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Summary
This paper addresses the problem of fault estimation in wind turbines using a joint

fault and state estimation scheme. The scheme assumes a set of possible faults affect-

ing the dynamics of the wind turbine. Then, a combined adaptive and parameter

estimation scheme is developed taking into consideration that process disturbances

and sensor noises are unknown but bounded in an ellipsoid. Two subcases are con-

sidered depending on the satisfaction of a certain rank condition. The proposed

approach is applied to a wind turbine based on a benchmark system model. The

benchmark represents relevant fault scenarios, including sensor, actuator, and pro-

cess faults. The proposed approach focuses on the last group of faults. Finally, the

obtained results show that a satisfactory fault estimation is achieved against a set of

predefined fault scenarios.
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1 INTRODUCTION

Nowadays, the generation of electricity with wind turbines is a great success all over the world. Every year, new onshore and

offshore wind farms are being deployed. All forecasts foresee that this evolution will continue in the forthcoming years. However,
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wind turbines are complex systems that need to be maintained correctly. Moreover, because some of these wind turbines work

in difficult meteorological conditions and the accessibility to perform maintenance is not easy and quite costly (especially those

located offshore), there is an increasing need for enhancing the wind turbine control systems with fault-tolerant mechanisms

that allow continuous operation of the wind turbine even in the event of a fault. This way, in a faulty case, the wind turbine can

continue to operate without stopping the energy production, thus increasing their reliability.

For this reason, fault detection and isolation (FDI) and fault-tolerant control (FTC) with application to wind turbines have

become a subject of increasing research interest both for the industry and the academia. In the light of such increased interest,

researchers from the FDI/FTC community have proposed an international competition on FDI and FTC of wind turbines using

a realistic wind turbine benchmark.1,2 In the work of Odgaard et al,3 a summary of the results obtained in this competition has

been presented.

Until recent years, the application of advanced FDI algorithms in wind turbines was not so widespread. Most of the existing

FDI applications were based on some form of signal analysis approach, as in the work of Johnson and Fleming.4 For a review

on the FDI techniques commonly used in industry, which are based on signal analysis, the reader is referred to the work of

Hameed et al.5 The overview of some FDI solutions is summarized in the work of Odgaard and Stoustrup.6 Moreover, there

were no FTC applications to wind turbines reported in the literature, so the common approach to deal with faults in the turbine

was to shut it down if a fault was detected.7

Nowadays, a large number of FDI approaches for wind turbines are reported in the literature. Some of them were compared

within the wind turbine FDI competition.3 Most of these solutions rely on the evaluation of residuals to achieve FDI (see,

eg, previous works8-12 and the references therein). However, most of these approaches have focused on FDI, but not on fault

estimation. Fault estimation is an important step to cover when thinking about the implementation of FTC. The knowledge

about the fault size allows compensating the fault without removing the faulty component (sensor or actuator) and without the

need for having hardware redundancy.

Most of the contributions regarding FTC assume that fault estimation is already available. In the work of Sloth et al,13 a

solution to this problem based on the design of passive and active FTC was proposed for a 4.8-MW variable-speed variable-pitch

wind turbine model with a fault in the pitch system. In the case of active FTC, a linear parameter–varying gain-scheduling

controller is developed using the fault estimation as the scheduling variable. However, the paper does not provide a mechanism

for estimating the fault. In the work of Badihi et al,14 a fuzzy gain-scheduled active FTC of a wind turbine is proposed. In the

work of Kamal et al,15 a multiobserver switching control strategy for robust active fuzzy FTC is proposed for variable-speed

wind energy conversion systems subject to sensor faults.

Recently, some works have been dedicated to fault estimation for active FTC implementation. For example, in the work

of Simani and Castaldi,16 an active FTC scheme based on adaptive filters obtained via the nonlinear geometric approach is

proposed. The controller accommodation scheme exploits the online estimate of the actuator fault signal generated by the

adaptive filters. In the work of Blesa et al,9 an FTC scheme based on virtual sensors and actuators is proposed, where the fault

estimation is provided by a parameter estimation scheme. In the work of Shaker and Patton,17 an active sensor fault-tolerant

tracking control for offshore wind turbine described via Takagi-Sugeno multiple models is proposed. Because of the dependence

of this strategy on the fault estimation, an observer with the capability to estimate a wide range of time-varying fault signals

is used. In the work of Shi and Patton,18 an observer-based descriptor system FTC scheme is designed for an offshore wind

turbine system using a robust linear parameter–varying framework, where both the faults and the required states are estimated.

In the work of Schulte and Gauterin,19 a Takagi-Sugeno sliding mode observer for actuator fault diagnosis and an FTC scheme

of wind turbines with hydrostatic transmission are presented. A simple compensation approach is implemented by subtracting

the reconstructed faults obtained from the faulty inputs.

This paper addresses the problem of fault estimation in wind turbines using a combined adaptive and parameter estima-

tion scheme and assuming that process disturbances and sensor noises are unknown but bounded in an ellipsoid. The scheme

considers a set of possible faults affecting the dynamics of the wind turbine. Two subcases are considered depending on the

satisfaction of a certain rank condition. Notice that in the proposed approach, FDI is performed by looking directly at the value

of the estimated fault, differing from other approaches available in the literature, which aim at decoupling the disturbances and

then exploiting the available degrees of freedom in the choice of the observer gains to provide fault-related directional prop-

erties to the output estimation error.20 The proposed technique is applied to a well-known wind turbine benchmark and tested

satisfactorily against a set of predefined fault scenarios.

The structure of the paper is as follows. The wind turbine benchmark and the considered fault scenarios are presented in

Section 2. The proposed approach is presented in Section 3. Results of the application of the proposed scheme to the con-

sidered benchmark are presented in Section 4. In Section 5, the conclusions are given and future research directions are

suggested.



2 WIND TURBINE BENCHMARK DESCRIPTION

2.1 Motivation
Wind turbines produce electrical energy using the kinetic energy of the wind. The wind turbine considered hereafter is the one

proposed in the benchmark described in the work of Odgaard et al.3 This turbine is a variable-speed, pitch-controlled, 3-blade

horizontal-axis turbine with a full converter coupling. The pressure from the wind on the turbine blades forces the wind turbine

rotor to spin around. Then, a rotating shaft converts the kinetic wind energy into mechanical energy. By pitching the blades

or by controlling the rotational speed of the rotor with respect to the wind speed, the energy generation can be controlled. A

generator, coupled to a converter, performs the conversion from mechanical energy to electrical energy (see previous works21-23

for further details about the functioning of wind turbines).

The control system has the objective to follow the power reference or, alternatively, if the wind speed is too low, to achieve

the desired power reference, to optimize the power production. The controller operates in 4 operational zones, governed by the

mean wind speed within some time window. Zone 1 (turbine at standstill) and zone 4 (high wind speed, for which the energy

production of the turbine must be stopped because of safety reasons) are not considered in the benchmark case study since its

aim is to investigate fault detection under normal operation, which corresponds to zone 2 (power optimization due to partial

load) and zone 3 (constant power production).

2.2 Main sources of uncertainty and disturbance in wind turbines
Wind turbines are challenging systems for which robustness and fault-tolerance capabilities should be taken into account while

designing control strategies. In fact, they are systems with complex dynamics that operate in uncertain environments where the

wind conditions such as speed and direction are poorly known disturbances.24 On the other hand, the aerodynamic properties

of the blades are sensitive to atmospheric conditions,25 leading to an uncertain behavior of this subsystem. In fact, the blade

geometry will change because of the aging of the blade materials. Moreover, throughout the wind turbine's lifetime, the blades

will suffer the effects of being exposed to the environment: change in blade surface roughness because of the layers of dirt

formed by dust particles and insects and blade erosion because of the impact with objects or birds. In addition, some wind

turbines are placed in locations where humidity and low temperatures are experienced during winters, and this increases the

risk of ice accretion on wind turbine components,26 which causes a reduction in the turbine power output.

2.3 Wind turbine nonlinear model
Hereafter, the model of the wind turbine1 is presented. The overall wind turbine is divided into appropriate submodels that

are modeled separately. The system is driven by the wind speed that affects the aerodynamic properties of the wind turbine,

together with the pitch angles of the blades and the speed of the rotor. An aerodynamic torque is transferred from the rotor to

the generator through the drive train. Finally, the converter provides the electric power.

Drive train model: The drive train model consists of a low-speed shaft and a high-speed shaft having inertias Jr and Jg
and friction coefficients Br and Bg. The shafts are interconnected by transmission having a gear ratio Ng and efficiency ηdt,

combined with torsion stiffness Kdt, and torsion damping Bdt. Thus, the drain train can be described by the following 3 differential

equations13:

ω̇r(t) = −(Bdt + Br)
Jr

ωr(t) +
Bdt

NgJr
ωg(t) −

Kdt

Jr
θΔ(t) +

Tr(t)
Jr

(1)

ω̇g(t) =
ηdtBdt

NgJg
ωr(t) −

(
ηdtBdt

N2
g Jg

+
Bg

Jg

)
ωg(t) +

ηdtKdt

NgJg
θΔ(t) −

Tg(t)
Jg

(2)

θ̇Δ(t) = ωr(t) −
ωg(t)
Ng

, (3)

where ωr is the rotor speed, ωg is the generator speed, θΔ is the torsion angle of the drive train, Tr is the aerodynamic torque,

and Tg is the generator torque. Both the rotor speed ωr and the generator speed ωg are measured.

Generator model: The generator torque Tg is controlled by the reference Tg,ref. The dynamics is approximated by a first-order

model with time constant τg, as follows:

Ṫg(t) = −
Tg(t)
τg

+
Tg,ref(t)
τg

. (4)



TABLE 1 Values of the system parameters

Parameter Value Parameter Value Parameter Value

Jr 55·106 kg·m2 ηdt 0.97 ωn0 11.11 rad/s

Jg 390 kg·m2 Kdt 2.7·109 N·m/rad ζ0 0.6

Br 7.11 N·m·s/rad Bdt 775.49 N·m·s/rad ρ 1.225 kg/m3

Bg0 45.6 N·m·s/rad τg 20·10−3 s R 57.5 m

Ng 95 ωnf 5.73 rad/s ζf 0.45

Bgf 68.4 N·m·s/rad

Pitch system model: The hydraulic pitch system is modeled as a second-order system with input βi,ref, natural frequency ωn,i,

and damping ratio ζi,
27 as follows:

β̈i(t) = −2ζiωn,iβ̇i(t) − ω2
n,iβi(t) + ω2

n,iβi,ref(t), (5)

where i = 1, 2, 3. The pitch angles βi(t), i = 1, 2, 3, are measured.

Aerodynamic model: The aerodynamics of the wind turbine is modeled as a torque acting on the blades. This aerodynamics

torque Tr(t) can be represented by28

Tr(t) =
3∑

i=1

ρπR3Cq (λ(t), βi(t)) v2
w(t)

6
, (6)

where ρ is the air density, R is the radius of the blades, vw is the wind speed, and Cq is the torque coefficient, which is a function

of the pitch angle βi and the tip speed ratio, defined as

λ(t) = ωr(t)R
vw(t)

. (7)

The values of the system parameters used in this paper have been taken from the work of Odgaard and Johnson2 and are presented

in Table 1.

2.4 Fault scenarios
In this paper, we focus on the faults in the pitch system and in the drive train to illustrate the proposed fault estimation approach.

The hydraulic pitch system can be affected by faults that change the dynamics because of either a drop in the hydraulic supply

system, which can represent a leakage in the hose or a blocked pump, or high air content in the oil.2

In order to model this fault, let us introduce the fault effectiveness parameter fi(t), such that fi(t) = 0 corresponds to the

fault-free ith pitch system with ω2
n,i = ω2

n0
, ζiωn,i = ζ0ωn0, while fi(t) = 1 corresponds to a full fault on the ith pitch system, such

that ω2
n,i = ω2

nf , ζiωn,i = ζfωnf.
18 Hence, both ω2

n,i and ζiωn,i can be described as a function of fi(t), as follows:

ω2
n,i = (1 − fi(t)) ω2

n0
+ fi(t)ω2

nf (8)

ζiωn,i = (1 − fi(t)) ζ0ωn0 + fi(t)ζfωnf . (9)

It is simple to check that Equation 5, together with Equations 8 and 9 and taking into account the available measurements,

can be rewritten in state-space form as18[
β̇i(t)
β̈i(t)

]
=
[

0 1

−ω2
n0

−2ζ0ωn0

] [
βi(t)
β̇i(t)

]
+
[

0

ω2
n0

]
βi,ref(t) +

[
0

1

]
zβi(t) (10)

yβi(t) =
[

1 0
] [ βi(t)

β̇i(t)

]
, (11)

where

zβi(t) = fi(t)
[(

ω2
n0
− ω2

nf

)
βi(t) + 2

(
ζ0ωn0 − ζfωnf

)
β̇i(t) +

(
ω2

nf − ω2
n0

)
βi,ref(t)

]
. (12)

In order to allow digital implementation of the joint state and fault estimation technique described in Section 3, Equations 10

and 11 are brought to a discrete-time form using a discretization method, eg, the Euler approach with sampling time Ts, obtaining[
βi(k + 1)
β̇i(k + 1)

]
=
[

1 Ts

−ω2
n0

Ts 1 − 2ζ0ωn0Ts

] [
βi(k)
β̇i(k)

]
+
[

0

ω2
n0

Ts

]
βi,ref(k) +

[
0

Ts

]
zβi(k) (13)

yβi(k) =
[

1 0
] [ βi(k)

β̇i(k)

]
. (14)



On the other hand, the fault in the drive train consists in a change of the high-speed shaft friction coefficient Bg, which is

modeled by replacing Bg0 by a lower value Bgf. Similarly to the pitch system case, let us introduce the parameter fg(t) such that

Bg =
(
1 − fg(t)

)
Bg0 + fg(t)Bgf . (15)

Hence, taking into account the available measurements, Equations 1 to 3 can be rewritten in state-space form as

⎡⎢⎢⎣
ω̇r(t)
ω̇g(t)
θ̇Δ(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

−Bdt+Br

Jr

Bdt

NgJr
−Kdt

Jr

ηdtBdt

NgJg
−
(

ηdtBdt

N2
g Jg

+ Bg0

Jg

)
ηdtKdt

NgJg

1 − 1

Ng
0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
ωr(t)
ωg(t)
θΔ(t)

⎤⎥⎥⎦ +
⎡⎢⎢⎢⎣

1

Jr
0

0 − 1

Jg

0 0

⎤⎥⎥⎥⎦
[

Tr(t)
Tg(t)

]
+
⎡⎢⎢⎣

0

1

0

⎤⎥⎥⎦ zg(t) (16)

ydt(t) =
[

1 0 0

0 1 0

] [
ωr(t)
ωg(t)

]
, (17)

where

zg(t) =
fg(t)

(
Bg0 − Bgf

)
Jg

ωg(t). (18)

Also in this case, Equations 16 and 17 are brought to a discrete-time form using a Euler approach with sampling time Ts.

⎡⎢⎢⎣
ωr(k + 1)
ωg(k + 1)
θΔ(k + 1)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 − Ts
Bdt+Br

Jr
Ts

Bdt

NgJr
−Ts

Kdt

Jr

Ts
ηdtBdt

NgJg
1 − Ts

(
ηdtBdt

N2
g Jg

+ Bg0

Jg

)
Ts

ηdtKdt

NgJg

Ts − Ts

Ng
1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣
ωr(k)
ωg(k)
θΔ(k)

⎤⎥⎥⎦ +
⎡⎢⎢⎢⎣

Ts

Jr
0

0 − Ts

Jg

0 0

⎤⎥⎥⎥⎦
[

Tr(k)
Tg(k)

]
+
⎡⎢⎢⎣

0

Ts
0

⎤⎥⎥⎦ zg(k) (19)

ydt(k) =
[

1 0 0

0 1 0

] [
ωr(k)
ωg(k)

]
(20)

Remark 1. Note that the pitch and drive train subsystems can be considered independently for the purpose of estimation
of process faults. In fact, the pitch subsystem (13) and (14) is influenced neither by the state variables of the drive train
subsystem nor by the drive train process fault. On the other hand, although it is true that a fault in the pitch subsystem will
affect the drive train subsystem through the aerodynamics torque Tr(t), it must be noted that Tr(t) can be considered a known
exogenous input for the purpose of state and process fault estimation, which means that the applicability of the proposed
method will not be hindered by the interaction between the subsystems.

3 COMBINED ADAPTIVE AND PARAMETER ESTIMATION SCHEMES

As can be deduced from Equations 13 and 14, zβi(k) (i = 1, … , 3) depends on both the known and unknown states and the faults.

Thus, the idea is to first estimate zβi(k) and the state variables. Note also that zβi(k) depends linearly on fault fi(k). Thus, using

the state estimates to form the regressor ϕi(k) (cf, Equation 12) and treating the estimate of zβi(k) as an output of the following

model:

ẑβi(k) = f̂i(k)ϕi(k), (21)

the problem of estimating fi can be formulated as a parameter estimation one. A similar analysis can be performed for

Equations 19 and 20, while the problem boils down to estimating unknown states and zg(k). This results in

ẑg(k) = f̂g(k)ϕg(k). (22)

Finally, it should be pointed out that it is evident from either Equations 13 and 14 or Equations 19 and 20 that the direct

estimation of faults is a nonlinear problem. The proposed 2-stage combined adaptive and parameter estimation scheme makes it

possible to avoid this unappealing phenomenon. Indeed, the parameter estimation problem of Equation 21 or Equation 22 is to

be solved with the well-known recursive least squares algorithm, while the adaptive estimators of the state and ẑβi(k) and ẑg(k)
are proposed in the sequel.

Thus, to simplify the notion and make it compatible with both Equations 13 and 14 and Equations 19 and 20, the following

system description is introduced:

x(k + 1) = Ax(k) + Bu(k) + Dz(k) + W1w1(k) (23)

y(k) = Cx(k) + W2w2(k), (24)



where x ∈ Rn, y ∈ Rm, and u ∈ Rr are the state, output, and input vectors, respectively, while z ∈ Rq stands for either zβi(k) or

zg(k). The matrix D ∈ Rn×q, with rank(D) = q < n, is denoted as the fault distribution matrix and describes the way in which

the faults affect the system. Moreover, W1 and W2 denote the distribution matrices for the exogenous disturbances/noise w1 and

w2, which affect the state and the output, respectively. Note that both Equations 13 and 14 and 19 and 20 can be rewritten in the

form 23 and 24 by considering the presence of exogenous disturbances.

The problem is to design an estimator that is able to simultaneously estimate the state and the process fault. In the following,

the proposed estimator will be called the process fault estimator (PFE). For the purpose of further developments, the following

Assumptions are considered regarding the effect of faults, disturbances, and noises:

Assumption 1.
ε(k) ≜ z(k + 1) − z(k)∈ ε = {ε∶εTQεε ≤ 1}, Qε ≻ 0. (25)

Assumption 2.
w1(k)∈ w1

=
{

w1∶wT
1
Qw1

w1 ≤ 1
}
, Qw1

≻ 0

w2(k)∈ w2
=
{

w2∶wT
2
Qw2

w2 ≤ 1
}
, Qw2

≻ 0.
(26)

Assumption 1 is required for the subsequent fault estimation algorithm. It has well-defined roots as all real faults and states are

bounded, which means that z(k) is bounded as well. Similarly, Assumption 2 states that the external disturbances are unknown

but bounded. The diagonal elements of Qε correspond to constraints on the rate of change of z(k), which means that the difference

between consecutive samples of z(k) must be bounded. Knowing that the state and fault are bounded, the bounds of z(k) can be

determined as well, which provides the settings of the diagonal elements of Qε. Similarly, having knowledge about the maximum

values of external disturbances, the diagonal elements of Qw1
and Qw2

can be determined as well. The general idea behind this

approach is that it provides knowledge about the upper and lower bounds of the external disturbances and faults that can be

perceived as worst-case situations.

In the remainder of this section, 2 different estimators are proposed to solve the above-defined estimation problem, depending

on whether or not the following condition holds true:

rank(CD) = rank(D) = q. (27)

Note that the rank condition (27) does not hold for the pitch subsystem obtained from Equations 10 and 11. On the other

hand, it holds true for the drive train subsystem obtained from Equations 16 and 17.

3.1 Case 1: rank(CD) ≠ rank(D)
For this case, the following estimator is proposed:

x̂(k + 1) = Ax̂(k) + Bu(k) + Dẑ(k) + K (y(k) − Cx̂(k)) (28)

ẑ(k + 1) = ẑ(k) + L (y(k) − Cx̂(k)) , (29)

where K ∈ Rn×m and L ∈ Rq×m are gains to be designed.

From Equations 23 and 24, the evolution of the state estimation error e(k) ≜ x(k) − x̂(k) is described by

e(k + 1) = (A − KC) e(k) + Dez(k) + W1w1(k) − KW2w2(k), (30)

where ez(k) ≜ z(k) − ẑ(k).
Subsequently, the dynamics of the fault estimation error ez(k) is given by

ez(k + 1) = z(k + 1) + z(k) − z(k) − ẑ(k + 1) = ε(k) + z(k) − ẑ(k + 1)
= ε(k) + z(k) − ẑ(k) − LCx(k) − LW2w2(k) + LCx̂(k)
= ε(k) + ez(k) − LCe(k) − LW2w2(k),

(31)

where ε(k) is as defined in Equation 25.

By introducing the following vectors:

ē(k) =
[

e(k)T , ez(k)T
]T

(32)

v(k) =
[

w1(k)T ,w2(k)T , ε(k)T
]T
, (33)



the state and fault estimation error dynamics are given by

ē(k + 1) =
[

A − KC D
−LC I

]
ē(k) +

[
W1 −KW2 0

0 −LW2 I

]
v(k) (34)

which can be described in an equivalent form

ē(k + 1) = Xē(k) + Zv(k), (35)

where

X = Ā − K̄C̄ =
[

A D
0 I

]
−
[

K
L

] [
C 0

]
(36)

Z = W̄ − K̄V̄ =
[

W1 0 0

0 0 I

]
−
[

K
L

] [
0 W2 0

]
. (37)

The ellipsoidal set including v(k) can be described by

v = {v∶vTQvv ≤ 1}, (38)

where

Qv =
1

3
diag (Qw1

,Qw2
,Qε). (39)

Note that, if v(k) = 0, then the usual Lyapunov approach can be used to prove the asymptotic convergence of ē(k). However,

if v(k) ≠ 0, then such approach cannot be applied directly. Thus, for the purpose of further deliberations, the so-called quadratic

boundedness29-31 approach is used. To do so, let us define the Lyapunov function

V(k) = ē(k)TPē(k), (40)

with P ≻ 0, and let us be reminded of the following Definitions.29-31

Definition 1. The system (35) is strictly quadratically bounded for all allowable v∈ v if ē(k)TPē(k) > 1 implies
ē(k + 1)TPē(k + 1) < ē(k)TPē(k) for any v(k)∈ v.

It should be highlighted that the strict quadratic boundedness of Equation 35 ensures that V(k+1) < V(k) for any v∈ v when

V(k) > 1.

Definition 2. A set  is a positively invariant set for Equation 35 for all v∈ v if ē(k) ∈  implies ē(k + 1) ∈  for any
v(k)∈ v

On the basis of these Definitions and the results presented in the work of Alessandri et al,29 the following Lemma can be

formulated for Equation 35:

Lemma 1. The following statements are equivalent29-31:

1. The system (35) is strictly quadratically bounded for all v∈ v.
2. The ellipsoid

 = {ē∶ ēTPē ≤ 1}, (41)

is an invariant set for Equation 35 for any v∈ v.
3. There exists a scalar α ∈ (0, 1) such that[

XTPX − P + αP XTPZ
ZTPX ZTPZ − αQv

]
⪯ 0. (42)

To provide the final design procedure, the following Theorem is proposed:

Theorem 1. The system (35) is strictly quadratically bounded for all v∈ v if there exist matrices P ≻ 0, U and a scalar
α ∈ (0, 1) such that the following inequality is satisfied:

⎡⎢⎢⎣
−P + αP 0 ĀTP − C̄TUT

0 −αQv W̄TP − V̄TUT

PĀ − UC̄ PW̄ − UV̄ −P

⎤⎥⎥⎦ ⪯ 0. (43)



FIGURE 1 Process fault estimator design procedure for Case 1. [Colour figure can be viewed at wileyonlinelibrary.com]

Proof. Inequality (42) can be rewritten into the following form:[
XT

ZT

]
P
[

X Z
]
+
[
−P + αP 0

0 −αQv

]
⪯ 0. (44)

Then, using the Schur complement and multiplying the left and right sides by diag(I, I,P) gives⎡⎢⎢⎣
−P + αP 0 XTP

0 −αQv ZTP
PX PZ −P

⎤⎥⎥⎦ ⪯ 0. (45)

Substituting
PX = PĀ − PK̄C̄ = PĀ − UC̄ (46)

PZ = PW̄ − PK̄V̄ = PW̄ − UV (47)

and introducing Equations 46 and 47 into Equation 45 completes the proof.

Finally, the design procedure boils down to solving Equation 43 and then calculating

K̄ =
[

K
L

]
= P−1U. (48)

A complete design procedure of the PFE is depicted in Figure 1.

3.2 Case 2: rank(CD) = rank(D)
In this case, by combining Equations 23 and 24, the following result is obtained:

CDz(k) = y(k + 1) − CAx(k) − CBu(k) − CW1w1(k) − W2w2(k + 1), (49)

which is an identity, since for given vectors z(k), x(k), u(k), w1(k), and w2(k), the value of the vector y(k+ 1) cannot be arbitrary,

but is determined by Equations 23 and 24. It follows that if z(k) is considered unknown, the linear system of equations resulting

from Equation 49 would admit a solution (ie, the actual value of z(k)), which could be obtained as follows:

z(k) = H
[
y(k + 1) − CAx(k) − CBu(k) − CW1w1(k) − W2w2(k + 1)

]
, (50)

where

H = (CD)† =
[
(CD)TCD

]−1(CD)T , (51)
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where † denotes the Moore-Penrose pseudoinverse. Because of the rank condition (27), Equation 50 is the unique solution of

the linear system obtained from Equation 49.

By substituting Equation 50 into Equation 23, it can be shown that

x(k + 1) = Āx(k) + B̄u(k) + H̄y(k + 1) + W̄1w1(k) + W̄2w2(k + 1), (52)

where

Ā = (I − DHC)A (53)

B̄ = (I − DHC)B (54)

H̄ = DH (55)

W̄1 = (I − DHC)W1 (56)

W̄2 = −DHW2. (57)

On the basis of Equations 50 and 52, the following estimator is proposed:

x̂(k + 1) = Āx̂(k) + B̄u(k) + H̄y(k + 1) + K (y(k) − Cx̂(k)) (58)

ẑ(k) = H (y(k + 1) − CAx̂(k) − CBu(k)) , (59)

where K ∈ Rn×m is the gain to be designed.

Then, the associated state estimation error is given by

e(k + 1) =
(
Ā − KC

)
e(k) + W̄1w1(k) − KW2w2(k) + W̄2w2(k + 1), (60)

while the fault estimation error is described by

ez(k) = −HCAe(k) − HCW1w1(k) − HCW2w2(k + 1). (61)

From Equations 60 and 61, it can be seen that the dynamics of e(k) does not depend on ez(k), while at the same time there

exists a static relationship between e(k), w1(k), w2(k + 1), and ez(k).
For this reason, to design the gain K, the quadratic boundedness–based procedure previously described can be applied, starting

from Equation 35, but using

ē(k) = e(k) (62)

v(k) =
[
w1(k)T ,w2(k)T ,w2(k + 1)T

]T
(63)

X = Ā − KC (64)

Z =
[

W̄1 0 W̄2

]
− K

[
0 W2 0

]
(65)

Qv =
1

3
diag

(
Qw1

,Qw2
,Qw2

)
. (66)

The final design procedure is summarized in Figure 2.

Remark 2. It can be seen from Equation 59 that the estimated process fault vector ẑ(k) is calculated using the measurement
y at the following sample. From a practical perspective, this means that at sample k, when the value y(k) is obtained, the
proposed estimator will calculate ẑ(k − 1). This fact must be taken into account in case the estimated process fault vector is
fed to a controller, eg, by relying on the available results for the analysis and control of systems affected by delays.32

Remark 3. The proposed design approach based on the notion of quadratic boundedness can be easily merged with other
performances, obtaining a multiobjective design procedure similar to the one described in the work of Scherer et al.33 As a
matter of example, a ∞ performance specification can be added to decrease the effect of the disturbances on the fault/state
estimation.



FIGURE 2 Process fault estimator design procedure for Case 2. [Colour figure can be viewed at wileyonlinelibrary.com]

3.3 Fault effectiveness estimation
Note that the joint estimation of state and fault variables x and z also allows estimating the fault effectiveness parameters. In fact,

by using the estimates β̂i(k), ̂̇βi(k), and ẑβi(k), the estimation f̂i(k) can be extracted from Equation 12 using parameter estimation

techniques, such as least squares methods.34 In the same way, by using the estimates ω̂g(k) and ẑg(k), a value f̂g(k) can be extracted

from Equation 18.

More specifically, the following regression equation can be derived from Equation 12:

zβi(k) = ϕi(k)fi(k), (67)

by considering

ϕi(k) =
(
ω2

n0
− ω2

nf

)
βi(k) + 2

(
ζ0ωn0 − ζfωnf

)
β̇i(k) +

(
ω2

nf − ω2
n0

)
βi,ref(k). (68)

Then, by replacing zβi(k), βi(k), β̇i(k) with ẑβi (k), β̂i(k), ̂̇βi(k) (the resulting ϕi(k) will be denoted by ϕ̂i(k)) and taking into

account that ωn0, ωnf, ζ0, ζf, and βi,ref(k) are known, Equation 67 becomes an equation where the only unknown parameter is

fi(k), which can be estimated using parameter estimation methods. For example, a recursive least squares filter with a forgetting

factor σ can be used to minimize a weighted linear least squares cost function related to the signals ẑβi(k) and ϕ̂i(k),35 with the

advantage of fast convergence that can be tuned through an appropriate choice of σ (the smaller σ is, the more sensitive is the

filter to recent samples, which means faster convergence, but also more fluctuations because of disturbances and noise).

A similar reasoning can be applied to the drive train, in which case the regression equation

zg(k) = ϕg(k)fg(k) (69)

is obtained from Equation 18.

Remark 4. In order to obtain a good estimation of the fault effectiveness signals fi(k) and fg(k), it would be desirable if
the signals ẑβi(k) and ẑg(k) took values different from 0 only when a fault is affecting the signal, ie, fi(k) ≠ 0 or fg(k) ≠ 0,
respectively. In practice, this will not happen because of the presence of disturbances and noise, which will affect ẑβi(k) and
ẑg(k). However, under the assumption that the fault effect on the estimation is much stronger than the one due to disturbances
and noise, it is possible to enhance the performance of the fault effectiveness estimator by using a threshold-filtered estimated
signal ẑfilt. instead of the estimated signal ẑ (ẑ = ẑβi or ẑ = ẑg depending on the considered subsystem). In particular, ẑfilt. is
defined as follows:

ẑfilt.(k) =

{
ẑ(k), if ẑ(k) ≥ ẑth

0, else
, (70)

where ẑth is an appropriate threshold, which should be selected in such a way that only the values of ẑ(k) that are not excited
by the fault are filtered.
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FIGURE 3 Reference for pitch system 1: β1,ref. [Colour figure can be viewed at wileyonlinelibrary.com]

3.4 Robustness analysis
The aim of this section is to provide a robustness metric that can be used for analyzing the performance of the PFE in the

presence of model-reality mismatch. The proposed metric is based on the idea of stochastic robustness, which was first used

by Marrison and Stengel36 for designing robust control systems and later applied by Witczak and Pretki37 to the design of

unknown input observers. The robustness metric is given by the probability that the PFE will have an unacceptable perfor-

mance in the presence of possible variations of the model. More specifically, let us denote the PFE by (p), where p are the

design parameters (the gains K and L, the forgetting factor σ, and the threshold ẑth), while the system will be denoted by (μ),
where μ ∈ M are the possible model variations due to the uncertainty, described by a probability density function pr(μ).
Then, the robustness metric can be defined as the integral of an indicator function over the space of expected variations of the

model, ie,

Ψ(p) = ∫
M

I
[(μ), (p)] pr(μ)dμ, (71)

where I[·, ·] is a binary indicator function that indicates if the performance of the PFE for a given realization of μ is accept-

able or not. For example, the binary indicator function can be related to the mean-squared error (MSE) fault estimation error,

as follows:

I
[
S(μ),E(p)

]
=
⎧⎪⎨⎪⎩

0, if
1

N

N∑
k=1

(
f (k) − f̂ (k)

)2 ≤ φ

1, otherwise

, (72)

where N denotes the number of samples and φ > 0 is the acceptable MSE. Note that alternative binary indicator functions can

be employed, eg, the one based on an empirical evaluation of false alarms and missed fault rates.38

Unfortunately, Equation 71 cannot be integrated analytically. A practical alternative is to use Monte Carlo methods39 with

pr(μ) shaping random values of μ, which will be denoted by μi. When M random μi, i = 1, … ,M, are generated, then an

estimate of Ψ is given by

Ψ̂(p) = 1

M

M∑
i=1

I
[(μi), (p)] , (73)

where Ψ̂ approaches Ψ in the limit as M → ∞. However, since it is impossible to set M = ∞, the problem boils down

to selecting M in such a way that Ψ̂ has a standard deviation less than a desired value σΨ̂. Since I in Equation 72 is binary,

Ψ̂ has a binomial distribution, such that following the reasoning detailed in the work of Witczak and Pretki,37 M can be

chosen as

M =
⌈

1

4
σ−2

Ψ̂

⌉
. (74)
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FIGURE 4 Pitch system 1: state variables β1 and β̇1 (real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Estimation errors e1 = β1 − β̂1, e2 = β̇1 − ̂̇β1. [Colour figure can be viewed at wileyonlinelibrary.com]

4 APPLICATION TO THE WIND TURBINE CASE STUDY

4.1 Fault scenario 1: faults in the pitch subsystem
First of all, let us evaluate the effectiveness of the PFE described in Section 3.1, ie, for the case where Equation 27 does not

hold, by considering faults affecting the pitch system, as described in Section 2.4.

The design procedure described in Section 3.1 has been applied to the discrete-time model (13) and (14) with sampling time

Ts = 0.01 seconds.

The exogenous disturbance distribution matrices are considered as follows:

W1 =
[

1

0

]
W2 = 1,

while the matrices Qε, Qw1
, and Qw2

are

Qw1
= 1000 Qw2

= 106 Qε = 100.
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FIGURE 6 Fault signal zβ1
(real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Fault effectiveness f1 (real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]

Theorem 1 has been applied for designing the gains K and L, with a value α = 0.1, obtaining

P = 103

⎡⎢⎢⎣
1.8242 −0.0397 −0.0052

−0.0397 0.0829 −0.0049

−0.0052 −0.0049 0.0004

⎤⎥⎥⎦
K =

[
0.7843

4.7511

]
L = 88.2718.

In order to assess the performance of this observer, the following evolution of the signal f1(t) (fault in the first pitch system)

has been considered:

f1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, 2900 s < t ≤ 3000 s
t−3500

30
, 3500 s < t ≤ 3530 s

1, 3530 s < t ≤ 3570 s
3600−t

30
, 3570 s < t ≤ 3600 s

1, 4100 s < t ≤ 4300 s

0, else

, (75)

which contains both abrupt and incipient faults.

wileyonlinelibrary.com
wileyonlinelibrary.com


2800 2850 2900 2950 3000 3050 3100
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

fa
ul

t e
ffe

ct
iv

en
es

s 
f 1

 

real
estimation

3400 3450 3500 3550 3600 3650 3700
0

0.2

0.4

0.6

0.8

1

1.2

time (s)

fa
ul

t e
ffe

ct
iv

en
es

s 
f 1

 

FIGURE 8 Fault effectiveness f1 (real vs estimation, zoom). [Colour figure can be viewed at wileyonlinelibrary.com]

0 1000 2000 3000 4000
0

2

4

6

8

10

12

14

16
x 106

time (s)

ae
ro

dy
na

m
ic

 to
rq

ue
 T

r (
N

m
)

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5
x 104

time (s)

ge
ne

ra
to

r 
to

rq
ue

 T
g (

N
m

)

FIGURE 9 Inputs for the drive train subsystem: Tr and Tg. [Colour figure can be viewed at wileyonlinelibrary.com]

The results shown hereafter refer to a simulation that lasts 4400 seconds, where the input for the first pitch system βref,1(t) is

as depicted in Figure 3.

Figure 4 shows the evolution of the state variables β1(t) and β̇1(t) and their estimation using the designed observer. On the

other hand, Figure 5 shows the estimation errors for both the state variables β1(t) and β̇1(t). It can be seen that the designed

observer is able to estimate correctly the state, although its effectiveness is affected by the presence of faults.

Figure 6 compares the fault signal zβ1
(t) with its estimation. It can be seen that ẑβ1

is affected by the presence of exogenous

disturbances even when no fault acts on the system. This motivates the introduction of a threshold-based filtering, which returns

ẑβ1,filt., obtained with Equation 70 and ẑth = 0.6.

Then, the recursive least squares approach with a forgetting factor of 0.997 is applied using Equation 12, obtaining the

estimation of the fault effectiveness parameter f̂1, which is shown in Figures 7 and 8. Taking into account the presence of external

disturbances, noise, and discretization errors, the obtained estimation is considered to be satisfactorily accurate.

4.2 Fault scenario 2: faults in the drive train subsystem
Let us now evaluate the effectiveness of the PFE described in Section 3.2, ie, for the case where Equation 27 holds, by considering

faults affecting the drive train subsystem, as described in Section 2.4.
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FIGURE 10 Drive train subsystem: state variables ωr, ωg, and θΔ (real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 11 Estimation errors e1 = ωr − ω̂r, e2 = ωg − ω̂g, and e3 = θΔ − θ̂Δ. [Colour figure can be viewed at wileyonlinelibrary.com]

The design procedure described in Section 3.2 has been applied to the discrete-time model (19) and (20) with sampling time

Ts = 0.01 seconds.

The exogenous disturbance matrices are considered as follows:

W1 =
⎡⎢⎢⎣

1 0

0 1

0 0

⎤⎥⎥⎦ W2 =
[

1 0

0 1

]
,

while the matrices Qw1
and Qw2

are

Qw1
=
[

108 0

0 5 · 108

]
Qw2

=
[

106 0

0 106

]
.

Theorem 1 has been applied for designing the gain K, with a value α = 0.1, obtaining

P = 104 ·
⎡⎢⎢⎣

0.3364 0.3916 0.1799

0.3916 3.1667 0.1778

0.1799 0.1778 0.4687

⎤⎥⎥⎦ K =
⎡⎢⎢⎣

1.1843 0.9086

−0.0036 −0.0485

−0.4081 −0.3402

⎤⎥⎥⎦ .
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FIGURE 12 Fault signal zg (real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Fault effectiveness fg (real vs estimation). [Colour figure can be viewed at wileyonlinelibrary.com]

In order to assess the performance of this observer, an evolution of the signal fg(t) similar to the one of f1(t) provided in

Equation 75 has been considered, as follows:

fg(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, 2900 s < t ≤ 3000 s
t−3500

30
3500 s < t ≤ 3530 s

1, 3530 s < t ≤ 3570 s
3600−t

30
, 3570 s < t ≤ 3600 s

1, 4100 s < t ≤ 4300 s

0, else

. (76)

The results shown hereafter refer to a simulation that lasts 4400 seconds, where the inputs Tr(t) and Tg(t) are as shown in

Figure 9.

Figure 10 shows the evolution of the state variables ωr(t), ωg(t), and θΔ(t) and their estimation. The effectiveness of the

designed observer is confirmed by the state estimation errors, which are plotted in Figure 11.

Figure 12 compares the fault signal zg(t) with its estimation. In this case, the distinction between the effect of the exogenous

disturbances and the effect of the fault is not strong enough to motivate the introduction of threshold-based filtering.

Nevertheless, when recursive least squares with a forgetting factor of 0.997 are applied taking into account Equation 18, a

satisfactory estimation of the fault effectiveness parameter fg is obtained, as shown in Figures 13 and 14.
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FIGURE 14 Fault effectiveness fg (real vs estimation, zoom). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Robustness metric estimate Ψ̂(p) for different acceptable MSEs φ. [Colour figure can be viewed at wileyonlinelibrary.com]

4.3 Robustness assessment
Finally, to assess the robustness of the designed PFE in the presence of model-reality mismatch, the robustness metric described

in Section 3.4 has been calculated using extensive Monte Carlo simulations for different ranges of possible parametric uncer-

tainty. The robustness assessment presented hereafter considers uncertainty in the drive train subsystem's parameters: Bg, Br,

Jr, Kdt, ηdt, Bdt, and Jg. For each of these parameters, the uncertainty has been modeled using independent continuous uniform

distributions with semilengths equal to a certain percentage of the parameters' nominal values. The Monte Carlo simulations

have been performed to obtain σΨ̂ = 0.05, which, according to Equation 74, corresponds to M = 100.

Figure 15 shows the robustness metric estimate Ψ̂(p) for different acceptable MSEs φ. As expected, to a lower φ (stricter

specification) corresponds a lower Ψ̂(p). Also, when the parametric uncertainty increases, the robustness metric decreases (this

is not completely true for the robustness metric estimates because of the limited number of Monte Carlo simulations). Using

plots as the ones in Figure 15, it is possible to analyze the effects of uncertainty on the performance of the estimator and compare

different PFEs. Notice that a similar assessment can be performed for the PFE corresponding to faults in the pitch subsystem.

5 CONCLUSIONS

This paper has presented a combined adaptive and parameter estimation scheme and its application to the fault estimation of

a wind turbine benchmark. In the proposed approach, a set of possible faults affecting the dynamics of the wind turbine are
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described. From the model of the system including the considered faults, the proposed estimation scheme has been developed.

It is assumed that process disturbances and sensor noises are bounded in an ellipsoid, and hence, its design is realized within

the quadratic boundedness framework. A robustness metric that can be used for analyzing the performance in the presence of

model-reality mismatch has been proposed, along with a Monte Carlo strategy for obtaining a robustness metric estimate with

some desired bound on the standard deviation. Later, the proposed method has been applied to a well-known wind turbine

benchmark. From the obtained results, covering a set of predefined fault scenarios, a satisfactory performance of the proposed

scheme was assessed, which recommends its application to practical wind turbine installations. The proposed approach works

under the assumption that only process faults affect the wind turbine. It is worth noting that the presence of sensor faults

could prevent successful joint state and fault estimation. Hence, an important line of future research is to extend the proposed

approach to increase its robustness against simultaneous process and sensor faults. Further research will focus on extending the

proposed scheme to nonlinear systems using linear parameter–varying or Takagi-Sugeno approaches and integrating it with an

FTC scheme dedicated to wind turbines.
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