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Abstract:
This paper studies a set-based unknown input observer based on zonotopes for discrete-time
descriptor systems affected by uncertainties with application to state estimation and robust
fault detection. In this paper, two types of uncertainties are considered: (i) disturbances and
noise both bounded by zonotopes; (ii) unknown inputs that can be decoupled. In terms of
different applications, the observer gain for state estimation is designed to minimize the effects
of unknown-but-bounded disturbances and noise as well as state estimation errors. On the other
hand, for robust fault detection, in addition to attenuating uncertainties, the designed observer
gain is also expected to be sensitive to faults. To achieve this goal, we propose an iterative
algorithm to design the fault detection gain. Finally, some illustrative results in an application
example show the effectiveness of the proposed algorithms.
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1. INTRODUCTION

Unknown input observers (UIOs) play a significant role in
control domain during past several decades with a large
amount of applications, such as state estimation [Hou
and Muller, 1992], robust fault diagnosis [Chen and Pat-
ton, 2012, Rotondo et al., 2016] and fault-tolerant con-
trol [Cristofaro and Johansen, 2014]. For a real system,
the mathematical model includes uncertainties to describe
system dynamics and output behavior. These uncertainties
can be modeled as unknown inputs allowing to represent
modeling errors, unknown system disturbances, measure-
ment noise, or faults among others.

To design an UIO, the key point is to remove or reduce the
effects of unknown inputs. As an extension of UIO with set
theory proposed in Xu et al. [2016, 2017], a set-based UIO
is designed for discrete-time dynamical systems, where the
unknown inputs are divided into two categories: one that
can be decoupled and another which can be bounded by a
deterministic set. Zonotopes are symmetric polytopic sets
so that the zonotope can be determined by a center and
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a generator matrix, and the computational load of the
operations required for implementing a recursive algorithm
is low.

Descriptor systems, also known as singular, differential-
algebraic systems, have been well-known in a variety of
applications, such as water distribution networks [Wang
et al., 2017a] and electrical circuits [Duan, 2010]. In addi-
tion to describe system dynamics, the static relationships
among system variables are formulated by means of alge-
braic equations. When descriptor systems are affected by
uncertainties, these can be separated in those that can be
bounded as disturbance and noise, and unknown inputs
that can be decoupled. The subject of fault diagnosis for
descriptor systems is of interest and importance [Varga,
2017], especially to guarantee the safety and reliability of
critical infrastructures, such as complex water networks
and power systems.

The main contribution of this paper is to design a zono-
topic UIO of discrete-time descriptor systems subject to
unknown-but-bounded system disturbances and measure-
ment noise as well as unknown inputs that can be de-
coupled. Considering the uncertainty boundedness, we re-
cursively construct a zonotopic UIO for state estimation
and robust fault detection (FD). All system uncertainties
are propagated by operating the zonotopic sets. For state
estimation, the observer gain for zonotopic UIO is designed
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de Llobregat, 08940 Barcelona, Spain

Abstract:
This paper studies a set-based unknown input observer based on zonotopes for discrete-time
descriptor systems affected by uncertainties with application to state estimation and robust
fault detection. In this paper, two types of uncertainties are considered: (i) disturbances and
noise both bounded by zonotopes; (ii) unknown inputs that can be decoupled. In terms of
different applications, the observer gain for state estimation is designed to minimize the effects
of unknown-but-bounded disturbances and noise as well as state estimation errors. On the other
hand, for robust fault detection, in addition to attenuating uncertainties, the designed observer
gain is also expected to be sensitive to faults. To achieve this goal, we propose an iterative
algorithm to design the fault detection gain. Finally, some illustrative results in an application
example show the effectiveness of the proposed algorithms.

Keywords: unknown input observer, zonotopes, state estimation, robust fault detection,
discrete-time descriptor systems.

1. INTRODUCTION

Unknown input observers (UIOs) play a significant role in
control domain during past several decades with a large
amount of applications, such as state estimation [Hou
and Muller, 1992], robust fault diagnosis [Chen and Pat-
ton, 2012, Rotondo et al., 2016] and fault-tolerant con-
trol [Cristofaro and Johansen, 2014]. For a real system,
the mathematical model includes uncertainties to describe
system dynamics and output behavior. These uncertainties
can be modeled as unknown inputs allowing to represent
modeling errors, unknown system disturbances, measure-
ment noise, or faults among others.

To design an UIO, the key point is to remove or reduce the
effects of unknown inputs. As an extension of UIO with set
theory proposed in Xu et al. [2016, 2017], a set-based UIO
is designed for discrete-time dynamical systems, where the
unknown inputs are divided into two categories: one that
can be decoupled and another which can be bounded by a
deterministic set. Zonotopes are symmetric polytopic sets
so that the zonotope can be determined by a center and

� This work has been partially funded by the Spanish State Re-
search Agency (AEI) and the European Regional Development
Fund (ERFD) through the project DEOCS (ref. DPI2016-76493)
and SCAV (ref. DPI2017-88403-R), the FPI grant (ref. BES-2014-
068319), and by AGAUR of Generalitat de Catalunya through the
Advanced Control Systems (SAC) group grant (ref. 2017-SGR-482).

a generator matrix, and the computational load of the
operations required for implementing a recursive algorithm
is low.

Descriptor systems, also known as singular, differential-
algebraic systems, have been well-known in a variety of
applications, such as water distribution networks [Wang
et al., 2017a] and electrical circuits [Duan, 2010]. In addi-
tion to describe system dynamics, the static relationships
among system variables are formulated by means of alge-
braic equations. When descriptor systems are affected by
uncertainties, these can be separated in those that can be
bounded as disturbance and noise, and unknown inputs
that can be decoupled. The subject of fault diagnosis for
descriptor systems is of interest and importance [Varga,
2017], especially to guarantee the safety and reliability of
critical infrastructures, such as complex water networks
and power systems.

The main contribution of this paper is to design a zono-
topic UIO of discrete-time descriptor systems subject to
unknown-but-bounded system disturbances and measure-
ment noise as well as unknown inputs that can be de-
coupled. Considering the uncertainty boundedness, we re-
cursively construct a zonotopic UIO for state estimation
and robust fault detection (FD). All system uncertainties
are propagated by operating the zonotopic sets. For state
estimation, the observer gain for zonotopic UIO is designed

10th IFAC Symposium on Fault Detection,
Supervision and Safety for Technical Processes
Warsaw, Poland, August 29-31, 2018

Copyright © 2018 IFAC 307

Zonotopic Unknown Input Observer of
Discrete-time Descriptor Systems for State
Estimation and Robust Fault Detection �
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Ye Wang ∗ Vicenç Puig ∗ Feng Xu ∗∗ Gabriela Cembrano ∗,∗∗∗
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to minimize the effects of uncertainties, that is, to mini-
mize the size of the state bounding zonotope. Based on
the results presented in Wang et al. [2018], we can obtain
the optimal Kalman observer gain by using the F -radius
to measure the size of the zonotope. For robust FD, we
propose an optimization-based method to maximize the
fault sensitivity and minimize the effects of uncertainties.
Following the proposed computation procedure, an FD ob-
server gain can be found. Finally, the proposed algorithms
are tested in a numerical example.

The paper structure begins with some preliminary results
on notations, definitions and properties in Section 2. The
problem formulation is expressed in Section 3. The main
results including UIO structure and observer gain designs
are presented in Section 4. The proposed methods are
tested with an illustrative example in Section 5. The paper
is concluded in Section 6.

2. PRELIMINARIES

In this section, we introduce some preliminary results
including notation, some definitions and properties.

Definition 1. (Zonotope). An r-order zonotope Z in n-
dimensional space is defined by

Z = 〈p,H〉 = {p+Hz, z ∈ Br} ,
where p ∈ Rn is the center and H ∈ Rn×r is the generator
matrix, Br = [−1,+1]

r
is an r-order hypercube.

Definition 2. (Interval Hull). Given a zonotope Z = 〈p,H〉,
the interval hull rs(H) ∈ Rn×n is defined as an aligned
minimum box, where rs(H) is a diagonal matrix with diag-
onal elements of rs(H)i,i =

∑r
j=1 |Hi,j | for i = 1, 2, . . . , n.

Definition 3. (F -radius). Given a zonotope Z = 〈p,H〉,
the F -radius is defined by the Frobenius norm of H,
and ‖H‖2F = tr

(
HH�) = tr

(
H�H

)
, where tr(·) denotes

the trace of a matrix andH� denotes the transpose matrix
of H.

Definition 4. (Covariation). Given a zonotope Z = 〈p,H〉,
the covariation is defined by P = HH�.

Denote the Minkowski sum and the linear image as ⊕
and �. Therefore, the following properties hold:

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉,
L� 〈p,H〉 = 〈Lp, LH〉,

〈p,H〉 ⊂ 〈p, rs(H)〉,
where L is a matrix with appropriate dimension.

For a zonotope Z = 〈p,H〉, the weighted reduction
operator proposed in Combastel [2015] is denoted as ↓q,W
(H), where q specifies the maximum number of column of
H and W is a weighting matrix of appropriate dimension.
↓q,W (H) can be obtained by the following procedure:

• Sort the column of segment matrix H on decreasing
order: ↓W (H) = [h1, h2, . . . , hr], ‖hj‖2W ≥ ‖hj+1‖2W ,
where ‖hj‖W is the weighted 2-norm of hj .

• Take the first q-column of ↓W (H) and enclose a set
H< generated by remaining columns into a smallest
box (interval hull) computed by using rs(·):

If r ≤ q, then ↓q,W (H) =↓W (H),

Else ↓q,W (H) = [H>, rs(H<)] ∈ Rn×q,

H> = [h1, . . . , hq] , H< = [hq+1, . . . , hr] .

Besides, Ir denotes an identity matrix with the dimen-
sion r. rank(X) denotes the rank of a matrix X.

3. PROBLEM FORMULATION

Consider a discrete-time descriptor linear time-invariant
system with additive faults as

Ex+ = Ax+Bu+Dww +Dd+ Faf, (1a)

y = Cx+Dvv + Fsf, (1b)

where x ∈ Rnx , u ∈ Rm and y ∈ Rny denote the state,
known input and output vectors. w ∈ Rmw , v ∈ Rmv are
vectors of unknown system disturbances and measurement
noise that are assumed to be bounded by a centered
zonotope W = 〈0, Imw

〉 and V = 〈0, Imv
〉. d ∈ Rmd

denotes the unknown input vector that includes system
disturbances that cannot be bounded in W. f ∈ Rmf

denotes the normalized additive fault vector with f ∈
F = 〈0, Imf

〉 and the magnitudes of actuator and sensor

faults are defined by Fa ∈ Rnx×mf and Fs ∈ Rny×mf .
A ∈ Rnx×nx , B ∈ Rnx×m, C ∈ Rny×nx , D ∈ Rnx×md ,
Dw ∈ Rnx×mw and Dv ∈ Rny×mv . Besides, by definition
of descriptor systems, E ∈ Rnx×nx satisfies rank(E) ≤ nx.
For notation simplicity, the time instant k on all vectors
in (1) is omitted and we replace the time instant k+ 1 by
the superscript +.

For the descriptor system (1), the following assumption
are made.

Assumption 1. The descriptor system (1) is assumed to be
admissible, that is the matrix pair (E,A) is regular, causal
and stable [Chadli and Darouach, 2012].

Assumption 2. The descriptor system (1) is assumed to
be observable and matrices E and C satisfy the rank
condition in [Wang et al., 2018, Eq. (5)].

Thus, we can find matrices T ∈ Rnx×nx and N ∈ Rnx×ny

satisfying

TE +NC = Inx
, (2a)

TD = 0. (2b)

Consider the initial state vector x0 ∈ X0 = 〈p0, H0〉. In
this work, we are interested in designing a zonotopic UIO
of the descriptor system (1) with two applications:

(i) State estimation (with f = 0): design a zonotopic
UIO and find an observer gain to minimize the effects
of system uncertainties.

(ii) Robust FD (with f 
= 0): design a zonotopic UIO
and find an observer gain to minimize the effects
of system uncertainties and meanwhile maximize the
sensitivity to the faults.

4. MAIN RESULTS

In this section, we first introduce the zonotopic UIO struc-
ture for the descriptor system (1). Then, the observer gain
is designed with two different criteria for state estimation
and robust FD. Finally, the implementations of these two
applications are summarized by two algorithms.

4.1 Zonotopic UIO Structure for Descriptor Systems

According to Xu et al. [2016], we consider a basic UIO
structure as
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z+ = Mz +Ku+Gy, (3a)

x̂ = z +Ny, (3b)

ŷ = Cx̂, (3c)

where z ∈ Rnx , x̂ ∈ Rnx and ŷ ∈ Rny denote vectors
of the observer state, the estimated state and output.
M ∈ Rnx×nx , K ∈ Rnx×nu , N ∈ Rnx×ny and G ∈ Rnx×ny .

Define the state estimation error e = x − x̂. For the
descriptor system (1), with a pair of matrices T and N
satisfying (2a) and (3), the state estimation error dynamics
for the descriptor system (1) can be expressed as

e+ = Me+ (TA−GC −M)x+MNy + (TB −K)u

+ TDww + TDd−GDvv −NDvv
+

+ (TFa −GFs) f −NFsf
+. (4)

Since matrices T andN satisfy (2a), the effects of unknown
inputs in (4) can be removed.

We now define the zonotopic UIO structure of descriptor
systems assuming that the state vector x of the descriptor
system (1) satisfies the inclusion x ∈ 〈p,H〉 at a given
time instant k ∈ N. When k = 0, the initial state vector
x0 ∈ 〈p0, H0〉 also holds.

Theorem 1. (Zonotopic UIO Structure). Consider the de-
scriptor system (1) and x ∈ 〈p,H〉. The zonotopic UIO
of the descriptor system (1) is recursively defined by
x+ ∈ 〈p+, H+〉, where{

p+ = (TA−GC) p+ TBu+Gy +Ny+,

H+ =
[
(TA−GC) H̄, TDw, −GDv, −NDv

]
,

(5)

with H̄ =↓q,W (H).

Proof. For x ∈ 〈p,H〉 at time instant k, according to the
inclusion property in Section 2, x ∈ 〈p,H〉 ⊂ 〈p, H̄〉 holds.
With x̂ = p, we also have e = x− x̂ ∈ 〈0, H̄〉.
Set M = TA − GC and K = TB. With TD = 0
and f = 0, (4) becomes

e+ = (TA−GC) e+ (TA−GC)Ny

+ TDww −GDvv −NDvv
+. (6)

And from (3), we have

x̂+ = (TA−GC) p+ TBu+ (G− (TA−GC)N)y +Ny+.

Since w ∈ W = 〈0, Imw
〉 and v, v+ ∈ V = 〈0, Imv

〉, we
derive x+ = e+ + x̂+ with

x+ ∈ 〈p+, H+〉
=

(
(TA−GC)� 〈0, H̄〉

)
⊕ 〈(TA−GC)Ny, 0〉

⊕ (TDw � 〈0, Imw〉)⊕ (−GDv � 〈0, Imv 〉)
⊕ (−NDv � 〈0, Imv 〉)⊕ 〈x̂+, 0〉.

Thus, by using the zonotope properties, we obtain p+ and
H+ as in (5). �

Corollary 1. Consider the descriptor system (1) with x ∈
〈p,H〉. The residual vector r = y − Cx − Dvv can be
enclosed by the residual zonotope r ∈ 〈pr, Hr〉, where{

pr = y − Cp,

Hr =
[
−CH, −Dv

]
.

(7)

Proof. From Theorem 1, x ∈ 〈p,H〉 can be computed
recursively at time instant k ∈ N. Let us define r = y −
Cx−Dvv. With v ∈ V = 〈0, Imv

〉, we derive

r ∈ 〈y, 0〉 ⊕ (−C � 〈p,H〉)⊕ (−Dv � 〈0, Imv
〉) .

Thus, we obtain the residual zonotope in (7). �

Remark 1. In (5), G is a time-varying observer gain. Since
the residual zonotope is a linear projection of the zonotopic
UIO, the observer gain also has an effect on the residual
zonotope.

Remark 2. For the descriptor system (1), if f = 0, then
the output equation gives 0 = y − Cx−Dvv that implies
0 ∈ 〈pr, Hr〉 when no fault has occurred.

4.2 Observer Gain Design for State Estimation

For state estimation, the observer gain G for the zonotopic
UIO in (5) is designed to minimize the effects of unknown-
but-bounded system uncertainties. Inspired by the zono-
topic Kalman filter in Combastel [2015], the size of a zono-
tope can be measured by the F -radius (see Definition 3)
and to minimize the F -radius of a zonotope 〈p,H〉 involves
minimizing the trace of its covariation P = HHT (see
Definition 4). According to [Combastel, 2015, Section 4.3],
an optimal Kalman gain is independent to any weighting
matrix for the F -radius. Hence, for state estimation, we
choose Js = ‖H‖2F = tr(P ) as a convex function with
respect to G. For the zonotopic UIO in (5), we give the
explicit result to compute the optimal Kalman gain for
descriptor systems in the following theorem.

Theorem 2. (Optimal Kalman Gain). Given the zonotopic
UIO of descriptor systems in (5), the optimal Kalman gain
G∗ = argminG Js with Js = tr(P+) and P+ = H+(H+)�

is computed by the following procedure:

G∗ = TAK̄, (8a)

K̄ = LS−1, (8b)

L = P̄C�, (8c)

S = CP̄C� +DvD
�
v , (8d)

with P̄ = H̄H̄�.

Proof. For the zonotope 〈p+, H+〉 defined in (5), Js =

‖H+‖2F = tr(P+) is convex with respect to G. The optimal

observer gain G∗ satisfies ∂
∂G tr (P+) = 0. Hence, following

the proof in [Combastel, 2015, Theorem 5], we evaluate the
derivative of Js with respect to G. Set L and S as in (8).
We have

∂

∂G
tr
(
GSG�)− 2

∂

∂G
tr
(
TALG�) = 0,

And by simplifying the above equation, we obtain G∗

in (8). �

4.3 Observer Gain Design for Robust Fault Detection

For robust FD, we consider the fault sensitivity under
the assumption of f ∈ F , ∀k ∈ N. From (3), the state
estimation error e+ is also affected by the faults f and
f+. Hence, we decompose the zonotope (5) with two sets:
one is only affected by system uncertainties and the other
by faults.

Theorem 3. (Zonotopic UIO Decomposition). Consider the
descriptor system (1), f ∈ F and x ∈ {〈pe, He〉⊕〈pf , Hf 〉}.
The zonotopic UIO can be recursively defined in the de-
composition form as x+ ∈ {〈p+e , H+

e 〉 ⊕ 〈p+f , H
+
f 〉}, where
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choose Js = ‖H‖2F = tr(P ) as a convex function with
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G∗ = argminG Js with Js = tr(P+) and P+ = H+(H+)�
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estimation error e+ is also affected by the faults f and
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{
p+e = (TA−GC) pe + TBu+Gy +Ny+,

H+
e =

[
(TA−GC) H̄e, TDw, −GDv, −NDv

]
,

(9)

and{
p+f = (TA−GC) pf ,

H+
f =

[
(TA−GC) H̄f , TFa −GFs, −NFs

]
,

(10)

with H̄e =↓q,W (He), H̄f =↓q,W (Hf ), H+
e ∈ Rnx×ne ,

and H+
f ∈ Rnx×nf .

Proof. Given x ∈ {〈pe, He〉 ⊕ 〈pf , Hf 〉} we have

x+ ∈ {〈p+e , H+
e 〉 ⊕ 〈p+f , H

+
f 〉}

=
(
(TA−GC)� 〈pe + pf ,

[
H̄e, H̄f

]
〉
)
⊕ 〈TBu, 0〉

⊕ 〈Gy, 0〉 ⊕ 〈Ny+, 0〉 ⊕ (TDw � 〈0, Imw
〉)

⊕ (−GDv � 〈0, Imv 〉)⊕ (−NDv � 〈0, Imv 〉)
⊕
(
(TFa −GFs)� 〈0, Imf

〉
)
⊕
(
−NFs � 〈0, Imf

〉
)
.

For f ∈ F , the above equation satisfies x+ = e+ + x̂+ as
defined in (4). �

According to [Ding, 2013, Chapter 7], for designing an
FD observer, the residual should be sensitive to faults
and at the same time robust against uncertainties. For
the zonotopic UIO structure in (5), we assume that we
can always find T and G such that the observer (5) is
stable. The observer gain is designed to maximize the fault
sensitivity and minimize the effects of uncertainties. From
Corollary 1, the residual zonotope is a projection of the
zonotopic UIO in (5). As the zonotopic UIO is decomposed
in the presence of faults as in Theorem 3, we define the
corresponding criteria as Je = tr(P+

e ) and Jf = tr(P+
f )

with P+
e = H+

e (H+
e )� and P+

f = H+
f (H+

f )�. To maximize
Jf and minimize Je at time instant k, we can use the
following optimization problem:

G̃ = argmax
G

β

γ
, (11a)

subject to

Je = tr(P+
e ) < γ, (11b)

Jf = tr(P+
f ) > β, (11c)

where γ and β are positive scalars. Therefore, the perfor-

mance index for the FD observer is given by Jd =
Jf

Je
.

Assuming the matrix (TA−GC) is Schur stable, we rewrite
constraints (11b) and (11c) as matrix inequalities.

Theorem 4. If there exists a diagonal matrix Υ ∈ Rnx×nx

with Υ � 0 such that the following inequality hold:[
Υ H+

e

(H+
e )� Ine

]
� 0, (12)

then the zonotopic UIO (5) guarantees the uncertainty
attenuation performance Je < γ with γ = tr(Υ ).

Proof. From (11b), there exists a diagonal matrix Υ ∈
Rnx×nx , Υ � 0 such that

H+
e (H+

e )� ≺ Υ.

By using the Schur complement to the inequality above,
we obtain (12). �

Theorem 5. If there exist matrices Q ∈ Rnf×nf , R ∈ R ∈
Rnx×nf and a diagonal matrix Ω ∈ Rnx×nx with Ω � 0
such that the following inequality holds:

[
−Ω +R(H+

f )� +H+
f R� −R−H+

f Q�

−R� −Q(H+
f )� Q+Q� + Inf

]
� 0, (13)

then the zonotopic UIO (5) guarantees the fault sensitivity
performance Jf > β with β = tr(Ω).

Proof. From (11c), there exists a diagonal matrix Ω ∈
Rnx×nx with Ω � 0 such that

H+
f (H+

f )� � Ω.

If there exists a matrix Q ∈ Rnf×nf such that Q +Q� +
Inf

� 0, then we have
[
−Ω +H+

f (H+
f )� 0

0 Q+Q� + Inf

]
� 0.

By pre-multiplying

[
Inx −H+

f

0 Inf

]
and post-multiplying its

transpose to the inequality above, we obtain (13) by
setting R = H+

f +H+
f Q. �

Due to the terms R(H+
f )� and Q(H+

f )� coupled in (13),
we thus propose an iterative procedure to find a solution of
the observer gain G̃. We use an optimal Kalman observer
gain G∗ to find the initialization of the multipliers, namely
matrices R and Q.

Computation of the zonotopic FD observer gain:

• Step 1 : Obtain the optimal Kalman observer gain G∗

following the procedure in (8).
• Step 2 : For the fixed G, solve the following optimiza-
tion problem to obtain the optimal solutions of the
multipliers Q and R:

Jd,1 = max
Q,R

tr(Ω)− tr(Υ ), (14)

subject to (12) and (13).
• Step 3 : For the fixed Q and R, solve the following
optimization problem to obtain the optimal solution
of the observer gain G

Jd,2 = max
G

tr(Ω)− tr(Υ ), (15)

subject to (12) and (13).
• Step 4 : If Jd,1 − Jd,2 < ε with a sufficient small

scalar ε, then stop and obtain the observer gain G̃ =
G. Otherwise, go to Step 2.

4.4 Implementation Algorithms

We now summarize the implementation procedures for
state estimation and robust FD. Considering a simulation
time horizon, these procedures are presented in Algo-
rithm 1 and 2.

5. ILLUSTRATIVE EXAMPLE

In order to illustrate the state estimation and robust FD
algorithms, we use a numerical example from Wang et al.
[2017b] in the descriptor form (1) with
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Algorithm 1 State Estimation based on Zonotopic UIO

Data: Given the descriptor system (1) with f = 0, system
matrices E, A, B, C, Dw, Dv, and x0 ∈ 〈p0, H0〉,
w ∈ 〈0, Imw

〉, v ∈ 〈0, Imv
〉, ∀k ∈ N+;

Obtain a pair of matrices T and N satisfying TE+NC =
Inx

and TD = 0;
p ←− p0, H ←− H0;
while k ≥ 0 do

Compute the optimal Kalman gain G∗ following (8);
Measure the system outputs y and y+;
Determine the state zonotope x+ ∈ 〈p+, H+〉 in (5);
Obtain the state estimation results x+

i ∈
[
x+
i , x

+
i

]
,

i = 1, . . . , nx by{
x+
i = p+i − rs(H+)i,i

x+
i = p+i + rs(H+)i,i

end

Algorithm 2 Robust FD based on Zonotopic UIO

Data: Given the descriptor system (1) with system matri-
ces E, A, B, C, Dw, Dv, Fa, Fs, and x0 ∈ 〈p0, H0〉,
w ∈ 〈0, Imw

〉, v ∈ 〈0, Imv
〉, ∀k ∈ N+;

Obtain a pair of matrices T and N satisfying TE+NC =
Inx

and TD = 0;
p ←− p0, H ←− H0;
pe ←− p0, He ←− H0;
pf ←− 0, Hf ←− 0;
while k ≥ 0 do

Compute the zonotopes 〈p+e , H+
e 〉 by (9) and 〈p+f , H

+
f 〉

by (10);

Compute the FD observer gain G̃ for (5) following the
proposed computation steps presented above;
Measure the system outputs y and y+;
Compute the state zonotope x+ ∈ 〈p+, H+〉 in (5);
Compute the residual zonotope r+ ∈ R+ = 〈p+r , H+

r 〉
in (7);
Determine the FD alarm (χ+ = 0: no fault detected;
χ+ = 1: fault detected) by checking

χ+ =

{
0 if 0 ∈ R+

1 if 0 /∈ R+

end

E =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , A =




0.9 0.005 −0.095 0
0.005 0.995 0.0997 0
0.095 −0.0997 0.99 0
1 0 1 1


 ,

B =




0.1 0
1 1

−0.1 1
−1 0


 , Dw =



0.05
0.1
0.1
0


 , Dv =

[
0.02 0 0
0 0.02 0
0 0 0.02

]

D =



0.5
0
0
0.1


 , Fa = [B 04×3] ,

C =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
, Fs = [03×2 I3] .

k

5 10 15 20 25 30 35 40 45 50

χ

0

1

(a) with FD gain G̃

k

5 10 15 20 25 30 35 40 45 50

χ

0

1

(b) with Kalman gain G∗

Fig. 2. The actuator-FD result.

By satisfying the condition (2a), we consider a pair of
matrices T and N as follows:

T =



1 0 0 −5
0 −0.0078 0 0
0 0 −0.0078 0
0 0 0 0


 , N =




0 0 0
1.0078 0 0

0 1.0078 0
0 0 1


 .

The initial state x0 is set as x0 = [10, 16,−10, 0]
�

and assume the initial state zonotope as X0 = 〈p0, H0〉
with p0 = x0 and H0 = 0.1I4. The input signal u is set

as u = [0.4, 0.6]
�
, ∀k ∈ N. For the use of ↓q,W (·), to

reduce the computation time and also taking into account
the memory capacity of the computer, we choose q = 15
and W = I.

5.1 State Estimation Results

The first simulation has been carried out by implementing
Algorithm 1 for 200 sampling steps. The state estimation
results are shown in Fig. 1. The real uncertain states x are
plotted using red star points for validation purposes. At
each time step, the estimated state results include a value
p that is the center of the estimation zonotope and the
upper and lower bounds obtained by making the interval
hull of the estimation zonotope. From Fig. 1, the bounds
of estimation results with optimal Kalman gain are tight
and the center p is close to the value of the real uncertain
state at each time step.

5.2 Robust Fault Detection Results

The second simulation has been carried out by imple-
menting Algorithm 2, where the proposed optimization
problems are solved in MATLAB with the YALMIP tool-
box [Löfberg, 2004] and the MOSEK solver [MOSEK ApS,
2015]. In the simulation, we consider two additive fault
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Algorithm 1 State Estimation based on Zonotopic UIO

Data: Given the descriptor system (1) with f = 0, system
matrices E, A, B, C, Dw, Dv, and x0 ∈ 〈p0, H0〉,
w ∈ 〈0, Imw

〉, v ∈ 〈0, Imv
〉, ∀k ∈ N+;

Obtain a pair of matrices T and N satisfying TE+NC =
Inx

and TD = 0;
p ←− p0, H ←− H0;
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Compute the optimal Kalman gain G∗ following (8);
Measure the system outputs y and y+;
Determine the state zonotope x+ ∈ 〈p+, H+〉 in (5);
Obtain the state estimation results x+

i ∈
[
x+
i , x

+
i

]
,

i = 1, . . . , nx by{
x+
i = p+i − rs(H+)i,i

x+
i = p+i + rs(H+)i,i

end

Algorithm 2 Robust FD based on Zonotopic UIO

Data: Given the descriptor system (1) with system matri-
ces E, A, B, C, Dw, Dv, Fa, Fs, and x0 ∈ 〈p0, H0〉,
w ∈ 〈0, Imw

〉, v ∈ 〈0, Imv
〉, ∀k ∈ N+;

Obtain a pair of matrices T and N satisfying TE+NC =
Inx

and TD = 0;
p ←− p0, H ←− H0;
pe ←− p0, He ←− H0;
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e 〉 by (9) and 〈p+f , H

+
f 〉

by (10);
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Compute the residual zonotope r+ ∈ R+ = 〈p+r , H+

r 〉
in (7);
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χ+ = 1: fault detected) by checking

χ+ =

{
0 if 0 ∈ R+

1 if 0 /∈ R+

end

E =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , A =




0.9 0.005 −0.095 0
0.005 0.995 0.0997 0
0.095 −0.0997 0.99 0
1 0 1 1


 ,

B =




0.1 0
1 1

−0.1 1
−1 0


 , Dw =



0.05
0.1
0.1
0


 , Dv =

[
0.02 0 0
0 0.02 0
0 0 0.02

]

D =



0.5
0
0
0.1


 , Fa = [B 04×3] ,

C =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
, Fs = [03×2 I3] .

k
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χ
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1
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k

5 10 15 20 25 30 35 40 45 50

χ

0

1

(b) with Kalman gain G∗

Fig. 2. The actuator-FD result.

By satisfying the condition (2a), we consider a pair of
matrices T and N as follows:

T =



1 0 0 −5
0 −0.0078 0 0
0 0 −0.0078 0
0 0 0 0


 , N =




0 0 0
1.0078 0 0

0 1.0078 0
0 0 1


 .

The initial state x0 is set as x0 = [10, 16,−10, 0]
�

and assume the initial state zonotope as X0 = 〈p0, H0〉
with p0 = x0 and H0 = 0.1I4. The input signal u is set

as u = [0.4, 0.6]
�
, ∀k ∈ N. For the use of ↓q,W (·), to

reduce the computation time and also taking into account
the memory capacity of the computer, we choose q = 15
and W = I.

5.1 State Estimation Results

The first simulation has been carried out by implementing
Algorithm 1 for 200 sampling steps. The state estimation
results are shown in Fig. 1. The real uncertain states x are
plotted using red star points for validation purposes. At
each time step, the estimated state results include a value
p that is the center of the estimation zonotope and the
upper and lower bounds obtained by making the interval
hull of the estimation zonotope. From Fig. 1, the bounds
of estimation results with optimal Kalman gain are tight
and the center p is close to the value of the real uncertain
state at each time step.

5.2 Robust Fault Detection Results

The second simulation has been carried out by imple-
menting Algorithm 2, where the proposed optimization
problems are solved in MATLAB with the YALMIP tool-
box [Löfberg, 2004] and the MOSEK solver [MOSEK ApS,
2015]. In the simulation, we consider two additive fault
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Fig. 1. The state estimation results in a deterministic set.

k

5 10 15 20 25 30 35 40 45 50

χ

0

1

(a) with FD gain G̃

k

5 10 15 20 25 30 35 40 45 50

χ

0

1

(b) with Kalman gain G∗

Fig. 3. The sensor-FD result.

signals f =
[
f�
a , 0

]�
for actuator faults and f =

[
0, f�

s

]�
for sensor faults, where fa and fs are set by step signals:

fa =




[
0, 0

]�
k < 20[

0.25, 0
]�

20 ≤ k < 40[
0.25, 0.27

]�
k ≥ 40

fs =




[
0, 0, 0

]�
k < 20[

0.4, 0, 0
]�

20 ≤ k < 30[
0.4, 0.3, 0

]�
30 ≤ k < 40[

0, 0, 0.5
]�

k ≥ 40

In order to show the effectiveness of the FD observer
gain, we also run the simulation with the optimal Kalman
gain G∗ obtained by (8) for comparison. The simulation
results of robust FD are shown in Fig. 2 and 3. From these
results, it is shown that with the Kalman gain G∗, some
wrong FD alarms appear at some steps since the observer
gain is designed to only minimize the effects of system
uncertainties and with FD gain G̃, the zonotopic observer
is able to detect those step faults. Besides, for actuator
faults are detected with one step delay and there is no
delay for detecting sensor faults.

6. CONCLUSION

In this paper, we have proposed a framework of zonotopic
UIO of discrete-time descriptor systems. The considered
descriptor systems are affected by uncertainties including
unknown-but-bounded system disturbances and measure-
ment noise as well as unknown inputs. Under this frame-
work, we then apply the zonotopic UIO for state estima-
tion and robust FD. With different objectives, an optimal
Kalman gain and FD gain are designed. Finally, through
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the simulation results, we have shown the effectiveness of
the proposed algorithms.

As future work, we will improve the stability assumption
of the FD observer and link with a fault isolation strategy
for discrete-time descriptor systems. The robust stability
and convergence can be improved based on a single LMI
condition. Besides, the H− fault sensitivity will be consid-
ered in a set-based framework as discussed in Wang et al.
[2017c].
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