distant features are prone to error as
small movements of the robot correspond to large displacements of the observed
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Fig. 4 Real-life experiments in the Karting experimental site. The figure shows the pipe in the
Karting experimental site and the trajectory obtained after (blue) and before (red) scale conver-
gence. The figure also shows the points and line detected with the method.

point. Small errors in the estimation of this points would cause large penalties in
optimization of the 3D map. To overcome these penalties, long distant points were
removed by the points culling filter. Similarly, the apparent lines (not real lines)
of the scene, e.g. the pipe contours, were also filtered with the same mechanism to
prevent the Bundle Adjustment from trying to fit non-real scene landmarks in the 3D
map. The experiment concluded that the method can robustly operate on challenging
scenarios with noisy landmarks.

4 Conclusions

In this chapter we have presented PL-SLAM [6], an approach to visual SLAM that
allows to simultaneously process points and lines and tackle situations where point-
only based methods are prone to fail, like poorly textured scenes or motion blurred
images where feature points are vanished out. We have also developed a novel line-
based map initialization approach, which estimates camera pose and 3D map from
5 line correspondences in three consecutive images. This approach holds on the as-
sumption of constant and small inter-frame rotation in these three images. We have
shown that this indeed is a good approximation for many situations and showed
consistent improvement w.r.t. current competing methods results when evaluating
the full pipeline on the TUM RGB-D benchmark. To the best of our knowledge,
the continuous contours based relative localization approach has not been studied
before, even though it provides a very natural measure of alignment error without



the need of correspondences. The experiments concluded that the method is remark-
ably robust against image noise, and that it outperforms state-of-the-art methods for
point-based contour alignment. The method was also tested in the Karting experi-
mental site were most of the AEROARMS methods were tested. The method can
run in real-time and in a low cost hardware.

References

L.

2.

3.

10.

11.

F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-D mapping with an RGB-D
camera. TRO, 30(1):177-187, 2014.

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular SLAM. In
ECCYV, pages 834-849. Springer, 2014.

G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In ISMAR,
pages 225-234. IEEE, 2007.

. F. Moreno-Noguer, V. Lepetit, and P. Fua. Accurate non-iterative O(n) solution to the pnp

problem. In ICCV, pages 1-8. IEEE, 2007.

. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés. ORB-SLAM: a versatile and accurate

monocular slam system. TRO, 31(5):1147-1163, 2015.

. A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer. PL-SLAM: Real-

Time Monocular Visual SLAM with Points and Lines. In International Conference in Robotics
and Automation, 2017.

. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS:

an open-source robot operating system. In /CRAW, volume 3, page 5. Kobe, Japan, 2009.

. Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative

to sift or surf. In Computer Vision (ICCV), 2011 IEEE international conference on, pages
2564-2571. IEEE, 2011.

. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evalua-

tion of RGB-D SLAM systems. In /ROS, Oct. 2012.

A. Vakhitov, J. Funke, and F. Moreno-Noguer. Accurate and linear time pose estimation from
points and lines. In ECCV, 2016.

R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. LSD: a line segment detector.
IPOL, 2:35-55, 2012.



	Relative Localization for Aerial Manipulation with PL-SLAM
	Introduction
	PL-SLAM method
	Experiments for validation of the method
	Conclusions
	References


