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Abstract: This paper presents a multi-model predictor called Qualitative Multi-Model Predictor Plus
(QMMP+) for demand forecast in water distribution networks. QMMP+ is based on the decomposition
of the quantitative and qualitative information of the time-series. The quantitative component
(i.e., the daily consumption prediction) is forecasted and the pattern mode estimated using a Nearest
Neighbor (NN) classifier and a Calendar. The patterns are updated via a simple Moving Average
scheme. The NN classifier and the Calendar are executed simultaneously every period and the
most suited model for prediction is selected using a probabilistic approach. The proposed solution
for water demand forecast is compared against Radial Basis Function Artificial Neural Networks
(RBF-ANN), the statistical Autoregressive Integrated Moving Average (ARIMA), and Double Seasonal
Holt-Winters (DSHW) approaches, providing the best results when applied to real demand of the
Barcelona Water Distribution Network. QMMP+ has demonstrated that the special modelling
treatment of water consumption patterns improves the forecasting accuracy.

Keywords: prediction; multi-model; water demand; short-term prediction

1. Introduction

Water is one of the most important natural resources to sustain life and to guarantee people’s
quality of life. In urban areas, complex drinking water distribution network systems provide water
supply from the water reservoirs to the population. The main reservoirs are conformed by lakes, rivers,
and sea water, among other sources. Water transportation implies energy cost and water availability,
subject to population growth and water shortage. Important objectives in water delivery through
drinking water networks are the supply of the water demanded by the consumers, the reduction of
operational costs related to production and transportation [1], and the maximization of the water
delivery service satisfaction, among others.

1.1. Related Work

The optimal operation of drinking water networks is a critical issue for sustainable human
activity. New paradigms are being used for optimizing the use of this valuable resource such as Model
Predictive Control (MPC). MPC is used for optimizing water management with the aim of minimizing
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the water production costs and the energy required to transport the liquid from the sources to the
consumers [2,3]. In general, the performance of control approaches is affected by the model quality
of the real system and the forecast accuracy, such as discussed in [4] where the prediction of the hot
water consumption in residential houses is used to optimize the operation of distributed water heaters.
In particular, MPC for water management is affected by the model quality of the water network,
the accuracy of the demand forecasting models, and the length of the prediction horizon. MPC is able
to manage efficiently a water network by using a dynamical system to determine the best sequence of
actions for a desired time horizon to optimize the operational objectives. From this sequence, only the
first control action is applied and then the optimization process is repeated regularly, updating the
water network initial conditions with the new observations.

In order to build the prediction models, the drinking water demand is studied as a time series.
A time series is defined as a sequence of chronologically ordered observations recorded at regular time
intervals. Those observations might correspond to qualitative or quantitative data. The motivation
of this paper is to build a model that exploits the particular characteristics of the water demand
consumption to produce accurate 24-h ahead forecasts.

We assume that the water consumption volume is recorded hourly using flowmeters. Time series
present a cyclic consumption pattern, where each cycle repeats every 24 h. Observing those daily
patterns, we detected different dynamic pattern behaviors that might be seen as the change of different
regimes that need to be mathematically defined and validated. For example, in the work of [5] and
Lopez Farias et al. [6], water demand usually presents different pattern behaviors in holidays and in
working days, but regularly during those periods. This fact motivates the use of several models to
characterize each regime.

This work is mainly related to the research carried out to identify different behaviors (regimes or
modes) in time series (or dynamical systems producing such data) by means of qualitative information
defined by the type of the daily drinking water demand pattern.

Regarding the multi-model time series prediction approach, we find in the state-of-the-art that
the identification of regimes is a common strategy to predict information that involves human activity
such as sales, electricity, and water demand.

A set of algorithms related to drinking water demand forecasting using clustering can be found
in Quevedo et al. [7], where the implementation of a daily Autoregressive Integrated Moving Average
(ARIMA) model combined with hourly patterns is proposed with the objective of allowing prediction
at daily and hourly scales every 24 h. The ARIMA model predicts the total day consumption while
a daily pattern is selected according to a calendar for distributing the hourly consumption along
the day. Rodriguez Rangel et al. [8] used the concept of daily patterns (modes) predicted with the
non-parametric Nearest Neighbor Mode Estimation (NNME) proposed in Lopez Farias et al. [6].
NNME is used as a regression method to forecast the modes that feeds the input of an ensemble of
24 independent artificial neural network (ANN) models trained with Genetic Algorithms; each of the
ANN predicts a specific hour of the day. Nevertheless, this approach is computationally costly when
the training set is big. A similar approach proposed by Candelieri [9], suggests the use of several pools
(each pool associated with a type of the day) with 24 Support Vector Machines Models, each one to
predict a specific hour of the day. In contrast to Rodriguez Rangel et al. [8], Candelieri’s method only
classifies the current day to select the pool. Donkor et al. [10] report the use of different methodologies
to improve the water demand prediction in the short term (from several hours to several days ahead)
and the long term (one year or more ahead); nevertheless, it does not propose the use of regimes.
Other statistical and machine learning modeling methodologies that deal with the water demand
forecasting problem are found in [7,11–14]. The work of Cutore et al. [15] implement similar ideas
about regimes associated with working and holy days to predict one day ahead water demand of daily
time series using an ANN. The ANN architecture uses three input neurons to receive the current water
demand, and its associated working or weekend day. The hidden layer also has three neurons and
the output layer just one neuron that returns the predicted water consumption. This ANN model
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parameters are optimized with a Shuffled Complex Evolution Metropolis, a kind of evolutionary
algorithm that combines Bayesian Inference and probabilistic criterion to accept or reject a set of
ANN parameters.

Regarding the selection of the inputs, Romano and Kapelan [16] use a sliding window of past
demand data, the day of the week, and the hour associated with the forecast horizon. The day of the
week and the hour are used to associate the water demand time series to human pattern behaviours.
We also found works where those human patterns are incorporated to the forecast methodology
(e.g., the work of Quevedo et al. [5]), but each approach differs in the way they are incorporated. In our
previous works [5,17], we have started exploring the use of a calendar (days of the week, in terms of
labor days and holy days), but we found that the Qualitative Multi-Model Predictor method (QMMP)
proposed in [6] improves the calendar method for certain district metering areas (DMAs).

The QMMP decomposes a raw time series in qualitative and quantitative components.
The quantitative component is the daily water demand sequence, and it is predicted with a Seasonal
Autoregressive Integrated Moving Average (SARIMA) model. The qualitative component has the
sequence of consumption patterns and they are predicted with a model based on Nearest Neighbors
(NN) identified in this paper as Nearest Neighbors Mode Estimator (NNME).

Adaptive predictive methods are also found in the literature, e.g., the algorithm proposed by
Bakker et al. [18], which considers just the last two days for predicting the water demand of the next
two days. The contribution of the days is weighted and a complementary fixed calendar is considered
as an additional information input. After tuning the day weights, it derives day factors and demand
patterns that consider daily/weakly behaviours. Martinez Alvarez et al. [19] use clustering to group
days with similar patterns.

The work of Alvisi and Franchini [20] presents a probabilistic approach to assess the predictive
uncertainty of water demand using a Model Conditional Processor (MCP). The MCP provides a joint
probability distribution to perform a correct prediction from one or multiple predictive models using
historical data, and allows the possibility of combining different forecasts with the aim of maximizing
the probability of producing the most likely prediction. In their work, they use an ANN, and a simple
autoregressive forecast models (AR(1)) at daily and hourly time scales. Although part of their work
is similar to the one presented in this paper in the sense that multiple models are used to generate
a prediction, our method focuses on dealing with the best probabilistic selection of a set of discrete
prediction models, associated with categorical water demand regimes. In addition, we also deal with
the adaptability considering that regimes are changing gradually.

As we mentioned before, multi-modeling is not just limited to water demand prediction; it is also
used to model and predict other kinds of time series that involve human activity. Melgoza et al. [21]
proposed a method for predicting electrical demand based on multiple models; each model describes
a region of behavior of the system (driven by the human activity), called the operation regime.
Martinez-Alvarez et al. [22] suggested the use of clustering to group similar patterns regarding the
variation of the electricity cost in working and holy days. Kumar and Patel [23] and Dai et al. [24]
propose a clustering-based predictive algorithm to improve sales forecasts. The data clustering is used
for regime identification and training local models that combined produce the final forecast model.

The main contribution of this paper regarding the Qualitative Multi-Model Predictor (QMMP)
introduced in [6] is the use of a model that probabilistically selects from three qualitative prediction
models improving 24-h ahead forecast accuracy. This is achieved by choosing the most likely qualitative
model to predict correctly the water distribution pattern given the hour of the day; we also propose
adapting the water distribution patterns according to recent pattern variations; we call this approach
Qualitative Multi-Model Predictor Plus (QMMP+).

The case study considered in this paper to show the effectiveness of the proposed approach is
based on real demand from the Barcelona drinking water network. The water demand is predicted
with the proposed approach and then compared with well established prediction approaches as Double
Seasonal Holt-Winters (DSHW), originally proposed by C.C. Holt in 1957 and P. Winters in 1960 [25],
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the ARIMA, proposed the first time in 1970 by G. E. P. Box and G. M. Jenkins [26], Radial Basis Function
Neural Networks (RBF-ANN) [27], and the Naïve model that just considers the recent observations
as prediction.

The rest of the paper is organized as follows: Section 2 introduces the QMMP+ architecture,
the decomposition of the time series into qualitative and quantitative information, the different
qualitative and quantitative predictor models that perform the prediction such as: the NNME, Calendar,
online Nearest Neighbor Rule Pattern Estimation (NNRPE), a Moving Average pattern update method,
and a probabilistic method to select the best prediction model from this set. The Seasonal ARIMA is
addressed as the quantitative model predictor. This section also presents the implementation of the
training, tuning, and forecasting of our method. Section 3 presents the comparison of the experiments
and results of QMMP+ against other known methods. Finally, Section 4 draws the conclusions.

2. Methods

This section describes the QMMP+ architecture and the implementation details of its Qualitative
and Quantitative predictors. Finally, the tuning, training and forecasting algorithms unifying all the
forecasting models to produce the final prediction are introduced.

2.1. QMMP+ Architecture

QMMP+ has the general architecture presented in Figure 1, which describes the general process
of forecasting using time series decomposition. First, the raw time series is processed by the Feature
Extraction to obtain the water demand time series decomposition. The demand patterns are given to the
Mode Recognition to produce a pattern forecast. The Multi-Model module uses the pattern selected by the
Mode Recognition and combined with the quantitative forecast produces the final forecast Ŷt+1, . . . , Ŷt+h.
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Figure 1. Qualitative-quantitative multi-model architecture.

QMMP+ implements several models and algorithms to exploit the characteristics of the data
responding to working, holidays and other kinds of events. A SARIMA model is used to predict the
(quantitative) cumulative daily water demand and a set of three forecasting models to predict the
qualitative information or consumption patterns. Qualitative forecasting models are probabilistically
selected to predict the water consumption pattern of the predicted day. Two pattern mode forecasting
models can be used: a Calendar-based pattern mode predictor contains a list of defined workdays
and holidays. Given the day, the calendar indicates the consumption pattern during the day. This is
a binary selector that assumes that working days and holidays have different consumption patterns.
The second pattern predictor is based on NN; given the history of qualitative patterns, it exploits the
information provided by the historical sequence of pattern modes to predict the following one. Another
model works as a pattern observer each time t (hourly) to correct the pattern mode if the predicted
pattern is incorrect. This observer is called Nearest Neighbor Rule Pattern Estimator (NNRPE).
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2.2. Qualitative-Quantitative Time Series Decomposition

QMMP+ works with cyclic time series. A time series is a sequence defined by

Y = 〈Yt〉nt=1, (1)

where n is the total number of elements and t is the time index, representing a magnitude recorded
through time. Two cumulative quantitative and qualitative time series, X and Z, are extracted from
the original time series Y. The new time series has N = bn/γc elements indexed by the time index
T = bt/γc, γ is the accumulation period length (e.g., a day), where b c is the floor function used to
consider complete periods. It is important to note that, for the water demand application, lowercase
index and size symbols (t and n) are associated with hourly time series and the uppercase symbols
(T and N) are associated with daily time series along the paper. Following this notation, the quantitative
time series Z = {ZT}N

T=1 is obtained as follows:

ZT =
Tγ

∑
t=γ(T−1)+1

Yt, (2)

where ZT is the daily cumulative water consumption time series of each period T. The qualitative time
series X = {XT}N

1 is produced extracting normalized vectors used as daily patterns of each period T
according to

XT =
〈Yt〉Tγ

γ(T−1)+1

ZT
, (3)

used to characterize the operating regime of period XT . The operating regimes are divided into nk
classes in the set K = {K1, ..., Knk}. Each XT is associated with one of those nk classes. Therefore,
the sequence of categorical data representing the classes of daily patterns is defined as

C = 〈CT〉NT=1, (4)

where each element CT ∈ K is a label that identifies a class or mode from K, as a result of classifying
each XT according to the most similar pattern using the Class(XT) function. The construction of C is
as follows

CT = Class(XT) = arg min
Ki∈K

||XT − PKi ||, (5)

where PKi ∈ P, and P = {Pi}
Knk
Ki=1

is the set of patterns. Each PKi is the representative pattern prototype
of those XT ∈ X vectors classified into the class Ki.

2.3. Qualitative Predictor

This subsection addresses the description of the different qualitative prediction models:
the NNME, Calendar, Nearest Neighbor Rule Pattern Estimation (NNRPE), and the probabilistic
Selection of Qualitative Models that integrates the models. The aim is to produce the best prediction of
the labels for the next H days, 〈ĈT+1, . . . , ĈT+H〉, which combined with the prediction of quantitative
information 〈ẐT+1, . . . , ẐT+H〉, allow us to obtain the final vector prediction ŶT in an hourly basis
defined as,

ŶT = 〈Ŷγ(T−1)+1, . . . , ŶγTH〉 = 〈(ẐT+1X̂T+1), . . . , (ẐT+HX̂T+H)〉, (6)

where X̂T is the pattern estimation set to X̂T = PĈT
. Similarly, the real hourly information, (in our

application, water consumption) YT is defined by

YT = 〈Yγ(T−1)+1, . . . , YγTH〉 = 〈(ZT+1XT+1), . . . , (ZT+HXT+H)〉. (7)
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As discussed in the introduction, the application of QMMP+ to the operational MPC control of
water distribution networks, it is necessary to produce 24-h ahead predictions every hour. In order
to do this, two days (H = 2) of water demand are estimated. The forecast in this horizon is given by
〈(ẐT+1X̂T+1), (ẐT+HX̂T+H)〉, and then, to perform the hourly prediction, a sliding window of width
h is used, covering the subsequence of data from t + 1 to t + h in γ steps as shown in Figure 2.
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Figure 2. Hourly prediction of water consumption using a sliding window of width h.

2.3.1. Nearest Neighbors Mode Estimator

Nearest Neighbors (NN) is an non-parametric learning algorithm that makes decisions based
on the set or a subset of the training data set. This algorithm has been used for nonlinear time
series prediction by Kantz and Schreiber [28]. NN assumes that the data is in a feature metric space.
The considered data might be scalars, multidimensional vectors, labels, or characters. The NNME
is used to solve the problem of estimating the next H categorical elements 〈ĈT+1, . . . , ĈT+H〉 given
a sequence of observed labels in C. In order to implement NNME, a time series is organized in
subsequences named delay vectors of the form

DT = 〈CI〉TI=T−τ(m+1), (8)

where (following Kantz´s notation) we use the size parameter m of the delay vector DT and the
embedding dimension parameter τ fixed to 1 along the paper; therefore, it is not explicitly written in
the following equations. The parameter ε defines the neighborhood radius size from DT that includes
the κ delay vectors Dvj . Each delay vector Dvj is constructed similarly as Equation (8) by setting

Dvj = 〈CI〉
vj
I=vj−(m+1) that satisfies

dist(Dvj , DT) ≤ ε, (9)

where dist can be any distance function. For scalars or real numbers, it is common to use the Euclidean
distance, but, for comparing sequences of qualitative information, it is suitable to use the Hamming
distance, defined by

dist(X, Y) = ∑m
i=1 δ(xi, yi)

m
, (10)
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where X = {x1, . . . , xm} and Y = {y1, . . . , ym} are label vectors; the distance between vectors x and y is
defined by

δ(x, y) =

{
0, if x = y,

1, otherwise.
(11)

With the qualitative time series C, we estimate the next H modes using the FNN nearest neighbors
function defined by

ĈT+∆H = FNN(〈CI〉TI=T−(m+1)) = Mo(〈Dvj+∆H〉κj=1
), (12)

where FNN receives the recent vector 〈CI〉TI=T−(m+1) as an argument and it is set to DT using
Equation (8). ∆H represents time index increments generating the next class labels sequence of
size H from vj + 1 to vj + H of each Dvj . The forecast is produced using the statistical Mode Mo for
each next element set (e.g., next value ĈT+1 is computed with Mo(〈Dvj+1〉κj=1

)).

Setting ĈT = ĈT+∆H , the optimization of Equation (12) is performed by means of an exhaustive
search, bounding the search space and minimizing the mode prediction errors in Hamming distance
using the real observations

arg min
m,ε

M

∑
T=1

dist(ĈT, CT). (13)

2.3.2. Calendar

Human activity might be related and ruled by policies and traditions defined in a yearly calendar.
The information given by the calendar is potentially useful for making accurate predictions. In order
to integrate the calendar information to the forecasting model, we defined a function Fcal that receives
the daily time T as the argument and returns the next H modes 〈ĈT+1, . . . , ĈT+H〉, considering a two
class calendar that considers working and weekend/holiday days. Therefore, the calendar function is
defined as

〈ĈT+1, . . . , ĈT+H〉 = Fcal(T), (14)

where the returning values depend on the coded information in the label vector Ĉ =

〈Ĉ1, . . . , ĈT , . . . , ĈN〉 and each calendar element takes values from the two class set ĈT ∈ {K1, K2}.

2.3.3. Nearest Neighbor Rule Pattern Estimation

The Nearest Neighbor Rule Pattern Estimation (NNRPE) is a simple online approach implemented
to recognize and correct the current mode in an hourly basis. Since the pattern mode Pi is predicted
every γ time steps with the Calendar and NNME methods, it is possible to estimate incorrectly a mode
due to model inaccuracies or eventualities (e.g., unexpected pattern mode produced by a contingency
plan) and therefore to use the wrong estimation pattern for the remaining period of time γ. This fact is
solved observing the evolution of the distribution pattern along the period (i.e., day) and determining
the most similar pattern with the information acquired so far. As soon as we get more information
about the current day pattern, the mode estimation will tend to be the same as the real pattern mode.
In order to compare the current observed data with the available pattern modes, the recent data is
normalized considering γ past measurements to make the data comparable with the patterns P with

Y′ =
〈Yi〉tt−γ+1

∑t
t−γ+1 Yi

. (15)

Once the last γ measurements are normalized, we proceed to choose the most similar pattern so
far with the FNR comparison function
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Ĉd t
γ e

= FNR(Y′) = arg min
i∈K

||〈Y′i 〉
t
in f (t) − 〈Pi〉

sup(t)
1 ||2, (16)

where sup(t) = [(t− 1) mod γ] + 1 provides the hour of the day associated with Pi using the module
function, inf(t) = t− sup(t) + 1, which is the time index fixed to the first hour of the current day.
These indexes make it possible to compare the pattern to the current normalized observations Y′

using vectors of same length. Figure 3 presents an example. Let us assume that we are at time instant
t = 37. If t = 37, then the hour of the day is 13 (sup(37) = 13). Therefore, we compare the first
13 pattern elements of each Pi with the last 13 elements of the normalized vector Y′ (elements inside
the dashed square).

Figure 3. Nearest Neighbor Rule with the current observations.

Figure 4 shows the distance of Y′ within the dashed square of Figure 3. The pattern evolution Y′

from hours 1 to 5 is apparently closer to P1; nevertheless, the trend is inverted from hour 6, switching
the estimation to pattern P2, which generates the minimum distance with the data so far. The closeness
of Y′ is estimated via nearest neighbor and the correction is presented when the similarity index
changes. In this way, the estimation will be more accurate as we observe more data.
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Figure 4. Euclidean distance of Y′ along the time compared with P1 and P2.

2.3.4. Probabilistic Selection of Qualitative Models

The probabilistic selection of Qualitative Models is performed by computing the probability
of each qualitative predictor to produce the best pattern prediction using past data. For the case
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ĈT+1, we select the model from the predictor set composed by Fcal , FNR, FNN, with the highest
probability to predict better than others in a specific hour of the day hr. For the case of predicting
ĈT+2, similarly, we select the model from the predictor set composed by Fcal and FNN . The Selection of
Qualitative Model for predicting CT+1 is stored in QM1 and is expressed as the model that maximizes
the probability of predicting correctly

QM1 = arg max
F
{Pr(CT+1|F)|F ∈ {Fcal,hr, FNR,hr, FNN,hr}}, (17)

where Pr(CT+1|F) has the independent probabilities of each predictor model to have the best estimation
in the past, given the hour of the day denoted by hr. Fcal,hr, FNN,hr, FNR,hr are the same functions
defined in Equations (14), (16), and (12), with the difference that we consider the prediction at a specific
hour of the day.

The probabilities of each model F to predict CT+1 given the hour of the day Pr(ĈT+1|Fhr) are
computed considering the total of correct predictions divided by the sum of correct and incorrect
predictions. This is computed as

Pr(CT+1|Fhr) =
#(Fhr,T+1 = 1)

#(Fhr,T+1 = 1) + #(Fhr,T+1 = 0)
, (18)

where #(Fhr,T+1 = 1) is the number of times when F has predicted historically correct, which is
ĈT+1 = CT+1 at hour hr, and #(Fhr,T+1 = 0) otherwise. The same approach is used to predict ĈT+2,
with the difference that neither FNR,hr nor the hour are considered. The probability is computed as

Pr(ĈT+2|F) =
#(FT+2 = 1)

#(FT+2 = 1) + #(FT+2 = 0)
. (19)

As discussed in [17], the pattern distribution models are changing gradually over time. Thus,
once we have the mechanism to predict the qualitative behavior, we propose to extend the model
using an adaptive mechanism based on a simple Moving Average (MA) to update the distribution
modes. In order to do this, the most recent XT patterns associated with ĈT+1 and ĈT+2 are collected in
sequence V as follows:

V = {ĈT+1 = Ci, i ∈ [1, T]}. (20)

Finally, the distribution pattern to be used for the prediction is updated by producing an average
of the last patterns associated with the predicted mode ĈT+1

PKi =
VT−m′+1+, . . . ,+VT

m′
, (21)

where m′ is a positive integer indicating the number of the last patterns used to produce an update
of PKi , given by the average of the last patterns ĈT+1. Then, the obtained distribution pattern is
considered as the new pattern PKi to be used in the prediction.

2.4. Seasonal ARIMA as Quantitative Predictor

ARIMA is a statistical regression methodology, which assumes the existence of linear temporal
relations among the elements of the time series [26]. ARIMA can be seen as a time series dynamical
model where the future estimations are explained with the current and past available data. Seasonal
ARIMA (SARIMA) is the generalization for the time series with a seasonal pattern. This model uses
four polynomials expressed by SARIMA (p, d, q)× (P, D, Q)š, where p and q define the polynomial
degree of each AR and MA component and d is the difference order of the integrated non-seasonal
component. Similarly to the seasonal component, P and Q define the polynomial degree of each
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seasonal AR and MA component, respectively, and D is the number of seasonal differences every š > 1
lags for the seasonal integrated part.

As an example, a SARIMA model (1, 1, 1)(1, 1, 1)7 produces the model expressed with
lag operators,

(1−Φ1(L))(1− φ1(L)7)(1− L)(1− (L)7)Yt = (1 + Θ1(L))(1 + θ1(L)7)εt, (22)

where L is the lag operator that returns the previous element of a time series Yt (e.g., LYt = Yt−1), d and
D are the integration order set to 1 for the seasonal and non-seasonal component, Φ1 and φ1 are the
polynomial coefficients for non-seasonal and seasonal AR, and Θ1 and θ1 are the coefficients for the
non-seasonal and seasonal MA considering the first seasonal difference lag at time 7. (1− L) is the
non-seasonal difference, and (1− (L)7) is the seasonal differences every seven steps.

2.5. QMMP+ Implementation

This section describes the details of the QMMP+ implementation, integrating the different
elements described in the previous subsections, in both training and operational phases. The training
and forecasting algorithms assume that the time series (1) has been transformed into qualitative and
quantitative time series with the format introduced in Equations (2) and (3), respectively. The formatted
time series is represented by

〈(XT , ZT)〉NT=1. (23)

Then, the available data is divided into training and testing sets. The training set is composed by a
subset of elements defined by 70% in the training set; the remaining 30% corresponds to the validation
set. Using this set, we tune and learn the different parameters of the algorithms. The training process
is presented in detail in Algorithms 1 and 2, in the next subsection. The full forecasting process is
presented in Algorithm 3 in the operational phase subsection.

Algorithm 1 Tuning Parameters

1: procedure TUNINGPARAMETERS( 〈Xi〉Tr
T=1, 〈Zi〉Tr

T=1 )

2: Tr′ = b0.7Trc . (Tr′ defines a subset from the training set)

3: (p, d, q, I, P, D, Q, š) = learnSARIMA(〈ZT〉Tr
T=1)

4: P = clustering(〈XT〉Tr′
T=1)

5: C = classi f y(〈XT〉NT=1, P) . Equation (5)

6: for j = {1, . . . , nk} do

7: Vj = {Ci = j, ∀i ∈ [1, Tr]} . Equation (20)

8: end for

9: (m, ε) = minimizeNN(〈Cj〉Tr
1 , Tr′) . Equation (13)

10: m′ = learnMA(V = 〈Vi〉ki , 〈XT〉Tr
T=1, Tr′}) . Algorithm 2

11: return ε, m, m′, k

12: end procedure
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Algorithm 2 Optimize Moving Average Parameter

1: procedure LEARNMA({V = 〈Vi〉ki , 〈XT〉Tr
T=1, Tr′})

2: m′ = arg min
{m′}

∑k
i=1 ∑Tr

T=Tr′ ||XVi
T+1
− Pi|| . Pi is obtained with Equation (20)

3: return m′

4: end procedure

Algorithm 3 Forecasting

1: procedure FORECAST(Y, H)

2: for T = 〈Tr, . . . , N − 2〉 do

3: {ĈNN
T+1, Ĉnn

T+2} = FNN(C1, . . . , CT) . Equation (12)

4: {Ĉcal
T+1, Ĉcal

T+2} = Fcal(T) . Equation (14)

5: {ŶT+1, ŶT+2} = SARIMA(YT−p, . . . , YT)

6: savePatternPredictions(ĈNN
T+1, Ĉcal

T+1)

7: for j = 〈0, . . . , γ− 1〉 do

8: hr = Tγ + j

9: Y′ = 〈Yhr−γ+1, . . . , Yhr〉/(∑t
t−γ+1 Yi) . Equation (15)

10: P = updateP(〈XS〉TS=1}, 〈CS〉TS=1}) . Equation (21)

11: time = (hr− 1 mod γ) + 1

12: ĈNR
d j

γ e
= nnRule(P, Y′, time) . Equation (16).

13: savePatternPredictions(ĈNR
d j

γ e
)

14: ĈT+1 = mostLikelyPrediction(ĈNN
T+1, Ĉcal

T+1, ĈNR
d j

γ e
) . Equation (17)

15: ĈT+2 = mostLikelyPrediction(ĈNN
T+1, Ĉcal

T+1)

16: 〈Ŷi〉
hr+h
i=hr+1 = 〈ẐT+1PĈT+1

, ẐT+1PĈT+2
〉j+h

j+1
17: Ŷhr = 〈Ŷi〉

hr+h
i=hr+1

18: end for

19: saveRealPattern(CT+1, CT+2)

20: updateProbabilities() . Equations (18) and (19).

21: end for

22: return 〈ŶTrγ+1, . . . , Ŷγ((N−1)+1)〉
23: end procedure

2.5.1. Training Phase

The training phase is summarized in Algorithm 1, which takes as arguments the training sets
of the qualitative and quantitative time series 〈XT〉Tr

1 , 〈ZT〉Tr
1 . In line 2, a subset size Tr′ is set in

order to evaluate parameters using time series data from Tr′ to Tr. In line 3, we find the SARIMA
model for 〈ZT〉Tr

T that performs the Ljung–Box test via autocorrelation analysis. In line 4, we learn
the prototypes from the qualitative TS 〈XT〉Tr′

1 using k-means; those prototypes are stored in vector
P. Then, a clustering with k classes is selected that produces the maximum separability according to
the Silhouette Coefficient proposed by [29]. In line 5, the P prototypes are used as input for the full
data qualitative patterns classification, producing the sequence of labels assigned to vector C by using
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Equation (5). The loop from lines 6 to 8 produces the Vj sets containing all the patterns associated
with a prototype, line 9 optimizes NN qualitative forecasting model selecting the delay vector size
m and neighborhood size ε according to Equation (13). Line 10 optimizes the number of the last m′

qualitative patterns for the adaptive pattern MA.
The learnMA function is presented in Algorithm 2. It tests the different m′ values from Tr′ to Tr,

keeping the value that produces the least prediction error for the k classes.

2.5.2. Operational Phase

In the operational phase, the multi-model predictor architecture presented in Figure 1 is
implemented. The model receives the raw measurements every hour as input to be converted every γ

steps in qualitative patterns, using the Qualitative Feature Extraction module and aggregated data by
using the Quantitative Feature Extraction module (model of Figure 1). The classification labels C are
provided to the Mode Detection module to estimate the next pattern using FNN , FNR and Fcal , and then
used by the Multi-Model Forecasting module.

The operational phase procedure describes how the forecast is performed. The process is
described in Algorithm 3, which returns all the 24-h horizon forecasts each hour hr inside the vector
〈Ŷ〉Trγ+1, . . . , Ŷγ((N−1)+1)}. The prediction is performed with unknown data in the time interval from
Tr to N − 2. Lines 3 and 4 produce two qualitative predictions with NNME and the Calendar. In line 5,
SARIMA produces the next two quantitive values. Line 6 saves the Calendar and NNME predictions
in their respective label estimation arrays (e.g., Ĉcal = 〈Ccal

1 , . . . , Ccal
T 〉, ĈNN = 〈Ccal

1 , . . . , Ccal
T 〉) with

savePatternPredictions using Equations (18) and (19).
Then, from lines 7 to 18, the prediction is performed at each step Tγ + j every cycle. Line 9

normalizes the last γ measurements and saves them in vector Y′. Line 10 updates the P patterns
using Equation (21). Line 11 computes the time to be used in line 12. Line 12 estimates the current
pattern with NR rule defined in Equation (16). Line 13 stores the estimation in ĈNR

j
γ

associated with

the time. Line 14 produces the most likely Pattern Prediction for T + 1 given by ĈNN
T+1, Ĉcal

T+1, ĈNR
d j

γ e
. Line

15 similarly produces the most likely Pattern Prediction for T + 2 given by ĈNN
T+2, Ĉcal

T+2. Line 16 is
used to produce the final prediction h steps ahead. Line 16 saves the water demand prediction for
the 24 h ahead. Line 19 saves the real pattern CT+1 and line 20 updates the occurrences with the real
patterns, and the probabilities associated with each qualitative predictor, and, finally, line 22 returns
the predictions produced every hour.

3. Results and Discussion

This section presents the application of the QMMP+ to forecast the water demand of the Barcelona
drinking water network and the obtained performance results.

3.1. Application and Study Case

The water demand from the Barcelona drinking water network is used as a case study in this
paper. This network is managed by Aguas de Barcelona SA (AGBAR), which supplies drinking water
to Barcelona and its metropolitan area. The main water sources are the rivers Ter and Llobregat.

Figure 5 shows the general topology of the network, which has 88 main water consumption
sectors. Currently, there are four water treatment plants: the Abrera and Sant Joan Despí plants,
which extract water from the Llobregat river; the Cardedeu plant, which extracts water from the Ter
river; and the Besòs plant, which treats underground water from the Besòs river aquifer. There are also
several underground sources (wells) that can provide water through pumping.

This network has 4645/km of pipes supplying water from sources to serve 23 municipalities
within an extension of 424 km2, satisfying the water demand of 3 million people approximately,
providing a total flow around of 7 m3/s.
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Figure 5. Barcelona drinking water transport network.
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For the MPC control, a prediction horizon of 24 h is sufficient to operate with a good balance in
accuracy and performance. MPC also operates hourly and is fed with the current and estimated water
demand for 24 h ahead by a forecasting model. The QMMP+ approach is used to provide 24-h ahead
water demand forecast.

For assessing the performance of the proposed approach, hourly time series are generated by
representative flowmeter measurements of the year 2012 (from a total of 88) of the Barcelona network.
The selection criterion is to consider only complete time series with regular data and few outliers
according to the modified Thomson Tau (τ) method. The τ part of its name is given by the statistical
expression τ = t(n − 1)/

√
n
√

n− 2 + t2), where t is the Student’s value and n the total number
of elements.

The time series associated with different urban areas sectors, are identified with alphanumeric
codes in the water demand database: p10007, p10015, p10017, p10026, p10095, p10109 and p10025.
According to the Thomson Tau test, with a significance of α = 0.01, these sectors contain less than
70 outliers with exception of Sector p10025, which has an irregular data segment producing more
outliers. Briefly, the Thomson Tau test detects the potential outlier using the Student’s t-test, labeling
the data as outlier when its distance is larger than two standard deviations from the mean.

We enumerate the selected sensor sectors using new labels from 1 to 7, respectively, to simplify
the legend in the table of results. All the time series are normalized in the [0,1] interval. The forecast
accuracy of the QMMP+ is measured and compared with well-known forecasting models such as
ARIMA [26], where the ARIMA structures are estimated with R’s autoarima function. The structure
coefficients are optimized using MATLAB´s estimate function (Matlab R2017a, MathWorks Inc., Natick,
MA, USA), and the test is also implemented in MATLAB with the forecast function. The Double
Seasonal Holt Winters (DSHW) [25], available in the R forecast package, implemented the dshw function
to fit the model. The RBF Neural Networks [27], available in the MATLAB Neural Network Toolbox
package, implemented the train function to learn the neural network’s weights. MATLAB is also used
to implement k-means and silhouette coefficient to identify the qualitative patterns.

All methods are tuned and trained using a training set with 70% of data. The remaining data is
used as validation set to measure the performance accuracy 24 steps or hours ahead using the Mean
Absolute Error (MAEh), Root Mean Squared Errors (RMSEh) and Mean Absolute Percentage Error
(MAPEh) defined as,

MAEh =
1
n

n−h

∑
i=imin

∑i+h
i′=i+1 |Yi − Ŷ′i |

h
, (24)

RMSEh =
1
n

n−h

∑
i=imin

√
∑i+h

i′=i+1(Yi − Ŷ′i )
2

h
, (25)

MAPEh =
1
n

n−h

∑
i=imin

100
h

i+h

∑
i′=i+1

|Yi −Y′i |
|Yi|

, (26)

where n is the size of the training set, h is the forecasting horizon and imin, is the first element of the
validation set.

We also report precision with the variance of all the independent forecasting residuals stored in a
vector of size equal to the number of individual forecasts (given by multiplying the number of n− h
forecasts by the horizon h), R = {R1, R2, . . . , R(n−h)h}, where each residual is defined as the difference
of the real and forecasted values defined as follows:

Rj = Ŷj −Yj. (27)
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The index j is the result of mapping the prediction time indexes at all different times ∀i ∈
[imin, n− h] and horizons ∀i′ ∈ [1, h] to the vector R defined as,

j = (i− 1)h + i′. (28)

Once we have R, the variance of the individual residuals is computed by

Var(R) = E[(R− E(R))2], (29)

where E is the statistical expectation.
The distribution patterns X are clustered using k-means. Each distribution (or class) is represented

by the normalized centroid Pi. The number of classes is defined by maximizing the silhuette coefficient.
To achieve this, k-means is executed testing different number of classes k from 2 to 7. The silhouette
coefficient for each time series is reported in Figure 6, which indicates that a value of k = 2 maximizes
the separability of the qualitative patterns for the studied time series. The centroids obtained with
k-means represent the average pattern of each pattern demand class used as initial mode or prototypes.

Figure 6. Silhouette coefficient obtained by running k-Means with different k ∈ 1, . . . , 7, for each of the
seven water distribution sectors.

The training set is used to learn the NNME parameters associated with the FNN function, and the
validation set measures its performance with different values of ε and m. We optimize Equation (13)
for ε = {0.01, 0.02, . . . , 0.1} and m = {1, . . . , 20}.

For the MA adaptive pattern, we test the lag values m′ = {1, . . . , 20}. Table 1 presents the
SARIMA structures and the specific polynomial lags associated with each component of the model.
Each model passed the Ljung–Box test once they are optimized. Table 1 also reports the best m and ε

for NNME, and the best m′ lag for MA for each time series. The initial distribution of consumption
patterns are presented in Figures 7 and 8 , where the blue line with squares represents the holiday
pattern, and the orange line with rhombi the weekday pattern.
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Table 1. Seasonal Autoregressive Integrated Moving Average (SARIMA) structures, Moving Average
(MA) and Nearest Neighbor Mode Estimator (NNME) parameters for each time series.

Sector SARIMA Structure MA NNME

Order (p,d,q)(P,D,Q)š Polynomial Lags m′ m ε

1 (4,1,1)(0,0,1)7 ([1,2,3,19],[1],[1])([0],[0],[7])7 5 12 0.1
2 (2,1,1)(0,0,1)7 ([2,4],[1],[1])([0],[0],[7])7 6 8 0.4
3 (2,1,1)(0,0,1)7 ([2,4],[1],[1])([0],[0],[7])7 5 12 0.0
4 (2,1,1)(0,0,1)7 ([2,4],[1],[1])([0],[0],[7])7 9 8 0.0
5 (2,1,1)(0,0,1)7 ([2,4],[1],[1])([0],[0],[7])7 9 5 0.0
6 (2,1,1)(0,0,1)7 ([2,4],[1],[1])([0],[0],[7])7 11 5 0.0
7 (0,1,7)(0,0,1)7 ([0],[1],[2–7])([0],[0],[5–7])7 5 7 0.0

For the calendar model, we classify the pattern in two classes associated with the 2012 Catalan
calendar activity [30] (holidays and weekdays), in order to perform the mode prediction.

The QMMP+ model is compared against the DSHW, Radial Basis Function Neural Network
(RBF-ANN), ARIMA and the decomposition based approaches Calendar and NNME, where NNME
is the implementation of the QMMP introduced in [6]. The DSHW model has only two manually
adjusted parameters indicating the seasonality; period1 and period2. Since we manage hourly data,
period1 and period2 are set to 24 and 168 for the daily and weekly periods, respectively. We present the
performance obtained using the implementation in R.

(a) Sector 1 (b) Sector 2

(c) Sector 3 (d) Sector 4

Figure 7. Initial patterns P of sectors 1 to 4.
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(a) Sector 5 (b) Sector 6

(c) Sector 7

Figure 8. Initial patterns P of sectors 5 to 7.

In the case of the RBF-NN, the structure size is implemented using 92 Gaussian neurons in the
hidden layer with σ = 1, 24 inputs and 24 outputs to produce a prediction of 24 steps ahead each time
step. We also include a Naïve prediction model as a reference that uses the last 24 observations to
produce the forecast horizon 24 steps ahead. This model is described by

〈Ŷ〉t+h
t+1 = 〈Y〉tt−h+1. (30)

Tables 2–4 report the accuracy in terms of MAE24, RMSE24 and MAPE24 of the proposed
forecasting model QMMP+ compared with the Calendar (Cal), NNME, Naïve, ARIMA, RBF-ANN
(ANN) and DSHW.

Table 2. Mean Absolute Errors for 24 steps ahead forecasts (MAE24).

TS QMMP+ Cal NNME Naïve ARIMA ANN DSHW

1 0.0261 0.0309 0.0325 0.0431 0.2268 0.0417 0.0383
2 0.0361 0.0469 0.0503 0.0556 0.1719 0.0493 0.0402
3 0.0351 0.0400 0.0436 0.0577 0.1404 0.0497 0.0500
4 0.0323 0.0346 0.0402 0.0516 0.1355 0.0437 0.0413
5 0.0336 0.0363 0.0414 0.0476 0.2226 0.0427 0.0670
6 0.0211 0.0225 0.0242 0.0286 0.0565 0.0269 0.0221
7 0.0378 0.0436 0.0388 0.0476 0.2681 0.0397 0.0568

mean 0.0317 0.0364 0.0387 0.0474 0.1745 0.0420 0.0451

TS: Time Series. QMMP+: Qualitative Multi-Model Predictor Plus; NNME: Nearest Neighbor Mode Estimator.
DSHW: Double Seasonal Holt-Winters; ARIMA: Autoregressive Integrated Moving Average. ANN: Artificial
Neural Networks.
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Table 3. Root Mean Squared Errors for 24 steps ahead forecasts (RMSE24).

TS QMMP+ Cal NNME Naïve ARIMA ANN DSHW

1 0.0359 0.0408 0.0435 0.0647 0.2725 0.0575 0.0506
2 0.0459 0.0608 0.0657 0.0749 0.2034 0.0626 0.0524
3 0.0472 0.0522 0.0576 0.0809 0.1740 0.0650 0.0730
4 0.0438 0.0459 0.0542 0.0719 0.1656 0.0577 0.0570
5 0.0442 0.0466 0.0543 0.0684 0.2677 0.0563 0.0996
6 0.0275 0.0291 0.0319 0.0402 0.0693 0.0353 0.0310
7 0.0508 0.0592 0.0510 0.0723 0.3141 0.0568 0.0716

mean 0.0422 0.0478 0.0512 0.0676 0.2095 0.0559 0.0622

Table 4. Mean Absolute Percentage Errors for 24 steps ahead forecasts (MAPE24).

TS QMMP+ Cal NNME Naïve ARIMA ANN DSHW

1 7.6894 10.3604 11.0294 12.2260 104.7789 11.8758 10.9463
2 10.5045 13.9536 15.3083 16.3679 60.3339 13.8914 11.0999
3 15.1210 22.0860 23.2323 23.0632 42.3286 19.1763 69.8373
4 11.4644 13.0279 14.9782 17.6226 54.4792 15.1678 15.4631
5 15.1439 16.9219 18.7183 19.1025 934.3022 20.9310 26.9577
6 15.8718 16.5053 17.8853 21.2534 40.0381 20.4805 19.4827
7 13.2686 15.7276 14.5825 16.6595 787.0257 22.9499 19.9238

mean 12.7234 15.5118 16.5335 18.0422 289.0409 17.7818 24.8158

Table 5 reports the prediction uncertainty for each water distribution sector, and, at the bottom of
the table, the mean of the variances produced with each model.

Table 5. Mean of the individual variances.

TS QMMP+ Cal NNME Naïve ARIMA ANN DSHW

1 0.0022 0.0024 0.0030 0.0065 0.0804 0.0040 0.0040
2 0.0028 0.0043 0.0054 0.0076 0.0467 0.0047 0.0036
3 0.0030 0.0034 0.0045 0.0088 0.0293 0.0050 0.0077
4 0.0027 0.0028 0.0042 0.0071 0.0294 0.0041 0.0053
5 0.0029 0.0031 0.0044 0.0068 0.0786 0.0047 0.0189
6 0.0010 0.0011 0.0013 0.0021 0.0050 0.0013 0.0012
7 0.0039 0.0053 0.0038 0.0081 0.1126 0.0038 0.0079

mean 0.0026 0.0032 0.0038 0.0067 0.0546 0.0040 0.0070

Regarding the accuracy results, we observe that the set of decomposition based approaches,
QMMP+, Calendar, and NNME, perform better in average than RBF-ANN, ARIMA and DSHW for
MAE, RMSE, and MAPE for all the water demand time time series.

In particular, ARIMA presents the less accurate predictions for all the time series, even with errors
above the Naïve model. DSHW shows better results than ARIMA, and Naïve, and, finally, ANN
presents the best prediction accuracy among these approaches.

Regarding the accuracy in terms of mean errors of the decomposition based approaches,
(i.e., Calendar and NNME), we note two facts: on the one hand, Calendar is generally more accurate
than NNME, but it requires a priori information assuming that the qualitative modes are defined by an
activity calendar. On the other hand, NNME is less accurate than Calendar but able to produce good
qualitative mode predictions without any assumption. This fact is useful when Calendar does not
explain the sequence of modes, as the case of time series 7, where Calendar is not better than NNME.
Therefore, we can say that these characteristics are complementary, and, once they are combined
(as QMMP+ does), both contribute to produce more accurate forecasts.
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Regarding the mean of the individual variances of Table 5, QMMP+, Calendar, and NNME are
also the most precise approaches on average than Naïve, ANN, ARIMA and DSHW, where ARIMA
also presents the worst precision, and only in time series 7, NNME and ANN are better than QMMP+.

In summary, we can conclude that our approach, QMMP+, outperforms the other forecasting
models and shows the effectiveness of choosing probabilistically the best qualitative model throughout
the experiments.

4. Conclusions

The main contribution of this paper is the introduction of the probabilistic selection of qualitative
model predictors and estimators, included in the Multi-model predictor architecture called QMMP+.
The model is based on the decomposition of the qualitative and quantitative information of the
time-series. Seasonal ARIMA is suitable for predicting the daily consumption prediction, and NNME
plus the Calendar, for mode pattern prediction. The patterns are also updated using a simple Moving
Average. The NNME, Calendar and Nearest Neighbor Rule models are executed simultaneously,
and then the prediction of the most suitable model is selected using a criterion based on probability.
The final water demand estimation is composed of the magnitude of consumption prediction for the
day and the most likely distribution pattern to appear. This QMMP+ implementation outperforms the
previous QMMP reported in [6], which was also better than RBF-ANN, SARIMA, and DSHW. As future
work, we propose implementing this method with another kind of time series with similar periodic
behavior such as electricity demand. The probabilistic selection of qualitative prediction models allows
running several prediction models and selecting in real time during the operational phase the best one
according to its probability of success. We will consider the use of Bayesian networks to develop a
probabilistic model selection mechanism, considering more variables to improve the accuracy of the
pattern prediction.

Supplementary Materials: The code as supplementary material is found at https://github.com/rdglpz/QMMP_
EXPERIMENTS.git.
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