
On Cayley’s Factorization with an
Application to the Orthonormalization of
Noisy Rotation Matrices

S. Sarabandi, A. Perez-Gracia and F. Thomas

Abstract. A real orthogonal matrix representing a rotation in four di-
mensions can be decomposed into the commutative product of a left-
and a right-isoclinic rotation matrix. This operation, known as Cayley’s
factorization, directly provides the double quaternion representation of
rotations in four dimensions. This factorization can be performed with-
out divisions, thus avoiding the common numerical issues attributed to
the computation of quaternions from rotation matrices. In this paper,
it is shown how this result is particularly useful, when particularized to
three dimensions, to re-orthonormalize a noisy rotation matrix by con-
verting it to quaternion form and then obtaining back the corresponding
proper rotation matrix. This re-orthonormalization method is commonly
implemented using the Shepperd-Markley method, but the method de-
rived here is shown to outperform it by returning results closer to those
obtained using the Singular Value Decomposition which are known to
be optimal in terms of the Frobenius norm.
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1. Introduction

Any rotation in four dimensions can be seen as the composition of two rota-
tions in a pair of orthogonal two-dimensional subspaces [1]. When the abso-
lute value of the rotated angles in these two subspaces are equal, the rotation
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is said to be isoclinic. In 1855, Cayley proved that any rotation in four di-
mensions can be factored into the commutative composition of two isoclinic
rotations [2]. The development of the first effective procedure for computing
this factorization is attributed in [3] to Van Elfrinkhof [4]. Since this work,
written in Dutch, remained unnoticed, other sources (see, for example, [5])
attribute it to Rosen [6]. The methods of Elfrinkhof and Rosen are equiva-
lent (see [3, 12] for a detailed explanation). Although formally correct, this
method was not designed taking into account numerical issues. Nevertheless,
it has recently been proven that a slight variation on it leads to a division-
free formulation which, when particularized to three dimensions, outperforms
the celebrated Shepperd’s method widely used in aerial navigation, computer
graphics, and robotics [7].

In this paper, we further deepen the study of Cayley’s factorization. We
show, for example, that the left- and right-isoclinic rotations resulting from
its application can be obtained as the kernel and the cokernel of a 4×4 matrix.
This result, when particularized to three dimensions, coincides with a method
proposed by Bar-Itzhack in [8] (see [7] for a simplified explanation) to obtain
the quaternion corresponding to a 3×3 rotation matrix. Explicit formulas are
also derived which are shown to be of particular interest to orthonormalize
noisy rotation matrices based on the well-known technique of converting the
noisy rotation matrix to quaternion form and recovering back the rotation
matrix. The obtained results are better in terms of the Frobenius norm of
the error than the commonly used Shepperd-Markley method [9]. The results
are actually closer to the optimal results obtained using the Singular Value
Decomposition (SVD).

This paper is organized as follows. Section 2 summarizes the basic facts
about rotations in four dimensions that are used in Section 3 to derive a set of
division-free formulas for obtaining the double quaternion representation of a
rotation in four dimensions. Then, in Section 4, this result is particularized to
rotations in three dimensions. Section 5 briefly reviews Shepperd’s method,
the standard method used in most applications to obtain the unit quater-
nion corresponding to a rotation matrix, and a variation on it introduced by
Markley which makes it particularly useful to orthonormalizing noisy rota-
tion matrices. Section 6 deals with the problem of orthonormalizing noisy
rotation matrices. Section 7 presents a statistical analysis comparing the re-
sults obtained using the Shepperd-Markley method, the method derived in
this paper, and those obtained using the SVD for variable levels of noise.
Section 8 summarizes the main points.

2. Rotations in four dimensions

A rotation in four dimensions is defined by two hyperplanes and two angles
of rotation, α1 and α2, one for each plane, through which points in the planes
rotate. All points not in the planes rotate through an angle between α1 and
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α2. See [10] for details on the geometric interpretation of rotations in four
dimensions.

Isoclinic rotations are a particular case of rotations in four dimensions
in which there are infinitely many invariant orthogonal planes, with same
rotation angles, that is, α1 = ±α2. These rotations can be left-isoclinic,
when the rotation in both planes is the same (α1 = α2), or right-isoclinic,
when the rotations in both planes have opposite signs (α1 = −α2).

Isoclinic rotations have several important properties: (a) the composi-
tion of two right- (left-) isoclinic rotations is a right- (left-) isoclinic rotation;
(b) the composition of a right- and a left-isoclinic rotation is commutative;
and (c) any rotation in four dimensions can be decomposed into the compo-
sition of a right- and a left-isoclinic rotations.

Right- and a left-isoclinic rotations form maximal and normal sub-
groups. Denote by S3

R the subgroups of right-isoclinic rotations, and by S3
L

the subgroup of left-isoclinic rotations. The direct product S3
L×S3

R is a dou-
ble cover of the group SO(4), as four-dimensional rotations can be seen as
the composition of rotations of these two subgroups, and there are two ex-
pressions for each element of the group. The left- and right-isoclinic rotations
can be represented by rotation matrices of the form

RL =

⎛
⎜⎝

l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0

⎞
⎟⎠ , (1)

and

RR =

⎛
⎜⎝

r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0

⎞
⎟⎠ , (2)

respectively, where

l = σ(l0 l1 l2 l3)
T and r = σ(r0 r1 r2 r3)

T (3)

directly correspond, as we will see later, to their quaternion representation
with σ = ±1.

Since (1) and (2) are rotation matrices, their rows and columns are unit
vectors. As a consequence,

l · lT = 1, and r · rT = 1. (4)

Without loss of generality, we have introduced some changes in the
signs and indices of (1) and (2) with respect to the notation used by Cayley
[2, 5] to provide a neat connection with the standard use of quaternions for
representing rotations in three dimensions.

According to the above properties, a 4×4 rotation matrix, say R, can
be expressed as:

R = RLRR = RRRL, (5)

where
RL = l0I+ l1A1 + l2A2 + l3A3, (6)
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and

RR = r0I+ r1B1 + r2B2 + r3B3, (7)

where I stands for the 4×4 identity matrix and

A1=

⎛
⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ , A2=

⎛
⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎠ , A3=

⎛
⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎠ ,

B1=

⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ , B2=

⎛
⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎠ , B3=

⎛
⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ .

Now, it can be verified that

A2
1 = A2

2 = A2
3 = A1A2A3 = −I, (8)

and

B2
1 = B2

2 = B2
3 = B1B2B3 = −I. (9)

Expression (8) determines all the possible products of A1, A2, and A3 re-
sulting in

A1A2 = A3, A2A3 = A1, A3A1 = A2,

A2A1 = −A3, A3A2 = −A1, A1A3 = −A2. (10)

Likewise, all the possible products of B1, B2, and B3 can be derived
from expression (9). Moreover, it can be verified that

AiBj = BjAi. (11)

which is actually a consequence of the commutativity of left- and right-
isoclinic rotations.

3. Cayley’s factorization

The problem of factoring a 4×4 rotation matrix, say R, into the product of
a right- and a left- isoclinic rotation matrix consists in finding l and r that
satisfy the following matrix equation:

R=

⎛
⎜⎝
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

⎞
⎟⎠=

⎛
⎜⎝

l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0

⎞
⎟⎠
⎛
⎜⎝

r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0

⎞
⎟⎠ .

(12)

A closed-form matrix solution for this problem can be found in [11].
Nevertheless, it involves four alternative mappings and the best one has to
be chosen according to a voting scheme. This voting scheme, as we will see
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later, leads to some inconveniences when dealing with noisy rotation matrices.
An alternative matrix formulation can be obtained by first defining

P = l · rT =

⎛
⎜⎜⎝
l0r0 l0r1 l0r2 l0r3
l1r0 l1r1 l1r2 l1r3
l2r0 l2r1 l2r2 l2r3
l3r0 l3r1 l3r2 l3r3

⎞
⎟⎟⎠ (13)

and

K =
1

4

⎛
⎜⎜⎝

r11+r22+r33+r44 −r41+r32−r23+r14
r41+r32−r23−r14 r11−r22−r33+r44
−r31+r42+r13−r24 r21+r12−r43−r34
r21−r12+r43−r34 r31+r42+r13+r24

−r31−r42+r13+r24 r21−r12−r43+r34
r21+r12+r43+r34 r31−r42+r13−r24
−r11+r22−r33+r44 r41+r32+r23+r14
−r41+r32+r23−r14 −r11−r22+r33+r44

⎞
⎟⎟⎠ . (14)

Now, using equation (12), it can be verified that1

P = K. (15)

If we right-multiply (15) by r, we conclude that

l = Kr. (16)

Likewise, if we transpose (15) and right-multiply it by l, we have that

r = KT l. (17)

Then, from (16) and (17), we conclude that(
KKT − I

)
l = 0 and r

(
KKT − I

)
= 0. (18)

Thus, the factorization into a left- and a right-isoclinic rotation can be ob-
tained by computing the kernel and the cokernel, respectively, of (KKT − I).

An alternative to the above matrix approaches is obtained by a slight
variation of the Elfrinkhof-Rosen method. The result is a division-free closed-
form scalar formula for each element of the two quaternions. These formulas
are obtained by simply observing that the norm of row i of P is

+
√
l2i−1(r

2
0 + r21 + r22 + r23) = |li−1| , (19)

and the norm of column i is

+
√
r2i−1(l

2
0 + l21 + l22 + l23) = |ri−1| . (20)

As a consequence, since P = K, the norms of the row and column vectors
of K gives us the absolute values of the elements of l and r, respectively. To
assign a consistent set of signs to them, we can take any positive entry in
K, say the element (k, l). Then, according to (13), lk−1 and rl−1 are both

1The expression given in [12] for K contains some typos.



6 S. Sarabandi, A. Perez-Gracia and F. Thomas

positive or both negative. If we assume that they are both positive, then we
have that:

sign(li−1) = sign(pi,l), i ∈ {1, 2, 3, 4}\k, (21)

and

sign(rj−1) = sign(pk,j), j ∈ {1, 2, 3, 4}\l. (22)

Another set of consistent signs are obtained if we assume that lk−1 and rl−1

are both negative, thus accounting for the double covering of the space of
rotations.

4. Particularization to three dimensions

A 4×4 rotation matrix, when representing a rotation in a 3-dimensional sub-
space, can be expressed, by properly locating the reference frame, as

R′ =

⎛
⎜⎝
r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎞
⎟⎠ . (23)

Hence, in this case,

K′ =
1

4

⎛
⎜⎜⎝

r11+r22+r33+1 r32−r23
r32−r23 r11−r22−r33+1
r13−r31 r21+r12
r21−r12 r31 + r13

r13−r31 r21−r12
r21+r12 r31+r13

r22−r11−r33+1 r32+r23
r32+r23 r33−r11−r22+1

⎞
⎟⎟⎠ . (24)

Due to the symmetry ofK′, l = r. As we already knew, the double quaternion
representation of rotations in four dimensions reduces to a single quaternion
representation in three dimensions. Let us denote this quaternion by q =
(q0 q1 q2 q3)

T (that is, in three dimensions, q = l = r). Hence, using (16), we
have that

q = K′q. (25)

Therefore, the quaternion representation of the rotation given by (23) is given
by the kernel of⎛

⎜⎜⎝
r11+r22+r33 r32−r23 r13−r31 r21−r12

r32−r23 r11−r22−r33 r21+r12 r31+r13
r13−r31 r21+r12 r22−r11−r33 r32+r23
r21−r12 r31+r13 r32+r23 r33−r11−r22

⎞
⎟⎟⎠ . (26)

It is interesting to observe, that this result was obtained by Bar-Itzhack in
[8] (see also [7]) using a more difficult mathematical machinery than the
elementary one used here.
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As in the four-dimensional case, a closed-form scalar formula can be
obtained for the elements of q by computing the norms of the rows or the
columns of (24). In this case, we have that

|q0| = 1

4

√
(r11+r22+r33+1)2 + (r32−r23)2 + (r13−r31)2 + (r21−r12)2, (27)

|q1| = 1

4

√
(r32−r23)2 + (r11−r22−r33+1)2 + (r21+r12)2 + (r31+r13)2, (28)

|q2| = 1

4

√
(r13−r31)2 + (r21+r12)2 + (r22−r11−r33+1)2 + (r32+r23)2, (29)

|q3| = 1

4

√
(r21−r12)2 + (r31+r13)2 + (r32+r23)2 + (r33−r11−r22+1)2. (30)

If we assume that q0 is positive, we can give a consistent set of signs to
the other elements of the quaternion by simply assigning the signs of (r32 −
r23), (r13 − r31), and (r21 − r12), to q1, q2, and q3, respectively. Alternatively,
if we assume that q1 is positive, a consistent set of signs to the other elements
of the quaternion result from assigning the signs of (r32−r23), (r21+r12), and
(r1,3 + r3,1) to q0, q2, and q3, respectively (see [7] for details). The following
table summarizes the four possible alternatives:

sign(q0) + sign(r32 − r23) sign(r13 − r31) sign(r21 − r12)
sign(q1) sign(r32 − r23) + sign(r21 + r12) sign(r13 + r31)
sign(q2) sign(r13 − r31) sign(r21 + r12) + sign(r32 + r23)
sign(q3) sign(r21 − r12) sign(r13 + r31) sign(r32 + r23) +

Any of these four alternatives gives a correct consistent set of signs.
Nevertheless, if R′ is noisy, the use of some of these sign assignments, with-
out further considerations, might lead to erroneous results. This is better
understood through an example.

Let us consider the following rotation matrix in three dimensions

R′′ =

(−0.88614058 0.23685074 0.39831731
0.23723170 −0.50650954 0.82895672
0.39809051 0.82906568 0.39265025

)
(31)

which after adding some noise becomes

R̊ =

(−0.88607281 0.23738025 0.39857802
0.23662227 −0.50746065 0.82897574
0.39732188 0.82870960 0.39185813

)
. (32)

The quaternions corresponding to R′′ and R̊, obtained using the procedure
presented in this section, and assuming that q0 is positive, are

(0.0001 0.2386 0.4967 0.8345)T

and
(0.0006 − 0.2386 0.4966 − 0.8344)T ,

respectively. The second one is clearly incorrect as it should be equal to
the first one up to a small perturbation. Thus, assuming that an element
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of the quaternion close to zero is positive is a bad choice because a small
perturbation in the rotation matrix might induce a chance of its sign leading
to an inconsistency with the rest of signs. A better option is to assume that
the largest component of the quaternion is positive and then to assign the
other component signs according to the table given above.

5. Shepperd-Markley method

Since it was first proposed in [13], Shepperd’s method remains as one of the
most popular methods for computing the quaternion corresponding to a 3×3
rotation matrix. It improves on Hughes’ method [14] via a voting scheme.
In Shepped’s method, there are four different formulas for computing the
quaternion as a function of the elements of the rotation matrix, all of them
formally equivalent, provided that the matrix is orthogonal. Numerically,
however, these four formulas are not identical and, depending on the rotation
matrix, one of them is numerically better conditioned than the others. These
four formulas are:

u1 =
1

2

⎛
⎜⎜⎝

(1+r11+r22+r33)
1
2

(r32−r23)/(1+r11+r22+r33)
1
2

(r13−r31)/(1+r11+r22+r33)
1
2

(r21−r12)/(1+r11+r22+r33)
1
2

⎞
⎟⎟⎠ , (33)

u2 =
1

2

⎛
⎜⎜⎝
(r32−r23)/(1+r11−r22−r33)

1
2

(1+r11−r22−r33)
1
2

(r12+r21)/(1+r11−r22−r33)
1
2

(r31+r13)/(1+r11−r22−r33)
1
2

⎞
⎟⎟⎠ , (34)

u3 =
1

2

⎛
⎜⎜⎝
(r13−r31)/(1−r11+r22−r33)

1
2

(r12+r21)/(1−r11+r22−r33)
1
2

(1−r11+r22−r33)
1
2

(r23+r32)/(1−r11+r22−r33)
1
2

⎞
⎟⎟⎠ , (35)

u4 =
1

2

⎛
⎜⎜⎝
(r21−r12)/(1−r11−r22+r33)

1
2

(r31+r13)/(1−r11−r22+r33)
1
2

(r32+r23)/(1−r11−r22+r33)
1
2

(1−r11−r22+r33)
1
2

⎞
⎟⎟⎠ . (36)

The best of the four above alternatives, from the numerical point of
view, is the one that involves the largest denominator in its computation.

In 2008, Markley introduced a simple variation on this method [9]. In-
stead of using (33)-(36), he defined:

u′
1 =

⎛
⎜⎜⎝
1+r1,1+r2,2+r3,3

r3,2−r2,3
r1,3−r3,1
r2,1−r1,2

⎞
⎟⎟⎠ , (37)
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u′
2 =

⎛
⎜⎜⎝

r3,2−r2,3
1+r1,1−r2,2−r3,3

r1,2+r2,1
r3,1+r1,3

⎞
⎟⎟⎠ , (38)

u′
3 =

⎛
⎜⎜⎝

r1,3−r3,1
r1,2+r2,1

1−r1,1+r2,2−r3,3
r2,3+r3,2

⎞
⎟⎟⎠ , (39)

u′
4 =

⎛
⎜⎜⎝

r2,1−r1,2
r3,1+r1,3
r2,3+r3,2

1−r1,1−r2,2+r3,3

⎞
⎟⎟⎠ . (40)

Since ui = u′
i/ ‖u′

i‖, i = 1, . . . , 4, u′
i is a non-unit quaternion propor-

tional to the unit quaternion ui. Considering that in most applications it
is not strictly necessary to operate with unit quaternions (quaternions can
actually be treated as a vector of homogeneous coordinates [15]), this is an
interesting alternative because it avoids the computation of square roots and
divisions. Even if we need to compute the rotation matrix corresponding to
a non-unit quaternion, we do not need to previously normalize it. Indeed, it
is not difficult to prove that the rotation matrix corresponding to a non-unit
quaternion is given by

R(q) =
1

q20+q22+q23+q24

⎛
⎝q20+q21−q22−q23 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q20−q21−q22−q23 2(q2q3−q0q1)
2(q1q3−q0q2) 2(q2q3+q0q1) q20−q21−q22+q23

⎞
⎠ ,

(41)
which does not involve any square root.

Now, it can be checked that both, the method derived in Section 4
and the Shepperd-Markley method, are well-defined even if the input is an
arbitrary 3×3 matrix. Nevertheless, contrarily to the method presented in
Section 4, Shepperd-Markley uses four mappings that are algebraically equiv-
alent provided that the input matrix is orthogonal. If not, each mapping, in
general, gives a different result. As a consequence, a slight variation in the
input matrix might lead to a discontinuity in the obtained quaternion. This
non-smooth behavior is not mentioned in the literature [9], but is clearly un-
desirable. In this context, the method derived in Section 4 seems particularly
useful to compute the quaternion associated with a noisy rotation matrix,
and, as a result, to orthonormalize it to the nearest rotation matrix, as ex-
plained in the next section.

6. Orthonormalization of noisy rotation matrices

Due to floating-point errors: (a) the cumulative multiplication of rotation
matrices does not result in an orthogonal matrix [18], and (b) the integration
of angular velocity differential equations in E

3 leads to a matrix that departs
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d1 d2

d3

n1

n2

o1

o2

a1a2

Figure 1. Following the standard robotics notation, the
column vectors of the rotation matrix Ri can be made ex-
plicit as Ri = (ni oi ai) [17]. These vectors determine a
reference frame. Then, in this figure, the Frobenius norm of
the difference between R1 and R2 is equal to

√
d21 + d22 + d23.

from being orthogonal as time increases [19]. At least in these two situations,

we have to restore the orthogonality of a rotation matrix, say R̊, by finding

the closest orthogonal matrix, say R̂. The first problem we face when trying
to solve this problem is how to define a measure of closeness endowed with
physical meaning.

The Euclidean or Frobenius norm (denoted as ‖·‖F ) of R̊− R̂ (i.e., the

sum of squares of elements of R̊ − R̂) is commonly used to solve the stated
problem because

• It has a simple geometric interpretation (see Fig. 1).
• Its derivatives can be easily obtained. This allows to derive a closed-
form solution. If we would use the 2-norm, the closeness measure would
be given by the largest singular value of R̊ − R̂ which is not easy to
handle.

• It leads to a unique solution. If we would use the 2-norm, the solution
is not necessarily unique [20].

Thus, using the Frobenius norm, the problem in algebraic terms can be
stated as follows: given the noisy rotation matrix R̊, the problem consists in
finding R̂ that minimizes∥∥∥R̂− R̊

∥∥∥2
F
= Trace

(
(R̂−R)(R̂−R)T

)
, (42)

subject to R̂T R̂ = I.
Using Lagrange multipliers, it can be proved that the optimal solution

to this constrained optimization problem is given by (see, for example, [16])

R̂ = R
(
RTR

)− 1
2 . (43)

It is easy to verify that R̂ thus obtained is orthonormal, i.e. R̂T R̂ = I.
However, there is no guarantee that det(R̂) = +1. To represent a rotation,
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Figure 2. Histograms of the value of the determinants of
106 randomly generated 3×3 rotation matrices. While no
matrices whose determinant is negative arise with an addi-
tive noise uniformly distributed in the interval of [−0.4, 0.4]
(left), only 3.7% of the matrices have a negative determinant
even if the error is increased to [−0.7, 0.7] (right).

the orthonormal matrix R̂ has to satisfy this condition as well. Otherwise
it represents a reflection, not a rotation. There is no easy way to enforce
this condition, and with highly noisy rotation matrices, we may have that
det(R̂) = −1. Nevertheless, the noise should be very high to induce an inver-
sion of sign. For example, if we randomly generate 106 rotation matrices and
a uniformly distributed noise in the interval [−0.4, 0.4], which is a extremely
high level of noise, no sign change arises (see Fig. 2-left). We have to increase
the noise to [−0.7, 0.7] to get an inversion in only 3.7% of the cases (see Fig.
2-right).

To avoid the computation of the square root of a matrix, the optimal
solution using the Frobenius norm can alternatively be obtained using the
SVD of R [21, 22], which can be expressed as

R = UDVT , (44)

where D = diag(σ1, σ2, σ3) is the diagonal matrix of singular values. Then,

R̂ = UVT . (45)

To reduce the computational burden required to obtain the optimal
solution using the SVD, a simpler method is commonly used. It consists in
two steps: (a) converting the noisy rotation matrix to quaternion form (since
the matrix is not orthogonal, the result is not a unit quaternion), and (b)
converting back the quaternion to a proper orthogonal rotation matrix using
(41). This approach has two disadvantages:

• No particular norm is apparently minimized.
• It contains a flaw: the derivation of the formulas for obtaining the
quaternion assume that the quaternion has unit norm. For example,
in our case, this assumption is used in (19) and (20). To the best of our
knowledge, this point is not mentioned in the literature.
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Despite these drawbacks, this approach is preferred in many applications
because of the following reasons [9]:

• The Shepperd-Markley method is much less expensive than the SVD.
It simply boils down to the evaluation of a rational algebraic formula in
terms of the elements of the noisy rotation matrix.

• The difference between the use of the SVD or the Shepperd-Markley
method is negligible for the level of expected numerical errors in most
applications.

• The solution obtained using the SVD is not optimal, after all, unless
the errors are isotropic [22, 23].

Despite that the above advantages are commonly accepted, the differ-
ence between the use of the SVD and the Shepperd-Markley method has not
been previously quantified to the best of our knowledge. This analysis, in-
cluding the performance of the alternative to the Shepperd-Markley proposed
in this paper, is conducted in the next section.

7. Statistical analysis

Let us consider a rotation matrix, say R, to which an error randomly and
uniformly distributed in the interval [−0.5, 0.5] is added to each of its elements

to obtain a noisy rotation matrix, say R̊. As an example, let us take

R =

(
0.5865 −0.2210 0.7792
−0.0493 −0.9700 −0.2380
0.8085 0.1011 −0.5798

)
and R̊ =

(
0.3879 −0.1819 0.4574
0.1518 −0.7719 −0.6100
0.9748 0.2676 −0.0807

)
.

Then, let us compute the corresponding quaternion using the method pro-
posed in this paper and the Shepperd-Markley method and the result is
transformed to a rotation matrix using (41). The results are, respectively,

R̂1 =

(
0.3596 −0.6072 0.7085
0.0933 −0.7321 −0.6747
0.9284 0.3087 −0.2066

)
and R̂2 =

(
0.4767 −0.3378 0.8116
0.3033 −0.8033 −0.5125
0.8251 0.4905 −0.2805

)
.

Let us also compute the optimal solution using the SVD. In this case, the
result is

R̂3 =

(
0.3855 −0.4814 0.7872
0.1722 −0.8006 −0.5739
0.9065 0.3568 −0.2258

)
.

The obtained errors are∥∥∥R̂1 − R̊
∥∥∥
F
= 0.5231,

∥∥∥R̂2 − R̊
∥∥∥
F
= 0.5505,

∥∥∥R̂3 − R̊
∥∥∥
F
= 0.4844.

(46)
As expected, the result using the SVD is the best one because it corre-

sponds to the optimum. The other two methods provide results that are not
far from the optimum despite the high level of noise, but that obtained using
the method derived in this paper is better. This observation is for a particular
example. Thus, to provide a correct assessment of the quality of the proposed
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Figure 3. Mean, minimum and maximum Frobenius norm
as a function of the input error for the three analyzed meth-
ods. 10,000 random noisy rotation matrices have been taken
for each value of the input error.
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method, we have repeated this experiment for 10, 000 random rotation ma-
trices with a variable level of noise ranging from −0.0001 to 1 (i.e., a ran-
domly uniformly distributed noise in intervals ranging from [−0.0001, 0.0001]
to [−1, 1] is added to the elements of the matrix). These random matrices
have been obtained from random quaternions generated using the algorithm
described in [24], which permits to generate uniformly distributed points in

S
3. The program has been implemented in MATLAB�. The results appear as

double-logarithmic plots in Fig. 3. Predictably, the plots for the mean Frobe-
nius norm (see Fig. 3-top) obtained using the method proposed in this paper
(in green) and the Shepperd-Markey method (in red) lie above the optimal
values obtained using the SVD (in blue). Nevertheless, while the results using
the Shepperd-Markley method departs a constant amount from the optimal,
the values obtained with the proposed method practically coincide with the
optimal values for noise levels below 0.01 and they are still clearly better than
those obtained using the Shepperd-Markley method for noise levels as high
as 0.1. Moreover, the plot of the minimum Frobenius norm reached using the
proposed method overlaps the plot obtained using the SVD (Fig. 3-center).
In other words, the solution obtained using the proposed method coincides,
at the chosen resolution level, with the optimal one at least in one of the
10, 000 samples. This is not the case for the Shepperd-Markley method. Fi-
nally, it is also worth noting that the plot for the maximum Frobenius norm
reached using the proposed method (Fig. 3-bottom) lies below that of the
the Shepperd-Markley for noise levels below 0.01. Summing up, the method
derived in this paper for orthonormalizing noisy rotation matrices is a serious
alternative to the Shepperd-Markley method with an average behavior very
close to optimal for moderate levels of noise.

8. Conclusion

We have deepened the study of Cayley’s factorization both in its matrix
and scalar versions. In the matrix version, we have presented a new method
consisting in the computation of the kernel and the cokernel of a 4×4 ma-
trix expressed in terms of the elements of the rotation matrix. This method,
when particularized to three dimensions, coincides with a method proposed
by Bar-Itzhack. In the scalar version, we have presented a division-free vari-
ation on the Elfrinkhof-Rosen method. This method, when particularized to
three dimensions, has been shown to be of particular interest for the orthonor-
malization of noisy rotation matrices. It actually outperforms the Shepperd-
Markley method, commonly used in most applications. The ultimate reason
for the good behavior of this method is that it involves a single mapping that
includes all the elements of the rotation matrix in the computation of each
element of the quaternion.
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