Probabilistic Planning for Robotics with ROSPlan*

Gerard Canal!, Michael Cashmore?, Senka Krivi¢?, Guillem Alenya!, Daniele
Magazzeni?, and Carme Torras!

! Institut de Robotica i Informatica Industrial, CSIC-UPC, Barcelona, Spain
{gcanal,galenya, torras}@iri.upc.edu
2 Department of Computer Science, King’s College London, United Kingdom
name.surname@kcl.ac.uk

Abstract. Probabilistic planning is very useful for handling uncertainty in plan-
ning tasks to be carried out by robots. ROSPlan is a framework for task planning
in the Robot Operating System (ROS), but until now it has not been possible to
use probabilistic planners within the framework. This systems paper presents a
standardized integration of probabilistic planners into ROSPlan that allows for
reasoning with non-deterministic effects and is agnostic to the probabilistic plan-
ner used. We instantiate the framework in a system for the case of a mobile robot
performing tasks indoors, where probabilistic plans are generated and executed
by the PROST planner. We evaluate the effectiveness of the proposed approach
in a real-world robotic scenario.

1 Introduction

Planning for robotics means planning in dynamic and uncertain domains, in which the
outcomes of actions can have a reasonable chance of failure, or non-deterministic ef-
fects, for example in complex manipulation tasks and navigation in crowded spaces.
Probabilistic planning is an approach to plan under uncertainty, commonly meaning
planning with probabilistic action effects. A probabilistic planner tries to maximize the
probability of success of a plan.

In many domains it is possible to ignore the probabilistic nature of the environ-
ment by generating deterministic plans, and replanning when they fail during execu-
tion. However, for some problems it is advantageous to consider the probabilities: for
example when there is more than one path to the goal and those paths have different
associated rewards and probabilities of success, or the state-space includes dead-end
states. Given different paths to a goal, the paths with higher associated rewards might
counterintuitively be those that are longer, or otherwise the cost structure might be far
from obvious. These kinds of problems are termed probabilistically interesting [20].

* This work has been supported by the ERC project Clothilde (ERC-2016-ADG-741930), the
HuMOoUR project (Spanish Ministry of Science and Innovation TIN2017-90086-R) and by
the Spanish State Research Agency through the Marfa de Maeztu Seal of Excellence to IRI
(MDM-2016-0656). G. Canal is also supported by the Spanish Ministry of Education, Culture
and Sport by the FPU15/00504 doctoral grant and the mobility grant EST17/00371. The re-
search from KCL was partly supported by Korea Evaluation Institute of Industrial Technology
(KEIT) funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 1415158956).

2 Canal et al.

Fig. 1. The scenario in which we test the proposed system is an office environment. A mobile
robot, the TurtleBot 2* is used for the print-fetching service. When the robot gets a request for
fetching prints, it decides from which printer to collect them. Since it is not equipped with an
arm, it asks a random nearby person to put prints on it, and delivers them to the user.

Robotics domains are often probabilistically interesting. For example, an autonomous
robot in a dynamic environment can easily move into a state from which it does not have
the capability to recover by itself, requiring human intervention. Therefore, robots are
often expected to follow the slower, safer paths to the goal to avoid failure. However, by
reasoning over the probabilities during planning, more efficient solutions can be found.

The Relational Dynamic Influence Diagram Language (RDDL) is a stochastic do-
main description language for probabilistic planning. The International Probabilistic
Planning Competition (IPPC) uses RDDL [25] for probabilistic planning problems.
RDDL is well-suited to describing probabilistically interesting problems, using a dy-
namic Bayes net formalism [8], as opposed to the effects-based (P)PDDL. Subsequently,
both the first and second-place entries in the 2012 IPPC were planners that actively rea-
soned with probabilities: PROST [16], used in our experiments; and Glutton [17].

The ROSPlan framework [6] provides a standard approach for planning in the Robot
Operating System (ROS). Until now, one drawback of ROSPlan is that it has been lim-
ited to deterministic and contingent planning, using PDDL2.1 [9], and is not suitable
for probabilistic planning. The main contributions of this paper are: (i) A standard-
ized integration of RDDL and ROSPlan, enabling the straightforward application of the
probabilistic planning in robotic domains using ROS. (ii) A demonstration of a mobile
robot autonomously generating and executing probabilistic plans using this integration
in an extensible RDDL domain. We extend ROSPlan to handle RDDL semantics, pro-
duce RDDL problem instances, and interface with any RDDL planner that can be used
with the RDDLSim server used in the IPPC. In addition, we extend the action inter-
face of ROSPlan, which handles the execution of discrete actions, to reason with non-
deterministic effects. To enable distinction between deterministic and non-deterministic
effects, we identify two kinds of propositions: sensed, whose truth value can be sensed
by the agent during execution, and so can be included within a probabilistic effect; and
non-sensed, which can only produce deterministic effects.’

We test the system in a mobile robot scenario and define a challenging print-fetching
domain where the robot is used as a service robot for fetching printed documents in
an office (Figure 1). Human-robot interaction supplements the lack of manipulation

4
https://www.turtlebot.com/

The source code of the elements described in this paper can be found in the main ROSPlan repository https://
github.com/KCL-Planning/ROSPlan

Probabilistic Planning for Robotics with ROSPlan 3

abilities of the used robot, thus allowing it to perform this task. A real-world evaluation
is carried out in an environment with high uncertainty.

2 Related work

There are numerous approaches addressing uncertainty in the planning and execution
process e.g. conformant planning [26], contingent planning [2] or replanning [29].
Other approaches use machine-learning techniques to decrease uncertainty in the plan-
ning problem, e.g. [7] learn probabilistic action models and [18] remove uncertainty
in state prior to planning by making predictions based on initially known data. Also,
there is work on building architectures that involve reactive components to cope with
uncertainties in robotics domains [15]. ROSPlan has been used to perform planning for
control of multiple-robot systems running with ROS [4, 6]. However, all of these works
focus on purely deterministic planning.

Furthermore, probabilistic planning is a standard approach for planning with un-
certainty in robotics. An overview of approaches to probabilistic planning is provided
in [10]. The most common approach to planning with uncertainties in robotics is mod-
elling the task as a Markov Decision Problem (MDP), optionally a partially-observable
MDP (POMDP). In contrast to deterministic planning, notably the PDDL2.1 [9] for-
malism used so far with ROSPlan [6], robotics scenarios must often cope with exoge-
nous and uncontrollable events [22], which can be easily modelled as POMDPs [21].
Solutions to the MDPs for robotics can form policies with finite horizon [3], adopt a
satisficing approach [19], or maximize the probability of reaching a goal state [23].
RDDL [25] is well-suited for modelling problems of this kind. It is a dynamic Bayes
net formalism, allowing for unrestricted concurrency. This is an essential component in
robotics applications, in which the agent must execute the plan in a physical environ-
ment. For example, in multi-robot navigation scenarios in which motion is stochastic
from the perspective of the planning model.

Atrash and Koenig [1] note that POMDP planning policy graph solutions are similar
to the finite-state machines normally used for control. As a result, it has been applied
successfully in many robotic use cases featuring uncertainty, such as robotic exploration
missions [27]; or those with action outcomes that are inherently non-deterministic, such
as manipulation problems [14], human-robot interaction [12] and physically assistive
robotics [5]. The office setting is a common environment for autonomous service robots,
and can exhibit these kinds of uncertainty. Examples are collaborative robots servicing
human indoor environments [28] and an office-guide robot for social studies [24].

3 System Description

In order to include the ability of planning with probabilistic domains within the ROS-
Plan framework, we have designed and implemented a new Knowledge Base and prob-
lem generator that are able to handle probabilistic planning problems written in RDDL.

4 Canal et al.

— state/rddl_parameters

domain_path

problem_path

- state/discount_factor

parameters state/horizon

domain/operators ‘dmﬂm/pfﬁd'ca‘es‘ ‘ domain/name ‘ |-l state/max_nondef actions

f i i Knowledge
b ' i Base

‘ domain/types ‘

RDDL-specific services

domain/operator_details domain/functions

query_state

‘ state/metric ‘ ‘ state/goals ‘ state/propositions

i 1 1
b

update

i

clear

d ‘ function: ‘ ‘ statefinstances

update and query services

Fetch domain and current state services

Fig. 2. ROSPlan’s Knowledge Base interface. The RDDL services are highlighted.

RDDL Knowledge Base The Knowledge Base (KB) in ROSPlan stores the current
model of the environment. It is an interface for updating and fetching a PDDL model
in ROS, and primarily consists of a set of ROS services forming this interface. These
services are used by many other components of ROSPlan, most of which require state
or domain information, such as problem generation and plan execution and validation.

The integration of RDDL with the ROSPlan KB adheres to the existing interface
for two reasons: to preserve compatibility with systems already using ROSPlan, and to
allow for the interchange of RDDL and PDDL KBs. Therefore, the RDDL KB translates
the RDDL domain and problems to PDDL-like structures. Given that RDDL is more
expressive than PDDL, the RDDL KB also extends the interface with new ROS services
providing RDDL-specific functionality. Figure 2 shows the extended KB interface.

To process the RDDL domain into a PDDL-like structure, action-fluents are mapped
to PDDL operators, and state-action constraints (also called action-preconditions in
newer versions) are encoded as PDDL preconditions in the following way:

1. The constraints are searched to find those of the form action- fluent — (formula).
2. When found, the right hand side is encoded as an action precondition.

We assume the formula only includes conjunctions of state fluents. This is due to a
current limitation of ROSPlan, which does not support quantified or disjunctive condi-
tions in PDDL.

Action effects are obtained from conditional probability functions (cpfs). This block
describes how each fluent changes at each time step, determined by the current state
and actions. In order to obtain the effects of an operator, the cpfs block is processed for
each action fluent. As a new feature, probabilistic effects are also considered and added
to the Knowledge Base. We only consider probabilistic effects to be of the RDDL’s
Bernoulli distribution and Discrete distribution types. Stochastic effects are processed
in a similar way to non-probabilistic ones, but when the result of the cpf expression
is probabilistic, the effect is added to a new effect list with an associated probability
formula. In order to provide information on exogenous effects, a new operator named
exogenous is created. This operator has as its effects all the exogenous effects that may

Probabilistic Planning for Robotics with ROSPlan 5

happen but are not related to any specific action-fluent. Effects of this kind are otherwise
considered in the same way as the effects of other operators. Finally, the reward function
is fully instantiated and represented as a PDDL metric function, with the metric set to
be maximized. In the case where there is a state-fluent named “goal”, its expression
from the cpfs block will be included as the PDDL goal.

Although some assumptions are made, such as the conjunctive-only preconditions,
it should be noted that these assumptions apply only to the RDDL domain file, which
will not be modified when loaded into the KB. Instead, it is passed entirely to the plan-
ner. Therefore, although some elements of the domain may be unknown by the KB, the
problem is entirely captured, and the planner will still provide correct plans.

Problem Generation The ROSPlan Problem Interface node is used to generate a prob-
lem instance. It fetches the domain details and current state through service calls to a
Knowledge Base node and publishes a PDDL problem instance as a string, or writes it
to file. To be able to use a planner with a RDDL input, a RDDL Problem interface has
been implemented.

The generation of the RDDL problem requires checking operator effects to find
which predicates change due to some operators (the state fluents) and which are static
for the planning problem (called non-fluents). Additionally, the planning horizon and
the discount factor are set by default, or from RDDL-specific services in the KB. A fea-
ture of this approach is that as the KB interface is common for both RDDL and PDDL,
ROSPlan can generate problems independently of the which KB is used. Thus, a RDDL
instance file can be generated from a PDDL instance and vice versa. The requirement is
that that both domains share the same structure (i.e., operators and predicates). There-
fore, it is now very simple to have both deterministic and probabilistic planners running
together, for example, for plan checking and validation or in a planning system com-
posed of both stochastic and deterministic planners.

domain_path +-,

Problem
Interface

problem instance

Planner
Interface

IPPC Server Connection

problem_path -

Base

query_state

update
Sensing
Interface

sensor_configuration

RDDL Plan
Dispatch

j action feedback
action dispatch

Fig. 3. The system architecture used in our scenario. ROS nodes are represented by ovals, and
implement the ROSPlan interfaces. Message and service topics are represented by solid boxes,
parameters by dotted boxes.

6 Canal et al.

4 Online Planning and Execution with RDDL Planners

ROSPIlan provides two plan dispatchers: the simple plan dispatcher for non-temporal,
sequential plans, and the Esterel plan dispatcher for temporal plans with concurrency.
Both dispatchers require as input a complete plan produced offline. For stochastic plan
execution with RDDL, a third plan dispatcher was designed and implemented that al-
lows the use of online planners (Figure 3: Nodes Planner Interface and RDDL Plan
Dispatch). The online plan dispatcher interleaves plan execution and computation, re-
moving the need of computing an offline plan and replanning when an action fails.

The online dispatcher uses the RDDL Client/Server protocol, also used by the com-
petition server for the IPPC. In each round, the dispatcher obtains the world’s state from
the Knowledge Base and sends it to the planner, which returns the actions to be exe-
cuted in the next time step. This process is repeated until the planner has reached the
horizon defined in the instance file, in which case the planning process can be repeated
when the task is not yet finished. With this dispatcher, any RDDL planner that uses the
RDDL Client/Server protocol can be used with ROSPlan with no extra effort.

4.1 Action Execution with Non-deterministic Effects

A robotic system interacting with the real world must keep the symbolic state of the
task up to date, based on its sensory inputs. This means updating the Knowledge Base
at a fixed rate such that the state is updated before each action is planned and executed.
This is crucial in probabilistic planning, as with non-deterministic action outcomes it is
not possible to assume that the effects of each action can be applied to the state. Instead,
sensing is required to determine which outcome occurred. Therefore, we implemented a
new sensing interface (Figure 3: Sensing Interface) that allows the definition of “sensed
predicates and functions”, which are those whose values are obtained from sensor data.

The sensing interface automatically obtains the sensor data, processes it based on a
minimal code definition, and updates the Knowledge Base accordingly at a fixed rate. At
the same time, the KB is updated to include the information regarding which proposi-
tions are sensed or not, such that effects on the sensed propositions are not automatically
applied when an action is executed. The sensed predicates are defined in a configura-
tion file in which is specified: (1) the predicate label; (2) the parameters of the predicate
which can be instantiated, and those which are fixed; (3) the sensor containing the re-
quired data, expressed as a ROS topic or service; (4) the message type of the data; (5)
a single line of code whose result will be the value assigned to the predicate in the KB.
Here we show an example of this configuration for a predicate:

1. docked:

2 — params kenny

3. - /mobile_base/sensors/core

4 - kobuki_msgs/SensorState

5 - msg.charger != msg.DISCHARGING

This configuration shows (line 1) the name of the predicate, docked; (line 2) that the
single parameter of the predicate is fixed, so that this configuration is sensing the value
of the proposition (docked kenny); (line 3 and 4) the ROS topic to which the sens-
ing interface will subscribe and the message type; and (line 5) a single line of code that
returns a Boolean result to be assigned to the proposition.

Probabilistic Planning for Robotics with ROSPlan 7

If a more complex processing needs to be done, the interface can be linked with
another file containing the implementation for each predicate, in which any kind of
program can be defined in order to process the sensor data.

5 Example System and Scenario

We have used the RDDL nodes in our example scenario, using the system architecture
shown in Figure 3. In this system, the RDDL Knowledge Base loads the RDDL domain
and initial state. The Problem Interface requests the domain and state information to
generate a RDDL problem instance. The Planner Interface and RDDL Plan Dispatch
communicate through the IPPC server interface, as described above, suggesting and
dispatching actions. The sensing interface is also being used to instantiate the predicates
based on sensor data and update the state accordingly.

To demonstrate the effectiveness of the developed framework, we have tested it in
a scenario in which a mobile robot fetches printed documents in a large office building.
This scenario involves a high degree of uncertainty, since the environment is dynamic
and humans can obstruct the corridors and printers. The scenario also involves human-
robot interaction, which is intrinsically uncertain.

Scenario description The robot operates in a single-floor office environment with
16 offices shown in Figure 4. There are three printers distributed along the corridor.
The robot can trigger printing on any of these printers when a request is made. Since
the mobile robot is not equipped with an arm, the robot can request human assistance
to place the papers onto its tray. There are many employees working in this area, and
the corridor is usually dynamic. The robot relies on the fact that someone will pass by
and assist the robot upon request. However, it can happen that there is no one at the
printer and the robot has to wait or go to another printer. Once the documents are on the
carrier, the robot brings them to the person who made request. It is important to note
that printers can be occupied, in which case the robot will have to wait. Moreover, the

Fig. 4. (a) The layout of office environment where the robot is operating. The corridor is marked
with the green color and printers are marked with yellow boxes. The orange boxes denote po-
tential goal destinations. (b) A screenshot of the visualization tool RViz taken while performing
experiments. It shows the map of the corridor and a green line indicating the robot’s current path.

8 Canal et al.

robot will know whether there is somebody there to assist or if the printer is busy until
it has arrived to the printer. Figure 1 shows an example of the scenario.

This scenario could be well-suited to be modeled as a Partially Observable Markov
Decision Process (POMDP), as there are fluents that cannot be known until observed,
such as the presence or absence of people near the printer. Also, it could be modeled as
an Stochastic Shortest Path (SSP) problem, given that the scenario is goal-oriented in
that the robot has to deliver the printed papers to a specific location. However, given the
lack of available out-of-the-box solvers for both POMDPs and SSPs, we have modeled
the problem as an MDP where a positive reward is given only once the goal is reached.

5.1 Print-fetching domain

In order to run the scenario on both PDDL and RDDL planners, a domain model has
to be written in each language®. Care must be taken to ensure that the state transition
in both domains remains identical, with the exception of probabilistic effects. While
the RDDLSim software used to run the IPPC includes an automatic translation from
RDDL to a subset of PPDDL, to properly determinize the domain we performed this
translation by hand. In future work we intend to investigate the prospect of using the
Knowledge Base to perform this determinization automatically.

RDDL domain description The print-fetching domain in RDDL is made of seven
action fluents: one for moving (goto_waypoint), two actions for interacting with the
user and asking him/her to load or take the printed papers, two for waiting for the user
to do it, and the ones for docking and undocking the robot to the charging station.
A fluent named goal is used to specify the goal condition, such that the final reward
is given only once the goal is reached, thus simulating a goal-oriented MDP. In the
print-fetching domain the goal is to deliver the printed papers to a specific location.
The domain has two stochastic fluents, both sampled from a Bernoulli distribution. One
represents whether there is somebody to help the robot in one location, and the second
specifies whether a printer is being used or not, being the parameter of the Bernoulli
distribution dependant on the location. Finally, the reward function provides a positive
reward when the goal is reached and the robot is docked, and then some penalizations,
considered as costs, for moving (weighted by the distance of the moving action), waiting
in a printer where there is nobody to help, and waiting in a printer which is busy.

6 Experiments

In our experiments we used a mobile robot (TurtleBot 2). The robot is equipped with a
Kinect sensor which is used for both mapping and navigation [11]. Experiments were
run in a real-world office environment where people were performing their regular daily
activities. Therefore, corridors were crowded and the robot had to avoid obstacles while
performing the task. All actions used in the scenario were implemented, apart for the
detection of paper placement and human presence perception, which were simulated.
An implementation of these actions is not in the scope of this paper.

® Both PDDL and RDDL domains can be found here: https://github.com/m312z/
KCL-Turtlebot/tree/master/domains

Probabilistic Planning for Robotics with ROSPlan 9

Printer| Events Probability of the event Experiments| Start position |Delivery goal|Printer|Printers occupancy [Nearby person
P1 Occupancy 0.5 P1 free yes
P1 |Nearby person 0.9 1 Prof. Office PhD Area P2 free no
P2 Occupancy 0.2 P3 free no
P2 |Nearby person 0.4 P1 free yes
P3 Occupancy 0.8 2 PhD Area Kitchen P2 free yes
P3 |Nearby person 0.5 P3 busy yes
Table 1. Prior probabilities of Pl busy yes
in th . 1 Docking station| Prof. Office | P2 free no
events in the experimental setup. P3 busy yes
The same values are used in the Table 2. Experimental setups. For each setup and planning ap-
problem definition of RDDL. proach we run 5 tests.

We tested the system architecture shown in Figure 3 using the probabilistic planner
PROST [16] and compared with the default ROSPlan system using the PDDL 2.1 plan-
ner Metric-FF [13]. The goal for both planners is to deliver the printed papers in the
shortest time. There were two sources of uncertainty in the scenario whose prior proba-
bilities were modeled in the RDDL domain: (1) the presence of people near the printer
and (2) the occupancy of the printer. The values are given in Table 1. When using the
deterministic planner (Metric-FF), the system replanned in the case of an action failure.

6.1 Results

We performed three different real-world robotic experiments which represented three
situations obtained by sampling the events of person near the printer and occupancy of
the printer. These experiments are described in Table 2. For each experiment we applied
both planning approaches in five executions. A fourth experiment has been simulated.

As a measure of effectiveness we compare total time of execution, time of planning
and robot travel distance. To measure execution time, we measure from the start of
planning until the robot completes the task. To measure planning time: (1) in the case
of Metric-FF replanning can be performed several times, so the total planning time is
the sum of these planning episodes; (2) in the case of PROST, planning is performed
before each action is taken so total planning time is the sum of the time to produce each
action. The travel distance is the length of the path that the robot traveled.

The results of all three experiments are shown in Figure 5. Experiment 1 demon-
strates the advantage of probabilistic planning. In this set up, the robot can only succeed
in printer P1, though when only the traveled distance is considered, P3 would be the
best option. In order to minimize the expected duration of the plan, the Metric-FF plan-
ner chose to visit printers P2 and P3 without taking probabilities of events into account.
As these printers were empty, the plan execution failed and replanning was performed
both times, to finally succeed when visiting P1. On average, the Metric-FF planner
had to replan 4 times in each test run of this experiment. In contrast, the probabilistic
approach attempted to use printer P1 first’.

Experiment 2 shows a simple case where conditions are optimal for a deterministic
planner (no unexpected effects). In this case, P1 and P2 are the best option to select. As
expected, the Metric-FF planner did not have to replan at all, as the best solution was the
one selected in the first attempt. Therefore, it exhibits a shorter planning and execution

7 A video demonstration of this setup can be found in https://youtu.be/aoczTz4Ex7PI

10 Canal et al.

time than the probabilistic planning approach. The distance is still approximately the
same, because only in one case did PROST not find the optimal solution.

Experiment 3 shows a case where the available printers are busy, therefore forcing
the robot to either wait for the printer to become available or to try another printer. In
this case, we simulate the printer to be busy for one action execution. Therefore the
printer will become available if the robot waits until a timeout and checks again, or if
the robot goes to another location and comes back to a visited printer which was busy.
The observed behavior for the deterministic planner in this case was to visit the closest
printer P1, which was busy, then visit printer P2, which was empty, the printer P3,
which is also busy, to finally succeed at P1. In contrast, the stochastic planner went
to printer P1, waited for it until timeout, and then waited again, obtaining the papers
in this second step. This behavior was obtained due to the planner having the certainty
of eventually having someone to help at printer P1, though there was uncertainty of
succeeding if other printers were visited.

The standard deviation (o) in distance and execution time is small for PDDL, and
large for RDDL. This is because the deterministic planner always chooses the plan that
is optimal in time and distance, and in fact the o comes only from real-world execution.
The variance seen in PDDL is due to the navigation system and person interaction. In
contrast, PROST produces different plans depending upon the probabilities of events,
which can vary greatly in execution time and distance travelled. The ¢ in planning time
is greater for the PDDL planner. This is due to the impact of the replanning attempts.

A final simulated experiment has been performed to further show the effects of the
probabilities in the planning scenario we proposed. The setup for this experiment was
the robot starting at the PhD Area, and the delivery goal was the Professor’s office. For
this experiment, 500 executions with both the deterministic planner and the stochastic

Experiment 1 Experiment 2

Distance [m] Execution time [s] ., Planning time [s] 45 Distance [m] Execution time [s] , , Planning time [s]
450 =

I 12| . 240 12|

90 1400| 40
10 [220] 10

350 8
8 35 [200]
70 6
300 6 180
= a4
250 4 i 2|
2

PDDL RDDL PDDL RDDL PDDL RDDL PDDL RDDL PDDL RDDL PDDL RDDL

Experiment 3 Experiment 4

. Distance [m] Execution time [s:
60 5 350 12
55

300)

,_Planning time [s]

35 250)

30
25
x

PDDL RDDL PDDL RDDL PDDL RDDL.

Fig. 5. Experimental results, showing mean values with standard deviations of the robot travel
distance, test execution time and planning time for the first 3 experiments. In each experiment,
5 tests were performed for each approach. In Experiment 4, 500 tests were made in simulation.
Experimental results show the distribution of the first printer selected across all plans and planner.

Probabilistic Planning for Robotics with ROSPlan 11

one are carried out, and we take into account only the action of the plan that shows
the first chosen printer. As it can be seen in the results from Figure 5, the deterministic
planner always chose to go to P2, which is the one providing shortest travel distance.
In contrast, the stochastic planner has different choices, leading to a distribution that
resembles the one shown in Table 1, selecting to visit most of the times P1, then P2
and finally P3. Therefore, given that P2 is less likely to have people around to help the
robot, the deterministic planner is more prone to fail in such setup.

7 Discussions and Conclusions

The focus of this systems paper was to describe the integration of probabilistic plan-
ning into ROSPlan, and to demonstrate the execution of probabilistic plans in real-time
robotics scenarios. This has involved the implementation of RDDL models into the
ROSPlan KB, and an online dispatcher that uses the RDDL Client/Server protocol.

This paper is not intended to make a comparison of deterministic vs. probabilistic
approaches. Our experiments show that both approaches have advantages, and a more
thorough discussion can be found in [20]. There are many factors that determine which
planning approach is better-suited to the domain and problem. For example, whether
the domain is probabilistically interesting and whether probabilities are known. Also,
whether or not it is necessary to have an optimal plan, or that from a given initial state
the same plan is always generated for execution.

Although the use of a probabilistic planner may result in shorter paths and faster
plan execution, from the perspective of domain modelling we found it was more intu-
itive to use an action-oriented language. Another element to take into account is that,
while the handling of uncertainties by means of probabilistic planning can be useful in
robotics and real-world scenarios, those probabilities must be coherent with the real-
world. Such probabilities are often hard to obtain or estimate, and will usually need
some kind of learning or adaptation to the real world.

As a contribution of this work, it is possible to combine both of these approaches in
ROSPIan. By integrating RDDL into the ROSPlan framework, it is now straightforward
to use both PDDL and RDDL planners in a single system. This means a robotic task can
be divided into subtasks, in which some are probabilistic and the others deterministic.
Moreover, as the online dispatcher conforms to the RDDL Client/Server protocol used
in the IPPC, a wide choice of probabilistic planners is made available.

References

1. Atrash, A., Koenig, S.: Probabilistic planning for behavior-based robots. In: FLAIRS. pp.
531-535 (2001)

2. Bonasso, R.P,, Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.: Experiences
with an architecture for intelligent, reactive agents. Journal of Experimental & Theoretical
Artificial Intelligence 9(2-3), 237-256 (1997)

3. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence Research 11, 1-94 (1999)

4. Buksz, R.D., Cashmore, M., Krarup, B., Magazzeni, D., Ridder, B.C.: Strategic-tactical plan-
ning for autonomous underwater vehicles over long horizons. In: IROS (2018)

12

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Canal et al.

. Canal, G., Alenya, G., Torras, C.: Adapting robot task planning to user preferences: an assis-

tive shoe dressing example. Autonomous Robots pp. 1-14 (2018)

. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N.,

Hurtos, N., Carreras, M.: Rosplan: Planning in the robot operating system. In: ICAPS (2015)

. Celorrio, S.J., Ferndndez, F., Borrajo, D.: The PELA architecture: Integrating planning and

learning to improve execution. In: AAAI (2008)

. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Computa-

tional intelligence 5(2), 142-150 (1989)

. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning do-

mains. Journal of Artificial Intelligence Research 20, 61-124 (2003)

Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier
(2004)

Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE Transactions on Robotics 23(1), 34-46 (2007)

Hoey, J., Von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia dur-
ing handwashing using a partially observable markov decision process. Vision Systems 65,
66 (2007)

Hoffmann, J.: The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research 20, 291-341 (2003)

Hsiao, K., Kaelbling, L.P., Lozano-Perez, T.: Grasping POMDPs. In: ICRA (2007)

Iocchi, L., Jeanpierre, L., Lazaro, M.T., Mouaddib, A.L.: A practical framework for robust
decision-theoretic planning and execution for service robots. In: ICAPS. pp. 486-494 (2016)
Keller, T., Eyerich, P.: PROST: Probabilistic planning based on UCT. In: ICAPS (2012)
Kolobov, A., Dai, P., Mausam, M., Weld, D.S.: Reverse iterative deepening for finite-horizon
MDPs with large branching factors. In: ICAPS (2012)

Krivic, S., Cashmore, M., Magazzeni, D., Ridder, B., Szedmak, S., Piater, J.: Decreasing
Uncertainty in Planning with State Prediction. In: IJCAL pp. 2032-2038 (8 2017)
Kushmerick, N., Hanks, S., Weld, D.S.: An algorithm for probabilistic planning. Artificial
Intelligence 76(1-2), 239-286 (1995)

Little, I., Thiebaux, S.: Probabilistic planning vs replanning. In: ICAPS Workshop on Plan-
ning Competitions: Past, Present, and Future (2007)

Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In:
ICML. pp. 157-163 (1994)

Martinez, D., Alenya, G., Ribeiro, T., Inoue, K., Torras, C.: Relational reinforcement learning
for planning with exogenous effects. Journal of Machine Learning Research 18(1), 2689—
2732 (2017)

Martinez, D., Alenya, G., Torras, C.: Relational reinforcement learning with guided demon-
strations. Artificial Intelligence 247, 295-312 (2017)

Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Design of an office-guide robot for social
interaction studies. In: IROS. pp. 4965-4970 (2006)

Sanner, S.: Relational dynamic influence diagram language (RDDL): Language description.
Unpublished Manuscript (2010)

Smith, B.D., Rajan, K., Muscettola, N.: Knowledge acquisition for the onboard planner of
an autonomous spacecraft. In: EKAW (1997)

Smith, T., Simmons, R.: Probabilistic planning for robotic exploration. Ph.D. thesis, Carnegie
Mellon University, The Robotics Institute (2007)

Veloso, M., Biswas, J., Coltin, B., Rosenthal, S., Kollar, T., Mericli, C., Samadi, M., Brandao,
S., Ventura, R.: Cobots: Collaborative robots servicing multi-floor buildings. In: IROS. pp.
5446-5447 (2012)

Yoon, S.W,, Fern, A., Givan, R.: FF-Replan: A baseline for probabilistic planning. In:
ICAPS. pp. 352-359 (2007)

