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ABSTRACT
This paper proposes a linear parameter varying (LPV) interval observer for state estimation and
unknown inputs decoupling in uncertain continuous-time LPV systems. Two different problems are
considered and solved: (1) the evaluation of the set of admissible values for the state at each instant
of time; and (2) the unknown input observation, i.e. the design of the observer in such a way that
some information about the nature of the unknown inputs affecting the system can be obtained. In
both cases, analysis and design conditions, which rely on solving linear matrix inequalities (LMIs), are
provided. The effectiveness and appeal of the proposedmethod is demonstrated using an illustrative
application to a two-joint planar robotic manipulator.

1. Introduction

The problem of state estimation has been widely stud-
ied in the literature for both linear and nonlinear sys-
tems (Besançon, 2007; Fossen & Nijmeijer, 1999; Meurer,
Graichen, & Gilles, 2005). For example, an estimation
of the state may be needed for control design or fault
detection. When only the initial condition is assumed
to be unknown, classical observers (Andrieu, Praly, &
Astolfi, 2009; Luenberger, 1964) provide an estimation
which converges asymptotically to the state of the con-
sidered system. However, the presence of uncertain-
ties coming from either external disturbances or from
the mismatch between the model and the real system
may impede the convergence of classical state observers
to the exact value of the state (Chebotarev, Efimov,
Raissi, & Zolghadri, 2013; Efimov, Raissi, Perruquetti, &
Zolghadri, 2013; Wang, Bevly, & Rajamani, 2015). In this
situation, interval observers can be an appealing alter-
native approach (Gouzé, Rapaport, & Hadj-Sadok, 2000)
because, under some assumptions, they can provide the
set of admissible values for the state at each instant of
time. Unlike stochastic approaches, such as the Kalman
filter (Simon, 2006), interval observers ignore any prob-
ability distribution of the sources of uncertainty, and
assume that they are constrained in a known bounded
set. Using this information, instead of a single trajectory
for each state variable, the interval observer computes the
lower and upper bounds, which are compatible with the

uncertainty (Raka & Combastel, 2013). There are several
approaches for designing interval observers, e.g. the ones
proposed by Jaulin (2002) and Kieffer andWalter (2004).
A successful framework for interval observer design is
based on the monotone system theory, and has been pro-
posed at first by Olivier and Gouzè (2004), and further
investigated by Moisan, Bernard, and Gouzè (2009) and
Raïssi, Videan, and Zolghadri (2010), Raïssi, Efimov, and
Zolghadri (2012).

Fault detection and diagnosis (FDD) is an important
subfield of control engineering that aims at monitoring
a system with the goal of identifying the occurrence of
a fault, as well as to provide useful informations about
the fault, e.g. its location (Ding, 2013; Witczak, 2014).
A well-established FDD paradigm is the residual-based
one, where one or more signals are created based on
a model of the system and the knowledge of its inputs
and outputs (Gao, Cecati, & Ding, 2015). Then, the anal-
ysis of this signal can help to determine which fault
has occurred (Gertler, 1998). The residual-based FDD
paradigm has been investigated thoroughly in the last
decades, and several results are available, for both lin-
ear (Henry & Zolghadri, 2005) and nonlinear (Kaboré,
Othman,McKenna,&Hammouri, 2000; Kaboré&Wang,
2001) systems. However, in order to increase the reliabil-
ity and performance of this paradigm, robustness issues
must be addressed, i.e. the fault diagnoser must only be
sensitive to faults, even in the presence of model-reality
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mismatch (Chen & Patton, 1999). In this sense, the inter-
val observer theory provides a passive approach for the
development of a robust fault diagnoser, since the absence
of false alarms and wrong diagnosis due to uncertainty
and other undesired effects, e.g. noise, can be guaranteed
by the property of interval estimation.

Among themost successful techniques available in the
literature for residual generation, there is the unknown
input observer (UIO) approach (Kudva, Viswanadham,&
Ramakrishna, 1980). UIOs are observers that allow esti-
mating the state of a given system, independently of some
unknown inputs (Hammouri & Tmar, 2010). One impor-
tant feature of this approach is that UIOs can be made
insensitive to certain input space directions if some struc-
tural conditions on the system are fulfilled (Cristofaro
& Johansen, 2014). In this way, the decoupling between
the external disturbances (unknown inputs) acting on the
system and the estimation error can be attained, which is
a very useful property that can be exploited for the pur-
pose of FDD (Chen, Patton, & Zhang, 1996).

Recent research has considered UIO design for FDD
in nonlinear systems (Amato, Cosentino, Mattei, &
Paviglianiti, 2006). The UIO proposed by Amato et al.
(2006) has two relevant and appealing features: (1) the
observer structure is nonlinear; and (2) the effect of
neglected nonlinearities, which for instance may repre-
sent structured uncertainty, and decoupled disturbances
isminimised using aH∞ optimisation.However, theUIO
in Amato et al. (2006) has the following shortcomings:
(1) the proof of stability of the estimation error dynam-
ics passes through the linearisation of the nonlinear term.
Hence, it is theoretically valid only if the system state is in
the neighbourhood of the estimated state; and (2) a large
nonlinear campaign of simulations with different kinds
of faults and operating conditions is needed in order to
obtain an appropriate tuning of suitable isolation thresh-
olds.

In contrast with linearisation techniques, linear
parameter varying (LPV) methods have the advantage
of not involving any approximation, since they can rely
on an exact transformation of the original nonlinear
system into a quasi-linear one, by embedding all the
original nonlinearities within some varying parameters
that schedule the state space matrices (Shamma, 2012).
The LPV paradigm, which has attracted a lot of atten-
tion in the last decades (Hoffmann & Werner, 2014),
provides an elegant way of guaranteeing theoretical
stability and performance in nonlinear systems using
linear-like techniques (Shamma & Athans, 1991). Hence,
it is an appealing paradigm for the design of UIOs for
nonlinear systems for which theoretical properties hold
even in the presence of a mismatch between the system’s
and the estimated state. At the same time, the interval

observer paradigm is appealing because the estimated
lower and upper bounds for the state can be used for
generating unknown input isolation signals that embed
the information about the uncertainty in such a way that
a demanding simulation-based tuning of the isolation
thresholds can be avoided.

Motivated by the above-mentioned properties, the
goal of this work is to merge the theory of interval
observers with the theory of UIOs, developing an inter-
val UIO which can be applied to the problem of fault
detection and isolation in uncertain LPV systems sub-
ject to faults and other undesired effects. Achieving this
goal requires further modification of the solution pro-
posed by Chebotarev et al. (2013) and Efimov et al.
(2013).

The paper is structured as follows. Section 2 introduces
the two problems, that are solved in the subsequent sec-
tions. Problem 1, which is solved in Section 3, refers to
the design of an LPV interval observer, which computes
lower and upper bounds for the state, provided that no
unknown inputs act on the observed system.On the other
hand, Problem 2, which is solved in Section 4, deals with
the presence of unknown inputs through the design of an
LPV interval UIO. Finally, Section 5 illustrates the appli-
cation of the proposed approach and Section 6 presents
the main conclusions.

Notation
The set of (non-negative) real numbers will be denoted
by R (R+). For a given vector signal u : R �→ R

nu ,
the shorthand notation ut will be used instead of u(t).
Also, Lnu∞ will denote the set of all signals u such that
‖u‖∞ = sup

{|ut | , t ∈ R
+} < ∞. Given a matrix M ∈

R
m×n, He{M} will be used as a shorthand notation for

M + MT. For two vectors x1, x2 ∈ R
n or matrices

M1,M2 ∈ R
m×n, the relations x1 � x2 and M1 � M2

should be understood element-wise. The notation M†

denotes the Moore–Penrose pseudo-inverse of M ∈
R

m×n. If M ∈ R
n×n is symmetric, then M ∈ S

n×n. The
notation M≺0 (M�0) means that M ∈ S

n×n is nega-
tive (positive) definite. If M ∈ S

n×n is diagonal, then
M ∈ D

n×n. If all the elements of M ∈ R
n×n outside the

main diagonal are non-negative, then M ∈ M
n×n (Met-

zler). For a generic vector x ∈ R
n, its i-th element will be

denoted by x(i). For a givenM ∈ R
m×n and a set of column

indicesN , withN a subset of {1,… , n}, the i-th column
ofM will be denoted byM(i), whileM(N ) will denote the
matrix obtained fromM by replacing all columns whose
indices do not belong toN with zeros. Also, the notation
�(M)x will denote the projection of x onto the subspace
generated by the columns of M. Given a set S , the nota-
tionP(S )will denote the power set of S , i.e. the set of all
subsets of S , including the empty set and S itself. Finally,
givenM ∈ R

m×n,M+ = max {0,M}, where max denotes
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the element-wise maximum,M− = M+ − M, and |M| =
M+ + M−.

2. Problem statement

Consider an uncertain LPV system described by:

ẋt = [A (ϑt ) + �A (ϑt )] xt + [B (ϑt ) + �B (ϑt )] ut
+ [Bun (ϑt ) + �Bun (ϑt )] uun,t + ct + dt (1)

yt = Cxt (2)

where x ∈ R
nx is the state,u ∈ R

nu is the known input (e.g.
the control action), uun ∈ R

nuun is the unknown input (e.g.
some actuator fault), c ∈ R

nx is a known term, d ∈ R
nx is

an unknown and unstructured disturbance and y ∈ R
ny

is the output available from the sensors. The elements
of the matrix functions appearing in (1) are nonlinear
functions of some known time varying parameters, which
are represented by the vector ϑt ∈ � ⊂ R

nϑ , where �

is a known closed and bounded set. Also, it is assumed
that the derivatives of the scheduling parameters ϑ̇t are
known. It is assumed that the matrix C ∈ R

ny×nx is full
row rank, that the matrix functions A(ϑ t), B(ϑ t), Bun(ϑ t)
(of appropriate dimensions) are known, with Bun(ϑ t) full
column rank and rank(C(Bun(ϑ t) + �Bun(ϑ t))) = nun �
ny �ϑ t � �, whereas �A(ϑ t), �B(ϑ t) and �Bun(ϑ t) are
unknown and represent the modelling uncertainty.

Notice that given a nonlinear state equation of the fol-
lowing type:

ẋt = f
(
xt , ut , uun,t

)+ ct + dt (3)

where f depends on some uncertain parameters, it is pos-
sible to apply systematic approaches for the generation of
equivalent LPV representations, e.g. the one described in
Kwiatkowski, Boll, and Werner (2006), to both the state
equation without uncertainty (i.e. using nominal values
for the uncertain parameters) and the state equation with
uncertainty, obtaining, respectively:

ẋt = A(ϑt )xt + B(ϑt )ut + Bun(ϑt )uun,t + ct + dt (4)

and:

ẋt = Ã(ϑt )xt + B̃(ϑt )ut + B̃un(ϑt )uun,t + ct + dt (5)

Then, an equivalent uncertain LPV representation of (3)
can be easily obtained by considering:

�A(ϑt ) = Ã(ϑt ) − A(ϑt ) (6)

�B(ϑt ) = B̃(ϑt ) − B(ϑt ) (7)

�Bun(ϑt ) = B̃un(ϑt ) − Bun(ϑt ) (8)

Without loss of generality, and up to a change of coor-
dinates, it is possible to consider that C has the following
structure:

C = (
C̃ 0

)
(9)

where C̃ ∈ R
ny×ny is invertible.

As recalled in the introduction, interval observers
evaluate the set of admissible values for the state at each
instant of time. In other words, an interval observer will
provide two signals, namely the lower and the upper esti-
mated bounds for the state, rather than a single one (the
estimated state).

Problem 1 concerns the extension of this concept to a
structure for the interval observerwhich is suitable for the
unknown input observation. Before stating the problem,
let us introduce an assumption about the boundedness of
disturbances and uncertainties, that will be required for
establishing a solution.

Assumption 2.1: There exist dt , dt ∈ Lnx∞, �A(ϑt ),
�A(ϑt ) ∈ R

nx×nx and �B(ϑt ), �B(ϑt ) ∈ R
nx×nu such

that for all ϑ t � �:

dt ≤ dt ≤ dt (10)

�A(ϑt ) ≤ �A(ϑt ) ≤ �A(ϑt ) (11)

�B(ϑt ) ≤ �B(ϑt ) ≤ �B(ϑt ) (12)

Notice that since � is closed and bounded, given a con-
tinuous matrix function R(ϑt ) ∈ R

nx×nx , (10)–(12) are
equivalent to the existence of dR,t , dR,t ∈ Lnx∞, �AR(ϑt ),
�AR(ϑt ) ∈ R

nx×nx and�BR(ϑt ),�BR(ϑt ) ∈ R
nx×nu such

that for all ϑ t � �:

dR,t ≤ R (ϑt ) dt ≤ dR,t (13)

�AR(ϑt ) ≤ �AR(ϑt ) = R(ϑt )�A(ϑt ) ≤ �AR(ϑt )

(14)

�BR(ϑt ) ≤ �BR(ϑt ) = R(ϑt )�B(ϑt ) ≤ �BR(ϑt )

(15)

Problem 2.1: Given a continuous matrix function
R(ϑt ) ∈ R

nx×nx , partitioned as follows:

R(ϑt ) =
(
R11(ϑt ) 0

0 I

)
(16)

with R11(ϑt ) ∈ R
ny×ny and such that:
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AR12(ϑt ) ≥ 0 (17)

AR22(ϑt ) ∈ M
(nx−ny )×(nx−ny ) (18)

where AR12(ϑt ) ∈ R
ny×(nx−ny ) and AR22 denote the

upper-right and lower-right sub-matrices of AR(ϑ t) =
R(ϑ t)A(ϑ t), respectively, determine an LPV interval
observer which computes xt and x̄t such that:

xt ≤ xt ≤ x̄t ∀t ≥ 0 (19)

with xt , x̄t ∈ Lnx∞, provided that:

x0 ≤ x0 ≤ x̄0 (20)

uun,t = 0 ∀t ≥ 0 (21)

and Assumption 1 holds.
The parameter varying matrix function R(ϑ t) is rele-

vant to solve the problem of unknown input observation,
which is formalised in Problem 2. In this case, in addi-
tion to solve Problem 1, the interval observer will also
exhibit some desired properties of decoupling between
the effects of the unknown inputs uun affecting the sys-
tem. In this way, by looking at the projections of appro-
priate signals onto some subspaces, which are generated
by the columns of an appropriate matrixH, it will be pos-
sible to detect the presence of unknown inputs acting on
the system, as well as to identify their nature (isolation).
In order to solve Problem 2, two additional assumptions
are needed. Assumption 2 concerns the boundedness of
signals and uncertainties related to the unknown inputs.
On the other hand,Assumption 3 refers to the structure of
the uncertainty that affects the statematrix, requiring that
the non-measured states influence the measured ones in
a known manner.
Assumption 2.2: The signal uun, t is such that:

uun,t ≤ uun,t ≤ ūun,t (22)

with uun,t ≤ 0 and ūun,t ≥ 0, uun, ūun ∈ Lnu∞. Moreover,
there exist �Bun(ϑt ), �Bun(ϑt ) ∈ R

nx×nuun such that for
all ϑ t � �:

�Bun(ϑt ) ≤ �Bun(ϑt ) ≤ �Bun(ϑt ) (23)

Also in this case, since � is closed and bounded, given
a continuous matrix function R(ϑt ) ∈ R

nx×nx , (23) is
equivalent to the existence of �Bun,R(ϑt ), �Bun,R(ϑt ) ∈
R

nx×nuun such that for all ϑ t � �:

�Bun,R(ϑt ) ≤ R(ϑt )�Bun(ϑt ) ≤ �Bun,R(ϑt ) (24)

Assumption 2.3: The matrix �A(ϑ t) is partitioned as:

�A(ϑt ) =
(

�A11(ϑt ) 0
�A21(ϑt ) �A22(ϑt )

)
(25)

with �A11(ϑt ) ∈ R
ny×ny .

Problem 2.2: Given an invertible matrix function
R (ϑt ) ∈ R

nx×nx partitioned as in (16) and such that
(17)–(18) hold, and a matrix H ∈ R

nx×nuun for which the
following holds:

R(ϑt )Bun(ϑt ) = H ∀ϑt ∈ � (26)

and provided that (20) and Assumptions 1–3 hold, deter-
mine an LPV interval UIO which, in addition to solve
Problem 1, satisfies:

u( j)
un,t = 0 ⇒ �(H ( j))εt ≥ 0 ∧ �(H ( j))ε̄t ≥ 0

(27)

�(H ( j))εt < 0 ∨ �(H ( j))ε̄t < 0 ⇒ u( j)
un,t �= 0

(28)

where εt and ε̄t are evaluable quantities that can be used
as unknown input isolation signals. In particular, in this
paper, it is shown that a valid choice for these signals is
the following:

εt = C† (yt −Cxt
)

(29)

ε̄t = C† (Cx̄t − yt
)

(30)

In other words, if the j-th unknown input has a value
equal to zero, the projections of both εt and ε̄t onto the
subspace generated by the j-th column of H will be non-
negative. On the other hand, if at least one of such pro-
jections is negative, it means that the j-th unknown input
has a value different from zero, which allows performing
a correct isolation.
Remark 2.1: In the presence of an uncertain term εt, the
application of nonlinear fault diagnosis strategies as the
one described in Kaboré et al. (2000) requires the knowl-
edge of a uniform bound μ > 0 such that �t : ‖εt‖ �
μ, with μ known a priori in order to calculate appropri-
ate thresholds for the residuals. However, if the uncer-
tainty is structured, as in the case detailed in this paper
for which εt = �A(ϑ t)xt + �B(ϑ t)ut + �Bun(ϑ t)uun, t
+ dt, a description of the uncertainty as in Kaboré et al.
(2000) can be overly conservative. This conservativeness
is avoided by the interval-based approach detailed in the
following, which exploits the structuredness of the uncer-
tainty and uses elementwise bounds on the individual
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terms�A(ϑ t),�B(ϑ t),�Bun(ϑ t),uun, t and dt (in the case
of quasi-LPV systems (Shamma & Athans, 1991) knowl-
edge of bounds on the state xt is also needed for comput-
ing the set �).

3. LPV interval observer design

3.1 The LPV interval observer

The LPV interval observer proposed to solve Problem 1
can be conveniently decomposed into two coupled sub-
systems, i.e. a lower bound observer, which provides xt , as
follows:

żt = F (ϑt ) zt + R (ϑt )B (ϑt ) ut + S (ϑt ) yt
− Ṫ

(
ϑt , ϑ̇t

)
yt + dR,t + ct − T (ϑt )Cct

+ �AR(ϑt )
+x+

t − �AR(ϑt )
+
x−
t − �AR(ϑt )

−x̄+
t

+ �AR(ϑt )
−
x̄−
t + �BR(ϑt )

+u+
t − �BR(ϑt )

+
u−
t

− �BR(ϑt )
−u+

t + �BR(ϑt )
−
u−
t (31)

xt = zt + T (ϑt ) yt (32)

and an upper bound observer, which provides x̄t , as fol-
lows:

˙̄zt = F (ϑt ) z̄t + R (ϑt )B (ϑt ) ut + S (ϑt ) yt
− Ṫ

(
ϑt , ϑ̇t

)
yt + dR,t + ct − T (ϑt )Cct

+�AR(ϑt )
+
x̄+
t − �AR(ϑt )

+x̄−
t − �AR(ϑt )

−
x+
t

+ �AR(ϑt )
−x−

t + �BR(ϑt )
+
u+
t − �BR(ϑt )

+u−
t

− �BR(ϑt )
−
u+
t + �BR(ϑt )

−u−
t (33)

x̄t = z̄t + T (ϑt ) yt (34)

where F(ϑt ), F(ϑt ), S(ϑt ), S(ϑt ) and T(ϑ t) are matrix
functions of appropriate dimensions, and Ṫ (ϑt , ϑ̇t ) is
obtained from T(ϑ t) by differentiating each element with
respect to time.

The following theorem provides the conditions which
should be met to ensure an interval estimation of xt and
the boundedness of xt , x̄t , as specified in Problem 1.

Theorem 3.1: Let Assumption 1 be satisfied, x ∈ Lnx∞, u ∈
Lnu∞, c ∈ Lnx∞, the interval observer be given by (31)–(34),
the matrix functions R (ϑt ) ∈ R

nx×nx and F (ϑt ), F (ϑt ) ∈
M

nx×nx be chosen such that R(ϑ t) is partitioned as in (16),
(17)-(18) hold, and:

[
F12(ϑt )

F22(ϑt )

]
=
[
F12(ϑt )

F22(ϑt )

]
=
[
AR12(ϑt )

AR22(ϑt )

]
(35)

where F12(ϑt ), F12(ϑt ) ∈ R
ny×(nx−ny ) and

F22(ϑt ), F22(ϑt ) ∈ M
(nx−ny )×(nx−ny ) denote the upper-

right and lower-right sub-matrices of F (ϑt ) and F(ϑt ),
respectively. Then, the relation (19) is satisfied pro-
vided that (20)-(21) hold and the matrix functions
T (ϑt ), S (ϑt ) , S (ϑt ) ∈ R

nx×ny are chosen as1:

T (ϑt )C = I − R (ϑt ) (36)

S (ϑt ) = S1 (ϑt ) + S2 (ϑt ) (37)

S (ϑt ) = S1 (ϑt ) + S2 (ϑt ) (38)

S1 (ϑt )C = R (ϑt )A (ϑt ) − F (ϑt ) (39)

S1 (ϑt )C = R (ϑt )A (ϑt ) − F (ϑt ) (40)

S2 (ϑt ) = F (ϑt )T (ϑt ) (41)

S2 (ϑt ) = F (ϑt )T (ϑt ) (42)

In addition, if there exist P,Q ∈ S
2nx×2nx , P, Q�0 and

constants ε1, ε2, γ > 0 such that the matrix inequality (43)
is verified (see bottom of the page)

�(ϑt ) =
⎛
⎝G(ϑt )

TP + PG(ϑt ) + (ε1 + ε2)P
+Q + γ η(ϑt )

2I2nx 0
0 ε−1

1 P − γ I2nx

⎞
⎠ � 0

(43)

where:

η(ϑt ) = 2
(∥∥∥�AR(ϑt )

+ − �AR(ϑt )
+∥∥∥

2

+ ∥∥�AR(ϑt )
−∥∥

2 +
∥∥∥�AR(ϑt )

−∥∥∥
2

)
(44)

G(ϑt ) =
(
F(ϑt ) + �AR(ϑt )

+ 0
0 F(ϑt ) + �AR(ϑt )

+

)

(45)

then xt , xt ∈ Lnx∞.

The theorem statement consists of two parts. Equa-
tions (36)–(42) guarantee that, at each instant of time,
the true state of the LPV system (1)–(2) will lie inside the
region defined by the lower and upper estimates. On the
other hand, the feasibility of the matrix inequality (43)
ensures that such estimates will remain bounded, i.e. they
will not diverge.
Proof: Let us consider the dynamics of the interval
estimation errors et = xt − xt and ēt = x̄t − xt which,
taking into account (1)–(2), (31)–(34) and (36)–(42),
become:
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ėt = F (ϑt ) et + R (ϑt ) (Bun (ϑt ) + �Bun (ϑt )) uun,t

+
3∑

i=1

wi
t (46)

˙̄et = F̄ (ϑt ) ēt − R (ϑt ) (Bun (ϑt ) + �Bun (ϑt )) uun,t

+
3∑

i=1

w̄i
t (47)

where:

w1
t = R (ϑt ) dt − dR,t (48)

w2
t = �AR(ϑt )xt − �AR(ϑt )

+x+
t + �AR(ϑt )

+
x−
t

+ �AR(ϑt )
−x̄+

t − �AR(ϑt )
−
x̄−
t (49)

w3
t = �BR (ϑt ) ut − �BR(ϑt )

+u+
t + �BR(ϑt )

+
u−
t

+ �BR(ϑt )
−u+

t − �BR(ϑt )
−
u−
t (50)

w̄1
t = dR,t − R (ϑt ) dt (51)

w̄2
t = �AR(ϑt )

+
x̄+
t − �AR(ϑt )

+x̄−
t − �AR(ϑt )

−
x+
t

+ �AR(ϑt )
−x−

t − �AR(ϑt )xt (52)

w̄3
t = �BR(ϑt )

+
u+
t − �BR(ϑt )

+u−
t − �BR(ϑt )

−
u+
t

+ �BR(ϑt )
−u−

t − �BR (ϑt ) ut (53)

When (21) holds, since F (ϑt ) , F (ϑt ) ∈ M
nx×nx , then

any solution of (46)–(47) is element-wise non-negative
for all t� 0, i.e. (19), provided that e0 ≥ 0, ē0 ≥ 0,wi

t ≥ 0
and w̄i

t ≥ 0 �t� 0,�i= 1, 2, 3 (Farina &Rinaldi, 2000).
e0 ≥ 0 and ē0 ≥ 0 hold due to (20). The terms w1

t , w̄1
t are

non-negative �t � 0 due to Assumption 1 (see (13)). On
the other hand, w2

t , w̄2
t remain non-negative as long as

(19) holds, according to Lemma 1 in Efimov et al. (2013)
and Assumption 1 (see (14)). (19) holds for t = 0, due to
e0 ≥ 0, ē0 ≥ 0, and (19) is preserved �t � 0 by induc-
tion, as long as w3

t , w̄3
t remain non-negative too. Indeed,

also w3
t , w̄3

t remain non-negative because of Lemma 1 in
Efimov et al. (2013) and Assumption 1 (see (15)).

Let us show that the variables xt and x̄t stay bounded
�t � 0. For this purpose, let us notice that the equations
that describe the dynamics of xt and x̄t can be rewritten
as:

ẋt = (
F(ϑt ) + �AR(ϑt )

+) xt + f
(
xt , x̄t

)
+ δt (xt , ut , uun,t , ct , dt ) (54)

˙̄xt =
(
F(ϑt ) + �AR(ϑt )

+)
x̄t + f

(
xt , x̄t

)
+ δ̄t (xt , ut , uun,t , ct , dt ) (55)

for some δt (·) and δ̄t (·), with:

f (xt , x̄t ) =
(
�AR(ϑt )

+ − �AR(ϑt )
+)

x−
t

− �AR(ϑt )
−x̄+

t + �AR(ϑt )
−
x̄−
t (56)

f (xt , x̄t ) = (�AR(ϑt )
+ − �AR(ϑt )

+)x̄−
t

− �AR(ϑt )
−
x+
t + �AR(ϑt )

−x−
t (57)

Clearly, for all ϑ t � �, f and f satisfy:

∣∣∣ f (xt , x̄t )∣∣∣ ≤
∥∥∥�AR(ϑt )

+ − �AR(ϑt )
+∥∥∥

2

∣∣xt ∣∣
+
(∥∥�AR(ϑt )

−∥∥
2 +

∥∥∥�AR(ϑt )
−∥∥∥

2

)
|x̄t |
(58)∣∣∣ f (xt , x̄t )∣∣∣ ≤

∥∥∥�AR(ϑt )
+ − �AR(ϑt )

+
∥∥∥
2
|x̄t |

+
(∥∥∥�AR(ϑt )

−∥∥∥
2
+ ∥∥�AR(ϑt )

−∥∥
2

) ∣∣xt ∣∣
(59)

and, if (21) holds, the inputs δt , δt are bounded due to
Assumption 1 and the fact that x ∈ Lnx∞, u ∈ Lnu∞, c ∈ Lnx∞.

To prove the boundedness of the solution of the
observer (31)–(34), let us rewrite (54)–(55) as:

ζ̇t = G(ϑt )ζt + φ(ζt ) + δt

where:

ζt =
(
xt
x̄t

)
φ(ζt ) =

(
f (xt , x̄t )
f (xt , x̄t )

)
δt =

(
δt
δ̄t

)

|φ(ζt )| ≤ η(ϑt ) |ζt |

Let us consider a Lyapunov function Vt = ζ T
t Pζt , whose

derivative takes the form:

V̇t = ζ T
t
[
G(ϑt )

TP + PG(ϑt )
]
ζt + 2φ(ζt )

TPζt + 2δTt Pζt

≤ ζ T
t
[
G(ϑt )

TP + PG(ϑt )
]
ζt + ε1ζ

T
t Pζt

+ ε−1
1 φ(ζt )

TPφ(ζt ) + ε2ζ
T
t Pζt + ε−1

2 δTt Pδt

+ ζ T
t Qζt − ζ T

t Qζt + γ η(ϑt )
2ζ T

t ζt − γφ(ζt )
Tφ(ζt )

=
(

ζ T
t φ(ζt )

T )
�(ϑt )

⎛
⎝ ζt

φ(ζt )

⎞
⎠+ ε−1

2 δTt Pδt

− ζ T
t Qζt ≤ ε−1

2 δTt Pδt − ζ T
t Qζt (60)

where �(ϑ t) is given by (43). Then, xt , xt ∈ Lnx∞. �
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Given the matrix functions F(ϑt ), F(ϑt ), the condi-
tions provided by Theorem 3.1 allow analysing whether
or not the observer (31)–(34) will provide a bounded
interval estimation of the state. It must be pointed out
that Theorem 3.1 relies on the satisfaction of infinite
conditions. However, this difficulty can be overcome by

gridding � using N points ϑ i, i = 1,… , N. Then, once
ε1 and ε2 have been chosen, (43) becomes a set of
linear matrix inequalities (LMIs), which can be solved
efficiently using available solvers, e.g. YALMIP/SeDuMi

(Löfberg, 2004; Sturm, 1999). From a practical point of
view, it is reasonable to assume that if the gridding of� is
dense enough, then (43) would still hold for values of ϑ t
different from the gridding ones. A deep theoretical study
of this fact is possible using the results developed by Rosa
(2011), but goes beyond the goal of this paper.

3.2 Design conditions

At the expense of introducing some conservativeness, it is
possible to derive conditions for performing the design,
i.e. for the case where F(ϑt ), F(ϑt ) are not given, such
that they are obtained as part of the solution of the LMIs.
This can be done using the following corollary.

Corollary 3.1: Let the matrix function R (ϑt ) ∈ R
nx×nx

be partitioned as in (16) and such that (17)–(18) hold,
Assumption 1 be satisfied and x ∈ Lnx∞, u ∈ Lnu∞, c ∈ Lnx∞.
Also, let us assume that there exist an element-wise non-
negative matrix:

P =
(
P 0
0 P

)
(61)

with P, P ∈ S
nx×nx , P, P � 0, a matrix function:

W (ϑt ) =
(
W (ϑt ) 0

0 W (ϑt )

)

=

⎛
⎜⎜⎝
W 11(ϑt ) 0 0 0
W 12(ϑt ) 0 0 0

0 0 W 11(ϑt ) 0
0 0 W 12(ϑt ) 0

⎞
⎟⎟⎠ (62)

with W (ϑt ),W (ϑt ) ∈ R
nx×nx , W 11(ϑt ),W 11(ϑt ) ∈

R
ny×ny , W 12(ϑt ),W 12(ϑt ) ∈ R

(nx−ny )×ny , a matrix
Q ∈ S

2nx×2nx , Q�0, a sufficiently large matrix func-
tion (ϑt ) ∈ D

2nx×2nx+ and constants ε1, ε2, γ > 0 such
that:

(
He {W (ϑt ) + P�(ϑt )} + (ε1 + ε2)P + Q + γ η(ϑt )

2I2nx 0
0 ε−1

1 P − γ I2nx

)
� 0 (63)

W (ϑt ) + P(ϑt ) ≥ 0 (64)

with η(ϑ t) defined as in (44) and:

�(ϑt ) =

⎛
⎜⎜⎝
(
0 AR12(ϑt )

0 AR22(ϑt )

)
+ �AR(ϑt )

+ 0

0
(
0 AR12(ϑt )

0 AR22(ϑt )

)
+ �AR(ϑt )

+

⎞
⎟⎟⎠ (65)

Then, the interval observer (31)–(34)with matrices F (ϑt ),
F(ϑt ) calculated as:(

F (ϑt ) 0
0 F (ϑt )

)

= P−1W (ϑt ) +

⎛
⎜⎜⎝
0 AR12(ϑt ) 0 0
0 AR22(ϑt ) 0 0
0 0 0 AR12(ϑt )

0 0 0 AR22(ϑt )

⎞
⎟⎟⎠ (66)

andmatrix functions T (ϑt ) , S (ϑt ) , S (ϑt ) ∈ R
nx×ny cho-

sen as (36)–(42) is such that the relation (19) holds pro-
vided that (20)-(21) are satisfied, with xt , xt ∈ Lnx∞.

Proof: The matrix inequality (63) can be obtained easily
from (43) by considering that (35) corresponds to:

F (ϑt ) =
(
F11(ϑt ) AR12(ϑt )

F21(ϑt ) AR22(ϑt )

)

F(ϑt ) =
(
F11(ϑt ) AR12(ϑt )

F21(ϑt ) AR22(ϑt )

)
(67)

and through the change of variables:

W (ϑt ) =

⎛
⎜⎜⎝
P
(
F11(ϑt ) 0
F21(ϑt ) 0

)
0

0 P
(
F11(ϑt ) 0
F21(ϑt ) 0

)
⎞
⎟⎟⎠ (68)

which explains why F(ϑt ) and F(ϑt ) are calculated as
(66). On the other hand, (64) corresponds to F (ϑt ),
F (ϑt ) ∈ M

nx×nx . �
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Also in this case, (63)-(64) can be brought to a finite
number of matrix inequalities by gridding � using N
points ϑ i, i = 1,… , N.

As discussed by Efimov et al. (2013), optimising the
values of the constants ε1, ε2 and the matrices Q and P,
it is possible to establish the accuracy of the interval esti-
mation since the gain of the transfer from δt to ζ t charac-
terises the width of the interval [xt , x̄t].

4. LPV interval unknown input observer design

4.1 Fault isolation using the LPV interval unknown
input observer

UIOs are useful for the task of isolating faults, which can
be represented by the unknown input uun, t in (1). In this
case, the idea consists in assigning different directions of
residuals for each element of the vector uun, t, and design-
ing the interval observer in order to guarantee that, if the
component of at least one between εt and ε̄t along the
direction specified by the j-th column of the matrix H
becomes negative, then the j-th element of the vectoruun, t
must be necessarily different from zero, which allows iso-
lating the fault.

Looking at (46)–(47), and recalling (26), it is evident
that when�Bun(ϑ t)= 0, in order to achieve the fault iso-
lation property, the columns of H should correspond to
eigenvectors of the matrices F(ϑt ), F(ϑt ), and the terms
wi

t , w̄i
t should maintain non-negativity despite a possi-

ble change in the sign of et and/or ēt . This last property,
which is not necessary for fault detection, but is funda-
mental to achieve fault isolation, requires a slight modifi-
cation of the interval observer structure provided in (31)–
(34). On the other hand, a further modification of (31)–
(34) is performed to embed the term R(ϑ t)�Bun(ϑ t)uun, t
into non-negative terms that will be referred to asw4

t and
w̄4

t .
The following LPV interval UIO is proposed to solve

Problem 2:

ξ̇
t
= żt +

ny∑
i=1

{
1 − sign

(
ε

(i)
t

)
2

[
�A(i)

R (ϑt )
+((

x̃(i)
t
)+

− (
x(i)
t
)+)− �A(i)

R (ϑt )
+((

x̃(i)
t

)−
−
(
x(i)
t

)−)]

+
1 − sign

(
ε̄

(i)
t

)
2

[
− �A(i)

R (ϑt )
−((

x̃(i)
t
)+

− (
x̄(i)
t
)+)+ �A(i)

R (ϑt )
−((

x̃(i)
t
)− − (

x̄(i)
t
)−)]}

+ F (ϑt ) (ξ
t
− zt ) + �Bun,R(ϑt )

+u+
un,t

− �Bun,R(ϑt )
+
u−
un,t − �Bun,R(ϑt )

−ū+
un,t

+ �Bun,R(ϑt )
−
ū−
un,t (69)

xt = ξ
t
+ T (ϑt )yt (70)

˙̄
ξ t = ˙̄zt +

ny∑
i=1

{
1 − sign

(
ε̄

(i)
t

)
2

[
�A(i)

R (ϑt )
+((

x̃(i)
t
)+

− (
x̄(i)
t
)+)− �A(i)

R (ϑt )
+((

x̃(i)
t
)− − (

x̄(i)
t
)−)]

+ 1 − sign
(
ε

(i)
t
)

2
[− �A(i)

R (ϑt )
−((

x̃(i)
t
)+

− (
x(i)
t
)+)+ �A(i)

R (ϑt )
−((

x̃(i)
t
)− − (

x(i)
t
)−)]}

+ F (ϑt )
(
ξ̄t − z̄t

)+ �Bun,R(ϑt )
+
ū+
un,t

− �Bun,R(ϑt )
+ū−

un,t − �Bun,R(ϑt )
−
u+
un,t

+ �Bun,R(ϑt )
−u−

un,t (71)

x̄t = ξ̄t + T (ϑt )yt (72)

where εt , ε̄t , żt and ˙̄zt are given by (29)–(31), (33)
and:

x̃t = C†yt (73)

The following lemma provides the conditions which
should be met to ensure an interval estimation of
xt and the boundedness of xt , x̄t as specified in
Problem 1.

Lemma 4.1: Let Assumptions 1–2 be satisfied, x ∈ Lnx∞,
u ∈ Lnu∞, c ∈ Lnx∞, the interval observer be given by (31),
(33) and (69)–(72) and the matrix functions R(ϑt ) ∈
R

nx×nx and F(ϑt ), F(ϑt ) ∈ M
nx×nx be chosen such that

R(ϑ t) is partitioned as in (16), and (17)–(18) and (35)
hold. Then, the relation (19) is satisfied provided that (20)–
(21) hold and thematrix functions T (ϑt ), S (ϑt ) , S (ϑt ) ∈
R

nx×ny are chosen as (36)–(42).
In addition, if there exist P,Q ∈ S

2nx×2nx , P, Q�0 and
constants ε1, ε2, γ > 0 such that the following matrix
inequality is satisfied ∀S1,S2 ∈ P({1, . . . , ny}):
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�(ϑt ,S1,S2) =
(
He{PG(ϑt ,S1,S2)} + (ε1 + ε2)P + Q + γ η(ϑt ,S1,S2)

2I2nx 0
0 ε−1

1 P − γ I2nx

)
� 0 (74)

where:

η(ϑt ,S1,S2) = η1(ϑt ,S1,S2) + η2(ϑt ,S1,S2) (75)

η1(ϑt ,S1,S2) =
∥∥∥∥�A(S1∪S3)

R (ϑt )
+ − �A(S1∪S3)

R (ϑt )
+∥∥∥∥

2

+
∥∥∥�A(S1∪S3)

R (ϑt )
−∥∥∥

2

+
∥∥∥∥�A(S1∪S3)

R (ϑt )
−∥∥∥∥

2
(76)

η2(ϑt ,S1,S2) =
∥∥∥∥�A(S2∪S3)

R (ϑt )
+ − �A(S2∪S3)

R (ϑt )
+∥∥∥∥

2

+
∥∥∥�A(S2∪S3)

R (ϑt )
−∥∥∥

2

+
∥∥∥∥�A(S2∪S3)

R (ϑt )
−∥∥∥∥

2
(77)

S3 = {ny + 1, . . . , nx} (78)

G(ϑt ,S1,S2)

=
(
F(ϑt ) + �A(S2∪S3)

R (ϑt )
+

0

0 F(ϑt ) + �A(S1∪S3)
R (ϑt )

+

)

(79)

then xt , xt ∈ Lnx∞.

Similarly to Theorem 3.1, the matrix inequality (74)
is needed to ensure that the lower and upper estimates
provided by the interval observer will remain bounded
despite the modifications in the structure of the observer
due to changes in the signs of ε(i)

t , ε̄(i)
t , i = 1,… , ny. This

fact will be further detailed in the proof of Lemma 4.1.

Proof: By using the interval UIO (31), (33) and (69)–
(72), and taking into account (1)–(2) and (36)–(42), the
dynamics of the interval estimation errors et , ēt follow:

ėt = F (ϑt ) et + R (ϑt )Bun (ϑt ) uun,t +
4∑

i=1

wi
t (80)

˙̄et = F̄ (ϑt ) ēt − R (ϑt )Bun (ϑt ) uun,t +
4∑

i=1

w̄i
t (81)

where wi
t , w̄i

t , i = 1, 3, are given by (48), (50)–(51) and
(53), and:

w2
t =

nx∑
i=1

[
�A(i)

R (ϑt )x(i)
t − �A(i)

R (ϑt )
+(
x(i)
t
)+

+ �A(i)
R (ϑt )

+(
x(i)
t
)− + �A(i)

R (ϑt )
−(
x̄(i)
t
)+

− �A(i)
R (ϑt )

−(
x̄(i)
t
)−]−

ny∑
i=1

1 − sign
(
ε

(i)
t
)

2

× [
�A(i)

R (ϑt )
+((

x̃(i)
t
)+ − (

x(i)
t
)+)

− �A(i)
R (ϑt )

+((
x̃(i)
t
)− − (

x(i)
t
)−)]

−
ny∑
i=1

1 − sign
(
ε̄

(i)
t
)

2
[− �A(i)

R (ϑt )
−((

x̃(i)
t
)+

− (
x̄(i)
t
)+)+ �A(i)

R (ϑt )
−((

x̃(i)
t
)− − (

x̄(i)
t
)−)]

(82)

w4
t = R(ϑt )�Bun (ϑt ) uun,t − �Bun,R(ϑt )

+u+
un,t

+ �Bun,R(ϑt )
+
u−
un,t + �Bun,R(ϑt )

−ū+
un,t

− �Bun,R(ϑt )
−
ū−
un,t (83)

w̄2
t =

nx∑
i=1

[
�A(i)

R (ϑt )
+(
x̄(i)
t
)+ − �A(i)

R (ϑt )
+(
x̄(i)
t
)−

− �A(i)
R (ϑt )

−(
x(i)
t
)+ + �A(i)

R (ϑt )
−(
x(i)
t
)−

−�A(i)
R (ϑt )x(i)

t
]+

ny∑
i=1

1 − sign
(
ε̄

(i)
t
)

2

× [
�A(i)

R (ϑt )
+((

x̃(i)
t
)+ − (

x̄(i)
t
)+)

− �A(i)
R (ϑt )

+((
x̃(i)
t
)− − (

x̄(i)
t
)−)]

+
ny∑
i=1

1 − sign
(
ε

(i)
t
)

2
[− �A(i)

R (ϑt )
−((

x̃(i)
t
)+

− (
x(i)
t
)+)+ �A(i)

R (ϑt )
−((

x̃(i)
t
)− − (

x(i)
t
)−)]

(84)

w̄4
t = �Bun,R(ϑt )

+
ū+
un,t − �Bun,R(ϑt )

+ū−
un,t

− �Bun,R(ϑt )
−
u+
un,t + �Bun,R(ϑt )

−u−
un,t

−R(ϑt )�Bun (ϑt ) uun,t (85)

As it has already been discussed, the terms wi
t , wi

t , i =
1, 3 are non-negative due to Assumption 1 and (20). Let
us show that w2

t ≥ 0 and w̄2
t ≥ 0. To do so, let us notice

that the terms obtained from (82) and (84) for i > ny (i.e.
i ∈ S3) equal the corresponding terms in (49) and (52),
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which are non-negative due to Lemma 1 in Efimov et al.
(2013) and Assumption 1, as demonstrated by induction
in the proof of Theorem 3.1. On the other hand, when
i � ny, if ε(i)

t ≥ 0 and ε̄
(i)
t ≥ 0, it is straightforward to see

that the i-th terms in (82)-(84) equal the i-th terms in (49)
and (52), such that non-negativity is assured as long as
x(i)
t ≤ x(i)

t ≤ x̄(i)
t . This is necessarily true, since from (2),

it follows that:

yt −Cxt = C
(
xt − xt

)
(86)

Cx̄t − yt = C (x̄t − xt ) (87)

which are systems of linear equations. Solutions to (86)–
(87) exist, since C is full row rank, and are given by:

xt − xt = C† (yt −Cxt
)+ [

I −C†C
]
η (88)

x̄t − xt = C† (Cx̄t − yt
)+ [

I −C†C
]
η (89)

for arbitrary vector η. However, due to the structure of C
in (9), the arbitrarity of the solutions (88)–(89) due to η

would affect only the last nx − ny elements of xt − xt and
x̄t − xt , such that unicity of the solutions would hold for
the first ny elements of xt − xt and x̄t − xt . Then, for the
sake of simplicity, as long as only the first ny elements of
xt − xt and x̄t − xt are considered, the following solution
can be considered for further reasoning:

xt − xt = C† (yt −Cxt
) = εt (90)

x̄t − xt = C† (Cx̄t − yt
) = ε̄t (91)

Hence, x(i)
t − x(i)

t ≥ ε
(i)
t ≥ 0 and x̄(i)

t − x(i)
t ≥ ε̄

(i)
t ≥ 0,

which assures non-negativity of the i-th terms in (82)–
(84) for ε

(i)
t ≥ 0 and ε̄

(i)
t ≥ 0.

Let us consider the case when ε
(i)
t < 0 (the case when

ε̄
(i)
t < 0 follows a similar reasoning, thus it is omitted), in
which the i-th terms in (82) and (84) become the follow-
ing:

�A(i)
R (ϑt )x(i)

t − �A(i)
R (ϑt )

+ (
x̃(i)
t

)+

+ �A(i)
R (ϑt )

+ (
x̃(i)
t

)−
+ �A(i)

R (ϑt )
− (

x̄(i)
t

)+

− �A(i)
R (ϑt )

− (
x̄(i)
t

)−
(92)

�A(i)
R (ϑt )

+ (
x̄(i)
t

)+
− �A(i)

R (ϑt )
+ (

x̄(i)
t

)−

− �A(i)
R (ϑt )

− (
x̃(i)
t

)+
+ �A(i)

R (ϑt )
− (

x̃(i)
t

)−

− �A(i)
R (ϑt )x(i)

t (93)

From Lemma 1 in Efimov et al. (2013), in order to prove
positiveness of (92)–(93), x̃(i)

t ≤ x(i)
t ≤ x̄(i)

t should hold.
It is straightforward that x(i)

t ≤ x̄(i)
t due to ε̄

(i)
t ≥ 0. On

the other hand, following the reasoning already provided
for (86)–(87), it can be shown that x(i)

t = x̃(i)
t , so that

w2
t and w̄2

t are non-negative. Also, the non-negativity of
w4

t , w̄4
t follows directly from Assumption 2, taking into

account Lemma 1 in Efimov et al. (2013). Then, since
F (ϑt ), F(ϑt ) ∈ M

nx×nx , any solution of (80)–(81) with
uun, t = 0 is element-wise non-negative for all t � 0.

Let us show that the variables xt and x̄t stay bounded
�t� 0.Without loss of generality, let us consider the case
where:

{
ε

(i)
t < 0 i ∈ N1

ε
(i)
t ≥ 0 i ∈ S1

{
ε̄

(i)
t < 0 i ∈ N2

ε̄
(i)
t ≥ 0 i ∈ S2

(94)

with N1 ∩ S1 = ∅, N2 ∩ S2 = ∅ and N1 ∪ S1 = N2 ∪
S2 = {1, . . . , ny}. In this case, the equations that describe
the dynamics of xt and x̄t can be written as:

ẋt =
(
F(ϑt ) + �A(S1∪S3)

R (ϑt )
+)

xt

+ fS
(
xt , x̄t

)+ δS,t (xt , ut , uun,t , ct , dt ) (95)

˙̄xt =
(
F(ϑt ) + �A(S2∪S3)

R (ϑt )
+)

xt + fS
(
xt , x̄t

)
+ δS,t (xt , ut , uun,t , ct , dt ) (96)

for some δS,t (·) and δS,t (·), with:

fS(xt , x̄t ) =
(

�A(S1∪S3)
R (ϑt )

+ − �A(S1∪S3)
R (ϑt )

+)
x−
t

− �A(S2∪S3)
R (ϑt )

−
x̄+
t + �A(S2∪S3)

R (ϑt )
−
x̄−
t

(97)

fS(xt , x̄t ) =
(

�A(S2∪S3)
R (ϑt )

+
− �A(S2∪S3)

R (ϑt )
+
)
x̄−
t

− �A(S1∪S3)
R (ϑt )

−
x+
t + �A(S1∪S3)

R (ϑt )
−
x−
t

(98)

Also in this case, similarly to the proof of Theorem 3.1,
fS(xt , x̄t ) and fS(xt , x̄t ) are such that:

∣∣∣ fS(xt , x̄t )∣∣∣ ≤
∥∥∥∥�A(S1∪S3 )

R (ϑt )
+ − �A(S1∪S3 )

R (ϑt )
+∥∥∥∥

2

∣∣xt ∣∣
+
(∥∥∥∥�A(S2∪S3 )

R (ϑt )
−
∥∥∥∥
2

+
∥∥∥∥�A(S2∪S3 )

R (ϑt )
−∥∥∥∥

2

)
|x̄t | (99)
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∣∣∣ fS(xt , x̄t )∣∣∣ ≤
∥∥∥∥�A(S2∪S3 )

R (ϑt )
+

− �A(S2∪S3 )
R (ϑt )

+
∥∥∥∥
2
|x̄t |

+
(∥∥∥∥�A(S1∪S3 )

R (ϑt )
−∥∥∥∥

2

+
∥∥∥∥�A(S1∪S3 )

R (ϑt )
−
∥∥∥∥
2

) ∣∣xt ∣∣ (100)

and the inputs δS,t and δS,t are bounded because of
Assumptions 1–2, and the fact that x ∈ Lnx∞, u ∈ Lnu∞ and
c ∈ Lnx∞. Hence, it can be shown through a Lyapunov
function Vt = ζ TPζ t that if (74) holds, then xt , x̄t ∈ Lnx∞
(this part of the proof follows the last part of the proof of
Theorem 3.1, thus it is omitted). Since the indices con-
tained in the sets S1 and S2 are not known a priori, it
follows that (74) should hold ∀S1,S2 ∈ P({1, . . . , ny})
in order to guarantee the boundedness of xt and x̄t , thus
completing the proof. �

At this point, using Lemma 4.1, the following theorem
provides the conditions which should be met in order to
solve Problem 2.
Theorem 4.1: Let Assumptions 1–3 be satisfied, x ∈ Lnx∞,
u ∈ Lnu∞, c ∈ Lnx∞, the invertible matrix function R(ϑt ) ∈
R

nx×nx be partitioned as in (16) and such that (17)–(18)
hold, the matrix H ∈ R

nx×nuun be such that (26) holds,
and the interval UIO be given by (31), (33) and (69)–
(72). Then, if there exist matrix functions �(ϑt ), �(ϑt ) ∈
D

nuun×nuun and H∗(ϑt ),H
∗
(ϑt ) ∈ R

nx×nx such that (35)
holds with:

F(ϑt ) = R(ϑt )
−1[H�(ϑt )Bun(ϑt )

†

+H∗(ϑt )
(
I − Bun(ϑt )Bun(ϑt )

†) ] ∈ M
nx×nx

(101)

F(ϑt ) = R(ϑt )
−1[H�(ϑt )Bun(ϑt )

†

+H∗
(ϑt )

(
I − Bun(ϑt )Bun(ϑt )

†) ] ∈ M
nx×nx

(102)

then the relations (27)–(28) are satisfied provided that (20)
holds and the matrix functions T (ϑt ), S (ϑt ) , S (ϑt ) ∈
R

nx×ny are chosen as (36)–(42). Moreover, if (21) holds,
then also (19) is satisfied.

In addition, if there exist P ∈ S
2nx×2nx , P�0, Q ∈

S
2nx×2nx , Q�0 and constants ε1, ε2, γ > 0 such that

(74), with η(ϑt ,S1,S2), ηi(ϑt ,S1,S2), i = 1, 2, S3 and
G(ϑt ,S1,S2) defined as in (75)–(79), is verified ∀S1,S2 ∈
P({1, . . . , ny}), then xt , xt ∈ Lnx∞.

Proof: As shown previously, by using the unknown
input interval observer (31), (33) and (69)–(72), the
dynamics of the interval estimation errors et , ēt follow

(80)–(81), where wi
t , w̄i

t , i = 1, 2, 3, 4, are given by (48),
(50)–(51), (53) and (82)–(85). Due to Assumption 3, the
non-negativity of the termsw2

t , w̄2
t given by (82) and (84)

will not be affected by the effect that the unknown inputs
uun have on the non-measured states (indices i ∈ S3).
Then, looking at (26), it is straightforward that for guar-
anteeing (19) and (27)–(28), in addition to the conditions
of Lemma 4.1, the columns of H should correspond to
eigenvectors of the matrices F(ϑt ) and F(ϑt ), i.e.:

F(ϑt )H = H�(ϑt ) (103)

F(ϑt )H = H�(ϑt ) (104)

where �(ϑt ), �(ϑt ) ∈ R
nuun×nuun contain some of the

eigenvalues of F(ϑt ), F(ϑt ) (the ones that correspond to
the eigenvectors that are columns of H).

Taking into account (26), it is easy to see that (103)–
(104) are equivalent to:

F(ϑt )R(ϑt )Bun(ϑt ) = H�(ϑt ) (105)

F(ϑt )R(ϑt )Bun(ϑt ) = H�(ϑt ) (106)

Since Bun(ϑ t) is full column rank, solutions to the
matrix equations (105)–(106) exist. These solutions
can be expressed as (101)–(102), which completes the
proof. �

The infinite number of conditions given by Theorem
4.1 can be brought to a finite number by gridding the
varying parameter space � using N points ϑ i, i = 1,… ,
N, as already suggested in Section 3.

4.2 Design conditions

Also in this case, it is possible to derive conditions for per-
forming the design, as specified by the following corol-
lary.

Corollary 4.1: Given the matrix functions
�(ϑt ), �(ϑt ) ∈ D

nuun×nuun , let Assumptions 1–3 be sat-
isfied, x ∈ Lnx∞, u ∈ Lnu∞, c ∈ Lnx∞, the invertible matrix
function R(ϑ t) be partitioned as in (16) and such that
(17)-(18) hold, and the matrix H ∈ R

nx×nuun be such that
(26) holds. Also, let us assume that there exist an element-
wise non-negative block-diagonal matrix P as in (61), with
P, P ∈ S

nx×nx , P, P � 0, a matrix function:

WH (ϑt ) =
(
WH (ϑt ) 0

0 WH (ϑt )

)
(107)
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with WH (ϑt ),WH (ϑt ) ∈ R
nx×nx , a matrix Q ∈ S

2nx×2nx ,
Q�0, a sufficiently large matrix function  ∈ D

2nx×2nx+
and constants ε1, ε2, γ > 0 such that:

P

⎛
⎜⎜⎝
AR12(ϑt ) 0
AR22(ϑt ) 0

0 AR12(ϑt )

0 AR22(ϑt )

⎞
⎟⎟⎠ = P

(
F∗(ϑt ) 0

0 F∗
(ϑt )

)

+WH (ϑt )

⎛
⎜⎜⎝

0 0
Inx−ny 0
0 0
0 Inx−ny

⎞
⎟⎟⎠ (108)

and ∀S1,S2 ∈ P({1, . . . , ny}):

(
He {P�(ϑt ,S1,S2) +WH (ϑt )ϒ(ϑt )} + (ε1 + ε2) P + Q + γ η(ϑt ,S1,S2)

2I2nx 0
0 ε−1

1 P − γ I2nx

)
� 0 (109)

P

(
�(ϑt ,S2) − �A(S2∪S3)

R (ϑt )
+

0

0 �(ϑt ,S1) − �A(S1∪S3)
R (ϑt )

+

)
+WH (ϑt )ϒ(ϑt ) + P(ϑt ) ≥ 0 (110)

where Inx−ny is the identity matrix of order nx
− ny, F∗(ϑt ), F

∗
(ϑt ) ∈ R

nx×(nx−ny ) denote the
right sub-matrices of R(ϑt )

−1H�(ϑt )Bun(ϑt )
† and

R(ϑt )
−1H�(ϑt )Bun(ϑt )

†, respectively, η(ϑt ,S1,S2) is
defined as in (75) and:

�(ϑt ,S1,S2) =
(

�(ϑt ,S2) 0
0 �(ϑt ,S1)

)
(111)

ϒ(ϑt ) =
(
I − Bun(ϑt )Bun(ϑt )

† 0
0 I − Bun(ϑt )Bun(ϑt )

†

)
(112)

� (ϑt ,S2) = R(ϑ )−1H�(ϑt )Bun(ϑt )
†+�A(S2∪S3)

R (ϑt )
+

(113)

� (ϑt ,S1) = R(ϑt )
−1H�(ϑt )Bun(ϑt )

† + �A(S1∪S3 )
R (ϑt )

+

(114)

Then, the interval UIO (31), (33) and (69)–(72), with
F (ϑt ) and F(ϑt ) calculated as in (101)–(102), with:

H∗(ϑt ) = R(ϑt )P−1WH (ϑt ) (115)

H∗
(ϑt ) = R(ϑt )P

−1WH (ϑt ) (116)

and T (ϑt ), S (ϑt ) , S (ϑt ) chosen as (36)–(42) is such that
the relations (27)–(28) are satisfied provided that (20)
holds. Moreover, if (21) holds, then also (19) is satisfied,
with xt , xt ∈ Lnx∞.

Proof: (109) can be obtained from (74) through the
change of variables:

WH (ϑt ) =
(
PR(ϑt )

−1H∗(ϑt ) 0
0 PR(ϑt )

−1H∗
(ϑt )

)
(117)

which explains whyH∗(ϑt ) andH∗
(ϑt ) are calculated as

in (115)–(116). On the other hand, (108) and (110) cor-
responds to the verification of (35) and the Metzler prop-
erty, respectively. �

As already discussed previously, by gridding the vary-
ing parameter space � using N points ϑ i, i = 1,… , N,
(109) and (110) can be reduced to a finite set of LMIs, by
requiring that they hold �ϑ i, i = 1,… , N.

Remark 4.1: The proposed LPV interval UIO follows the
passive approach to robust fault diagnosis (Chen & Pat-
ton, 1999), which ensures that as long as the assump-
tions about bounds on uncertainties, disturbances and
noise are satisfied, if no unknown inputs are acting on
the system then the state will always be contained within
the computed bounds (absence of false alarms). On the
other hand, if some unknown inputs are acting on the sys-
tem, only the corresponding components of the unknown
input isolation signalsmight become negative (absence of
wrong diagnosis). Anyway, as suggested byDing (2013), it
is possible to enhance the robustness against disturbances
and the sensitiveness to faults by considering a multiob-
jective optimisation. Commonly employed performance
indices are the H∞ norm and the H− index, which are
minimised andmaximised, respectively (Chadli, Abdo, &
Ding, 2012; Henry, Cieslak, Zolghadri, & Efimov, 2015).
However, considering a multiobjective H∞/H− optimi-
sation for the design of the LPV interval UIO goes beyond
the scope of this paper, and will be addressed by future
work.

4.3 Performance assessment

In this section, a metric based on the idea of stochastic
robustness (Marrison & Stengel, 1997; Witczak & Pretki,
2007) is proposed in order to assess the performance of
the LPV interval UIO. This metric is given by the prob-
ability that the LPV interval UIO will exhibit an unac-
ceptable behaviour. More specifically, let us denote the
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LPV interval UIO as O, while the set of possible sce-
narios is denoted by S(μ), where μ ∈ M denotes pos-
sible variations due to different realisation of the model
uncertainty, unknown inputs, etc. within a bounded set
M, which can be described by a probability density func-
tion pr(μ). Then, the performance metric can be defined
as the integral of an indicator function over the space of
expected variations:

�(O) =
∫
M

I [S(μ),O] pr(μ)dμ (118)

where I is a binary function which describes if the
behaviour of the fault/icing diagnoser for a given reali-
sation of μ is acceptable (I = 1) or not (I = 0).

Unfortunately, (118) cannot be integrated analytically.
A practical alternative is to use Monte Carlo methods
(Doucet, de Freitas, & Gordon, 2001) with pr(μ) shaping
random values of μ that will be denoted by μi. WhenM
random μi, i = 1,… , M are generated, then an estimate
of � is given by:

�̂(O) = 1
M

M∑
i=1

I [S(μi),O] (119)

where �̂ approaches � in the limit as M → �. How-
ever, it is impossible to setM= �, thus it is interesting to
chooseM in such away that �̂ has standard deviation less
than a desired value σ

�̂
. Since I is binary, �̂ has a bino-

mial distribution, such thatM can be chosen as (Witczak
& Pretki, 2007):

M ≥
⌈
1
4
σ−2

�̂

⌉
(120)

5. Application to a two-joint planar robotic
manipulator

Let us consider a two-joint planar robotic manipulator,
for which the dynamics equation can be expressed as (Yu,
Chen, & Woo, 2002):

ãq̈1 + b̃ cos(q2 − q1)q̈2 − b̃q̇22 sin(q2 − q1) = τ1

(121)

b̃ cos(q2 − q1)q̈1 + c̃q̈2 + b̃q̇21 sin(q2 − q1) = τ2

(122)

where q1 and q2 represent the positions of the first and the
second joint, respectively, τ 1 and τ 2 are the joint torques,
and ã, b̃, c̃ are coefficients which depend on dynamic and
kinematic parameters. It is assumed that ã = a + �a,

b̃ = b+ �b, c̃ = c + �c, where a, b, c are known (nom-
inal coefficient values) and �a, �b, �c represent the
uncertainty, which take unknown values in known inter-
vals [�a, �a], [�b, �b] and [�c, �c], respectively. Simi-
larly, τ1 = τ ∗

1 + �τ1 and τ2 = τ ∗
2 + �τ2, where τ ∗

1 , τ ∗
2 are

known inputs and�τ 1,�τ 2 are unknown (they can rep-
resent faults in the actuators). It is assumed that the full
state is available for measurement, i.e. C = I.

By using the state vector x = [q1, q2, q̇1, q̇2]T , the
input vector u = [τ ∗

1 , τ ∗
2 ]T and the unknown input vec-

tor uun = [�τ 1,�τ 2]T, (121)-(122) can be brought to the
form (5) with ϑ t = xt, ct = 0, dt = 0, and:

Ã (ϑt ) =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 ã33(ϑt ) ã34(ϑt )

0 0 ã43(ϑt ) ã44(ϑt )

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 0
0 0

b̃31 (ϑt ) b̃32 (ϑt )

b̃41 (ϑt ) b̃42 (ϑt )

⎞
⎟⎟⎠ B̃ (ϑt ) = B̃un (ϑt )

where the elements of the state and input matrices are
given by:

ã33(ϑt ) = b̃2 sin(x2 − x1) cos(x2 − x1)x3
ãc̃ − b̃2 cos2(x2 − x1)

ã34(ϑt ) = b̃c̃ sin(x2 − x1)x4
ãc̃ − b̃2 cos2(x2 − x1)

ã43(ϑt ) = − ãb̃ sin(x2 − x1)x3
ãc̃ − b̃2 cos2(x2 − x1)

ã44(ϑt ) = − b̃2 sin(x2 − x1) cos(x2 − x1)x4
ãc̃ − b̃2 cos2(x2 − x1)

b̃31(ϑt ) = c̃

ãc̃ − b̃2 cos2(x2 − x1)

b̃32(ϑt ) = b̃41(ϑt ) = − b̃ cos(x2 − x1)

ãc̃ − b̃2 cos2(x2 − x1)

b̃42(ϑt ) = ã

ãc̃ − b̃2 cos2(x2 − x1)

Then, as explained in Section 2, by neglecting the
uncertainty, (4) is obtained with:

A (ϑt ) =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 a33(ϑt ) a34(ϑt )

0 0 a43(ϑt ) a44(ϑt )

⎞
⎟⎟⎠
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=

⎛
⎜⎜⎝

0 0
0 0

b31 (ϑt ) b32 (ϑt )

b41 (ϑt ) b42 (ϑt )

⎞
⎟⎟⎠ B (ϑt ) = Bun (ϑt )

where the elements of A(ϑ t), B(ϑ t), Bun(ϑ t) can
be obtained from the corresponding elements of
Ã(ϑt ), B̃(ϑt ), B̃un(ϑt ) by replacing ã, b̃, c̃ with a, b,
c, respectively. Then, �A(ϑ t), �B(ϑ t), �Bun(ϑ t) can be
obtained as in (6)–(8):

�A (ϑt ) =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 �a33(ϑt ) �a34(ϑt )

0 0 �a43(ϑt ) �a44(ϑt )

⎞
⎟⎟⎠

= �Bun (ϑt ) =

⎛
⎜⎜⎝

0 0
0 0

�b31 (ϑt ) �b32 (ϑt )

�b41 (ϑt ) �b42 (ϑt )

⎞
⎟⎟⎠ �B (ϑt )

For the sake of brevity, the expressions of the elements
of �A(ϑ t), �B(ϑ t), �Bun(ϑ t) are omitted, except for the
illustrative example of �a33(ϑ t), which is given by:

�a33(ϑt ) = (b+ �b)2 sin(x2 − x1) cos(x2 − x1)x3
(a + �a)(c + �c) − (b+ �b)2 cos2(x2 − x1)

− b2 sin(x2 − x1) cos(x2 − x1)x3
ac − b2 cos(x2 − x1)

The following step for the application of the proposed
strategy is to find the lower and upper bounds such that
(11)–(12) and (23) hold. These bounds can be found ele-
mentwise, taking into account the knowledge about the
uncertainty intervals. For example, the element �a33(ϑ t)
can be bounded by:

�a33(ϑt ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b+�b)2 cos(x2−x1) sin(x2−x1)x3
(a+�a)(c+�c)−(b+�b)2 cos2(x2−x1)

− a33(ϑt )

i f cos(x2 − x1) sin(x2 − x1)x3 ≥ 0
(b+�b)2 cos(x2−x1) sin(x2−x1)x3

(a+�a)(c+�c)−(b+�b)2 cos2(x2−x1)
− a33(ϑt )

i f cos(x2 − x1) sin(x2 − x1)x3 < 0

�a33(ϑt ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b+�b)2 cos(x2−x1) sin(x2−x1)x3
(a+�a)(c+�c)−(b+�b)2 cos2(x2−x1)

− a33(ϑt )

i f cos(x2 − x1) sin(x2 − x1)x3 ≥ 0
(b+�b)2 cos(x2−x1) sin(x2−x1)x3

(a+�a)(c+�c)−(b+�b)2 cos2(x2−x1)
− a33(ϑt )

i f cos(x2 − x1) sin(x2 − x1)x3 < 0

By choosing:

R(ϑt ) =

⎛
⎜⎜⎝
0 0 a b cos(x2 − x1)
0 0 b cos(x2 − x1) c
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

the matrix H calculated as in (26) is:

H =

⎛
⎜⎜⎝
1 0
0 1
0 0
0 0

⎞
⎟⎟⎠

which means that if the first component of either εt or εt

becomes negative, u(1)
un,t �= 0, while if the second compo-

nent becomes negative, then u(2)
un,t �= 0.

It is easy to check that the choice of R(ϑ t) leads to:

�AR(ϑt ) =

⎛
⎜⎜⎝
0 0 a�a33(ϑt ) + b cos(x2 − x1)�a43(ϑt ) a�a34(ϑt ) + b cos(x2 − x1)�a44(ϑt )

0 0 b cos(x2 − x1)�a33(ϑt ) + c�a43(ϑt ) b cos(x2 − x1)�a34(ϑt ) + c�a44(ϑt )

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

�BR(ϑt ) = �Bun,R(ϑt ) =

⎛
⎜⎜⎝
a�b31(ϑt ) + b cos(x2 − x1)�b41(ϑt ) a�b32(ϑt ) + b cos(x2 − x1)�b42(ϑt )

b cos(x2 − x1)�b31(ϑt ) + c�b41(ϑt ) b cos(x2 − x1)�b32(ϑt ) + c�b42(ϑt )

0 0
0 0

⎞
⎟⎟⎠

Then, the bounds in (14)–(15) and (24) can be easily cal-
culated. For example:

�aR13(ϑt ) =

⎧⎪⎪⎨
⎪⎪⎩
a�a33(ϑt ) + b cos(x2 − x1)�a43(ϑt )

i f cos(x2 − x1) ≥ 0
a�a33(ϑt ) + b cos(x2 − x1)�a43(ϑt )

i f cos(x2 − x1) < 0

Through the choices:

�(ϑt ) = �(ϑt ) = � = −λI

H∗(ϑt ) = H∗
(ϑt ) = H∗ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−λ 0 0 0
0 −λ 0 0

⎞
⎟⎟⎠

the matrices calculated using (101)–(102) are F(ϑt ) =
F(ϑt ) = −λI. Notice that, according to (46)–(47), the
matrices F(ϑt ), F(ϑt ), i.e. the choice of λ, will determine
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the dynamical behaviour of the interval estimation errors
et , et . By using (36)–(42), the matrix functions T(ϑ t),
S(ϑt ) and S(ϑt ) can be calculated. For example:

T (ϑt ) =

⎛
⎜⎜⎝

1 0 −a −b cos(x2 − x1)
0 1 −b cos(x2 − x1) −c

−1 0 1 0
0 −1 0 1

⎞
⎟⎟⎠

which leads to:

Ṫ (ϑt ) =

⎛
⎜⎜⎝
0 0 0 b(x4 − x3) sin(x2 − x1)
0 0 b(x4 − x3) sin(x2 − x1) 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Then, according to the first part of Theorem4.1, (31), (33)
and (69)–(72) is an LPV interval UIO for the considered
system.

Let us consider the following values: a = 5.75 kg · m2,
b = 1.5 kg · m2, c = 1.75 kg · m2, �a = −�a = 0.2 kg ·
m2, �b = −�b = 0.1 kg · m2, �c = −�c = 0.1 kg · m2,
ã = 5.6 kg · m2, b̃ = 1.4 kg · m2, c̃ = 1.7 kg · m2, λ

= 1 (notice that for any possible value of ã, b̃, c̃,
ãc̃ − b̃2 cos2(x2 − x1) > 0, such that the matrix func-
tions Ã(ϑt ), B̃(ϑt ) and B̃un(ϑt ) are well defined).
By gridding � = [−π , π] × [−π , π] × [−1, 1]
× [−1, 1] into 10000 points, (74) can be assessed,
thus confirming that xt and x̄t will stay bounded.
For simulation purposes, let us consider: uun,t =
[−5, −5]T , ūun,t = [5, 5]T , x0 = [π/12, −π/12, 0, 0]T ,
ξ
0
= [−π/6, −π/6, −π/12, −π/12]T , ξ 0 =

[π/6, π/6, π/12, π/12]T . The control input ut is pro-
vided by the LPV controller in Yu et al. (2002). Four
different scenarios are considered:

Scenario 1: uun, t = [0, 0]T

Scenario 2: uun,t =
{
[0, 0]T t ≤ 20 s
[5, 0]T else

Scenario 3: uun,t =
{
[0, 0]T t ≤ 20 s
[0, 5]T else

Scenario 4: uun,t =
{
[0, 0]T t ≤ 20 s
[5, 5]T else

Figures 1–4 show the responses of the unknown input
isolation signals εt and ε̄t in the four considered scenar-
ios. As expected, in Scenario 1, all the components of
εt and ε̄t are positive, since no unknown input is act-
ing on the system. On the other hand, in Scenario 2,
ε

(1)
t becomes negative at time t = 21.16 s, which allows
detecting and isolating correctly the presence of the first
unknown input. Similarly, in Scenario 3, ε̄

(2)
t becomes

negative at time t = 20.02 s, which means that the sec-
ond unknown input is acting on the system. Finally, the
change of sign of both ε

(1)
t and ε̄

(2)
t in Scenario 4 (see
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Figure 4) confirms that both the unknown inputs are act-
ing on the system at the same time, providing further con-
firmation of the validity of the developed theory.

Finally, in order to assess the performance of the pro-
posed method, the approach described in Section 4.3
has been applied, by performing Monte Carlo simulation
with different values of the uncertainty and the unknown
inputs. To this end, metric (118) has been calculated
by using an indicator function I that takes into account
whether a given simulation has been successful or not.
For example, in scenario 1, the simulation is considered
to be successful if neither ε

(i)
t nor ε

(i)
t , i = 1, 2, becomes

negative. On the other hand, in scenario 2, the success
is characterised by ε

(1)
i or ε

(1)
t becoming negative while

both ε
(2)
i and ε

(2)
i remaining non-negative. For each con-

sidered scenario (Scenarios 1–4, depending on which
unknown inputs are affecting the system), uncertainty
level (expressed as a percentage of the nominal param-
eters’ values) and unknown input magnitudes, M = 100
Monte Carlo simulations have been performed which,
according to (120), corresponds to ensuring a standard
deviation σ

�̂
= 0.05.

The results of the performance assessment are sum-
marised in Figures 5–8. Notably, in Scenario 1 (Figure 5),
a performance metric �̂(O) = 1 is obtained in all cases,
since the proposed technique ensures the absence of false
alarms. In all the other scenarios, it is evident that the
higher is the uncertainty, the bigger is the value of the
minimum detectable unknown input.

6. Conclusions

This paper has introduced the use of LPV inter-
val observers for the state estimation in uncertain
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continuous-time LPV systems. The conditions for anal-
ysis and design of these observers are based on LMIs,
which can be solved efficiently using available solvers.
In particular, two properties are required by the anal-
ysis/design: (1) interval estimation of the state, i.e. as
long as some assumptions about uncertainties and dis-
turbances are verified, the state will always be contained
within the bounds calculated by the interval observer;
and (2) boundedness of the estimation, which is akin to
the asymptotic stability of classical state observers, and is
verified by finding an appropriate Lyapunov function.

Furthermore, it has been shown that a slight modi-
fication of the LPV interval observer allows decoupling
unknown inputs acting on the system. In this way, an LPV
interval UIO is obtained. This UIO is useful for the task
of isolating faults and other undesired effects, because dif-
ferent output directions of the residuals can be assigned
to these effects. Due to the property of interval estimation
guaranteed by the observer, the absence of false alarms
and wrong diagnosis will be assured.

The application of the proposed approach to a two-
joint planar robotic manipulator has demonstrated its
appeal, giving more insight into this method and con-
firming the results provided by the theory.

As previously remarked, future research will aim at
considering a multiobjective H∞/H− optimisation for
the design of the LPV interval UIO with the aim of
enhancing the robustness against disturbances and the
sensitiveness to faults. Further lines of research include:
(1) decreasing the conservativeness of analysis/design
using other types of Lyapunov functions, e.g. parameter-
dependent ones; (2) considering the case of noisy mea-
surements and inexactly measured scheduling parame-
ters; and (3) integrating the proposed FDD approachwith
a fault tolerant control strategy.

Note

1. Notice that the existence of matrix functions T(ϑ t), S(ϑt ),
S(ϑt ) satisfying (36)–(42) is guaranteed by the fact that
(16)–(18) and (35) hold.
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