
Anticipative kinodynamic motion planner for computing the best path and velocity
trajectory in autonomous driving
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Abstract

This paper presents an approach, using an anticipative kinodynamic motion planner, for obtaining the best trajectory and velocity
profile for autonomous driving in dynamic complex environments, such as driving in urban scenarios. The planner discretizes the
road search space and looks for the best vehicle path and velocity profile at each control period of time, assuming that the static and
dynamic objects have been detected. The main contributions of the work are a fast method for obtaining the G

2-splines for path
generation, and a method to compute and select the best velocity profile at each candidate path that fulfills the vehicle kinodynamic
constraints, taking into account the passenger comfort. The method has been developed and tested in MATLAB through a set of
simulations in di↵erent representative scenarios, involving fixed obstacles and moving vehicles. The outcome of the simulations
shows that the anticipative kinodynamic planner performs correctly in diverse dynamic scenarios, maintaining smooth accelerations
for passenger comfort.
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1. Introduction

Every year 1,25 million people die in tra�c accidents world-
wide, according to the World Health Organization reports. Tak-
ing as an example Europe, road tra�c injuries are the leading
cause of death among young people. In addition, almost all of
the accidents are attributed to driver error, legally intoxicated
drivers or distractions. Autonomous vehicles have the potential
to dramatically reduce the contribution of negligence and hu-
man error as the causes of tra�c accidents. Furthermore, they
can provide personal mobility to people who are unable to drive
because of a disability.

Nevertheless, to achieve this objectives autonomous vehicles
must reach a human-acceptable driving performance. This per-
formance level is specially related on developing and improv-
ing methods and algorithms that meet the requirements, being
crucial motion planning.

We explain in section 3 of this article the motion planner
framework that is used; in section 4, the G

2-splines method for
path generation; in section 5, the velocity profile generation al-
gorithm and in section 6 the cost structure that is used to select
the best path and velocity profile. Finally in section 7 we detail
some representative simulations and in section 8, the conclu-
sions. The present article is an extension of the article [1].
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2. Related work

Motion planning for autonomous vehicles requires rapidity
(fast decision making), coherency (decisions well aligned with
a long term goal), providentness (need to have some temporal
horizon to predict) and predictability (follow driving rules and
a predefined behaviour) [2]. In order to fulfill those require-
ments, nowadays exact algorithms with practical computational
complexity are unavailable. The most popular methods, state
lattices planners, try to discretize somehow the working space
(depending on how it is modelled) and search for the best solu-
tion [3] [4]. As an example, that kind of framework was chosen
by the winners of the DARPA challenges, Stanley in 2005 and
BOSS in 2007 [5] [6]. Other planning methods, such as pre-
dictive constraint-based planning and spline-based have been
proposed [7].

In order to be able to anticipate moving obstacles such as
other vehicles, motion planners need a reliable detection of the
obstacles and the future behaviour or movement of these vehi-
cles must be imparted or inferred. In general, this prediction
problem is extremely di�cult. However, when these dynamic
obstacles are vehicles operating in urban environments, it can
be much easier to infer their likely behaviour through exploiting
the structure inherent in such environments: vehicles travelling
on roads typically follow common rules of the road [8] [9].

As explained in [4], planners take into account moving ob-
stacles and tra�c using di↵erent approaches, from Markov De-
cision Processes, state machines, cost structures, probabilistic
models, or Game Theory as an examples.
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Motion planners need to generate candidate geometric paths
that will be followed by a low level control system. Paths for
autonomous driving need to fulfill kinematic and dynamic con-
straints. In addition, for driving in road scenarios (structured
environments), paths need to follow also the road shape. These
kinodynamic constraints are mandatory to achieve good con-
trol performance and also to assure that paths can be exactly
followed by the vehicle. More specifically, these constraints are
related with the geometric continuity (Gn) of the path. The most
popular used techniques in path generation use arcs, clothoids,
polynomial spirals, splines and Bézier curves. They di↵er in
the number of parameters and degrees of freedom, and con-
sequently, there is a trade-o↵ between the level of complexity
and performance. Usually the required high level of complexity
leads to the presence of non-intuitive geometric waypoints and
multitude of parameters that must be adjusted with an important
computation load. In [10] paths with continuous rate of curva-
ture are generated using curvature polynomials and a numerical
optimization. Method in [11] generates paths that follow the
road shape using Bézier curves. Nevertheless, the generation
algorithm has limitations due to geometrical constraints and its
complexity. Work in [12] proposes a generalization of the used
quintic G

2-splines, leading to the G
3-splines, which are 7th or-

der polynomial splines that add curvature derivative continuity.
On the other hand, generating a velocity profile can lead to

high order polynomials and complexity, implying high compu-
tational cost. In the same way as in the path generation algo-
rithms, the imposed restrictions are related with the function
parameters, and often this parameters are not easy to adjust and
they need some post-optimization. Velocity profile generation
methods often use trapezoidal profiles due to their simplicity
despite its dynamic limitations because they have discontinu-
ities in the acceleration [6] [13]. Better approaches compute
spline-based velocity trajectories over time, fixing the total ma-
neuver time [14] [15] [16] or also over the road length [17].
Nevertheless, these time conditions make the discretization pro-
cess di�cult and lead even to the need of a post-optimization.
Other approaches, such as [13], generate a velocity profile sim-
ulating the output of a controller in a certain time horizon taking
into account the environment.

3. Anticipative kinodynamic motion planner framework

Fig. 1 shows the general scheme of the proposed motion
planner. It is supposed that a route planner computes the desired
route to a certain destination. The motion planner needs the
paths of the track center lanes, which can be computed with the
same path generation algorithm that the planner internally uses,
explained in section 4.1, using information from road network
data and the perception system. From the perception systems,
the planner needs a list with all the detected obstacles, static
and dynamic.

Fig. 2 depicts the internal stages of the motion planner. First
of all, the planner discretizes the environment choosing sev-
eral endpoints, which are state configurations X = [x, y, ✓, ],
in a similar way as in [17]. Variables x and y are the position

Figure 1: Motion planner framework

Figure 2: Motion planner detailed operation

coordinates, ✓ is the heading and  is the curvature, which is re-
lated with the steering wheel angle using the bicycle kinematic
model.

Then candidate paths are generated from the host vehicle
state to the endpoints (section 4). The motion planner uses a
fast approach to generate paths, G

2-splines [18]. This method
only needs a basic geometric state X for the initial and the final
points. It can approximate any kind of path shape preserving
a smooth curvature continuity and minimizing curvature vari-
ability, and this implies kinematic feasibility for a vehicle fol-
lowing it: circular segments, straight lines, clothoids, complete
lane changes, etc.

Once the planner has a set of candidate paths, for each one
of them it computes a set of velocity profiles in order to antic-
ipate dynamic obstacles (section 5). Each velocity profile has
an associated cost and the one with the minimum cost is cho-
sen, for a certain path. Finally, all the candidate paths with its
associated velocity profiles are compared with a cost structure
(section 6) and the minimum cost solution (path and velocity
profile) is chosen to be the executed one. The velocity profiles
are computed using 3rd order splines, taking into account the
dynamic restrictions of the candidate path and the road path
shape, and they are also kinematically validated.

The output of the proposed motion planner is a kinematically
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and dynamically feasible path with an associated velocity pro-
file for the host vehicle, also fulfilling comfort restrictions for
the passengers, such as bounded accelerations and jerk.

4. Path generation

4.1. G
2
-splines path generation

The G
2
-splines are geometric polynomials of 5th order pre-

senting second order geometric continuity (G2), so the curva-
ture  is continuous [18]. In order to build a general path p(u),
understood as a path with arbitrary defined starting endpoint
XA = [xA, yA, ✓A, A], and ending endpoint XB = [xB, yB, ✓B, B],
the equations to define these splines are:

p(u) =
"
x(u)
y(u)

#
:=

"
x0 + x1u + x2u

2 + x3u
3 + x4u

4 + x5u
5

y0 + y1u + y2u
2 + y3u

3 + y4u
4 + y5u

5

#

(1)
where u 2 [0, 1] and:

x0 = xA

x1 = ⌘1 cos ✓A

x2 =
1
2

(⌘3 cos ✓A � ⌘2
1A sin ✓A)

x3 = 10(xB � xA) � (6⌘1 +
3
2
⌘3) cos ✓A � (4⌘2 �

1
2
⌘4) cos ✓B+

+
3
2
⌘2

1A sin ✓A �
1
2
⌘2

2B sin ✓B

x4 = �15(xB � xA) + (8⌘1 +
3
2
⌘3) cos ✓A + (7⌘2 � ⌘4) cos ✓B�

�3
2
⌘2

1A sin ✓A + ⌘2
2B sin ✓B

x5 = 6(xB � xA) � (3⌘1 +
1
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1
2
⌘4) cos ✓B+

+
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2B sin ✓B
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y2 =
1
2

(⌘3 sin ✓A + ⌘2
1A cos ✓A)

y3 = 10(yB � yA) � (6⌘1 +
3
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⌘3) sin ✓A � (4⌘2 �

1
2
⌘4) sin ✓B�

�3
2
⌘2

1A cos ✓A +
1
2
⌘2

2B cos ✓B

y4 = �15(yB � yA) + (8⌘1 +
3
2
⌘3) sin ✓A + (7⌘2 � ⌘4) sin ✓B+

+
3
2
⌘2

1A cos ✓A � ⌘2
2B cos ✓B

y5 = 6(yB � yA) � (3⌘1 +
1
2
⌘3) sin ✓A � (3⌘2 �

1
2
⌘4) sin ✓B�

�1
2
⌘2

1A cos ✓A +
1
2
⌘2

2B cos ✓B

The resulting path depends on the parameter vector ⌘ that
a↵ect its shape, ⌘ = [⌘1, ⌘2, ⌘3, ⌘4].

An important characteristic of the resulting spline is its cur-
vature (u), which can be computed using the following equa-
tion:

(u) =
ẋ(u)ÿ(u) � ẍ(u)ẏ(u)
(ẋ(u)2 + ẏ(u)2)3/2 (2)

4.2. G
2
-splines optimization algorithm

The general case for the optimization of the ⌘ values requires
numerical optimization [18]. However, due to the type of the
required vehicle motion maneuvers, we can apply a faster solu-
tion that does not need this numerical optimization, but a short
iterative process. We have realized that these trajectories have
symmetrical behaviour between the starting and ending points,
as it can be seen in Fig. 3a, showing a common lane change
maneuver. Then we can impose the constraints of Eq. 3 to the
⌘ parameters, so only 2 parameters are needed to be tuned.

⌘1 2 = ⌘1 = ⌘2
⌘3 4 = ⌘3 = �⌘4

(3)

⌘3 4 2 (�1,+1), and it a↵ects to the curvature changes. It
can be concluded that the best value for this parameter is 0 in all
the cases. In Fig. 3, di↵erent ⌘3 4 values are tested performing
a lane change maneuver. As it can be seen, if ⌘3 4 > 0 (green
trajectories) the curvature changes are concentrated in the mid-
dle part of the trajectory, whereas ⌘3 4 < 0 (blue trajectories)
concentrate it on the extreme initial and final points. The red
trajectory represents ⌘3 4 = 0, and it is the smoothest and more
balanced trajectory, presenting the minimum curvature variabil-
ity.

On the other hand, ⌘1 2 2 (0,+1), and it forces ✓ and  to
stay close to the initial and final values. It has been found that
the smoothest trajectory is reached when ⌘1 2 is close to the tra-
jectory length (in meters). For this reason, an iterative method
is performed in order to converge into the best possible trajec-
tory, giving to ⌘1 2 the length of the path. After a few iterations,
usually 3 or 4, all the computed trajectories converge into the
smoothest one (Fig. 4). This process obtains similar results as
the proposed numerical optimization in [18], which minimizes

the curvature variability
 
min
⌘

d

du

!
, but with much less compu-

tation allowing to reach real time performance.
Fig. 5 shows a comparison between 1 and 5 iterations of the

optimization algorithm for generating the center lane paths of
a complex intersection. The paths are generated only with the
geometrical information X of the initial and final points.
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(a) Path X-Y position, in [m]

(b) Path curvature, in [1/m]

Figure 3: ⌘3 4 variations in a lane change maneuver

(a) Path X-Y position, in [m]

(b) Path curvature, in [1/m]

Figure 4: ⌘1 2 iterations approximating a circular path. 1st iteration in blue,
2nd in orange and 3rd in green

Figure 5: Center lane paths generated with the G
2-splines algorithm in a

complex intersection, with di↵erent iterations (1 in orange and 5 in green).
The only used information is the endpoints x, y and ✓, as all the endpoints

curvatures are considered as 0
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5. Velocity profile generation

To generate the velocity profiles, the motion planner uses a
3rd grade polynomial spline in velocity, v(t). This spline gives
a smooth transition between two di↵erent velocities, and it has
a parabolic acceleration profile fixing the maximum (or mini-
mum) acceleration. This smooth and comfortable transition be-
tween velocities is caused by the derivative of the acceleration,
the jerk, which is continuous.

In addition, the possibility of adjusting directly this param-
eter of maximum desired acceleration in the trajectory is very
useful for this application. It is directly related with the time
needed for the trajectory and also with the comfort of the pas-
sengers and its feasibility.

The velocity profile generation algorithm is splitted in 2
di↵erent situations: with and without initial acceleration, ex-
plained below. This allows having always an analytical solution
to reduce the computational cost.

5.1. 3rd order spline without initial acceleration

The proposed 3rd order spline in velocity has 4 variables:
a, b, c, d (Eq. 4). The fifth unknown is the total time of the
trajectory, T . The equation system (Eq. 5) is solved by apply-
ing initial and final conditions, and also using the fact that the
velocity spline is symmetric, so the maximum acceleration is
achieved at time equal to T/2.

x(t) = a

4 t
4 + b

3 t
3 + c

2 t
2 + dt + x0

v(t) = at
3 + bt

2 + ct + d

a(t) = 3at
2 + 2bt + c

(4)

8>>>>>>>>>>><
>>>>>>>>>>>:

v(0) = v0

a(0) = 0
v(T ) = v f

a(T ) = 0
a( T

2 ) = amax

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

b =
4a

2
max

3(v f � v0)

a = � b
2

3amax

c = 0
d = v0

T =
3(v f � v0)

2amax

(5)

5.2. 3rd order spline with arbitrary initial acceleration

This 3rd order spline in velocity is the same as in the case
without initial acceleration (Eq. 4), but the equation system is
slightly di↵erent because the spline is not symmetric and the
maximum acceleration is reached in the time t1. The 6 un-
knowns are the spline variables a, b, c, d, the total time of the

trajectory T and the time t1.

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

v(0) = v0

a(0) = a0

v(T ) = v f

a(T ) = 0
a(t1) = amax

a
0(t1) = 0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 =
2
66664

4a
2
0

a0 � amax

� 3a0

3
77775 T

2+

+

"
6(v f � v0) � 12

(v f � v0)a0

a0 � amax

#
T+

+


9(v f�v0)2

a0�amax

�

b =
1
T

h 3(v f�v0)
T
� 2a0

i

a =
b

2

3(a0 � amax)
c = a0

d = v0

t1 = �
b

3a

(6)

We have to solve a 2nd order equation to find the times T1
and T2 (Eq. 6). Not in all cases there exists a solution, due to
the denominator term (a0 � amax). amax must be always greater
than a0 if accelerating or lower when decelerating.

When only one of the Ti is positive, then this is the unique so-
lution. In the case when both Ti are positive corresponds to two
possible solutions: increasing acceleration up to amax and fin-
ishing faster the maneuver, or decreasing the acceleration from
a0 and finishing the maneuver in longer time. In this case, the
fastest maneuver is always chosen, so T = min(T1,T2).

The cases when the spline has no solution correspond to situ-
ations when the vehicle is accelerating in the opposite direction
of the desired final speed, or contradictory cases (for example,
with a0 > 0 and v f < v0). This issue is solved by adding a
linear acceleration section that starts in a0 and ends in 0 accel-
eration, with a desired slope (jerk) that guarantees comfort and
feasibility.

5.3. Velocity profile generation algorithm

The complete algorithm for generating a velocity profile is
detailed in Algorithm 1, and some examples are shown in Fig.
6. Each colour is a di↵erent launch of the algorithm. The blue
curve is the spline without initial acceleration. Then, it is com-
puted a new velocity profile to 18 m/s (in red) but in a certain
instant, the algorithm is re-launched to the same final speed (in
orange), which corresponds to the spline with arbitrary initial
acceleration. The example on the right shows a contradictory

case.
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Algorithm 1 Generate a velocity profile
if a0 = 0 then

Spline case without a0
else

if v f = v0 then
Add linear acceleration from a0 to 0
Spline case without a0

else
if contradictory case then

Add linear acceleration from a0 to 0
Spline case without a0

else
Spline case with arbitrary a0

end if
end if

end if

(a) Velocity over time [m/s]

(b) Acceleration over time [m/s2]

Figure 6: Di↵erent launches of the velocity profile generation, in di↵erent
colours

5.4. Set of velocity profile candidates

For each candidate path, the motion planner computes a set
of velocity profile candidates, discretizing the final velocities
and also the accelerations, taking into account the kinodynam-
ics of the vehicle. Starting in the current state of the host ve-
hicle, several final velocities are chosen from 0 to the maxi-
mum allowed road/street velocity. Then, for each final velocity,
di↵erent accelerations are also chosen, from the maximum de-
celeration limit to the desired acceleration value. Examples of
these velocities and accelerations can be seen in Fig. 7.

In order to reduce the computation, we impose some con-
straints in the velocity profile using the splines to reject the
non-feasible candidates and restrict the search space. The con-
straints are:

1. The distance to collide with a static obstacle, by using the
distance in length of the track from the host vehicle. If a
collision is detected, the only allowed final velocity is 0.

2. The maximum allowed velocity due to the planned path
curvature.

3. The maximum allowed velocity due to the center lane path
curvature. This restriction assures safety, in order to be
more conservative and check a static property of the track
geometry, because the planned path could be smoothed
when re-launching.

4. The longitudinal dynamics of the vehicle. This restricts
the accelerations to ensure feasibility.

With this approach, we can have the required accelerations,
and then we can reduce the search space and prune the velocity
profile selecting the best ones.

(a) Example with a0 = 0 m/s2

(b) Example with a0 > 0 m/s2. Profiles with a lower final velocity are contradictory cases

Figure 7: Sets of all the generated velocity profiles, with a discretization of 0.5
m/s and di↵erent accelerations
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6. Selection of the best path and velocity profile

The selection of the motion planner output is made in each
iteration by choosing the minimum cost solution according to
the total cost function J, which is a weighted sum of all the cost
terms (Eq. 7).

J = Jstatic + Jdynamic =
X

i

ws,i · cs,i +
X

j

wd, j · cd, j (7)

The motion planner uses two kind of cost terms: static and
dynamic. Static costs are the terms related to path geometry and
static obstacles. They are associated to a candidate path (Table
1). In the other hand, dynamic costs are related to the tempo-
ral dimension and they are associated to a velocity profile and
include the dynamic obstacles (Table 2). The costs are based
on the method proposed in [17], but adapted to fit the proposed
approach.

Cost Formula

cl l/smaneuver

c max() · rmin

ċ max(̇) · rmin

co f f o/omax

cobs,s f · e(�1/�)·d

Table 1: Static costs

Cost Formula

cv 1 � v f ,vp/vmax,desired

ca abs(amax,vp/amax,braking)
cobs,d f · e(�1/�)·d

Table 2: Dynamic costs

All the terms (static and dynamic) with the exception of the
obstacle terms cobs,s and cobs,d, are normalized between 0 and 1.
Each term is detailed below:

• cl : Path length term. It has an impact in the e�ciency. l

is the length of the candidate path. smaneuver is the station

of the maneuver: the length from the host vehicle to the
ending point of the path referred to the road axis.

• c and ċ: Curvature terms. Related to comfort and kine-
matic feasibility.  and ̇ are the curvature and curvature
derivative values respectively of a specific point in the path
candidate and rmin is the minimum turning radius of the
host vehicle.

• co f f : Lateral o↵set term. It has an impact in the behaviour
(it tries to drive centered in the lane). omax is the lateral

distance from the farthest endpoint of all the paths in the
set to the center of the lane (the maximum admissible lat-
eral o↵set) and o is the lateral o↵set of the path candidate
endpoint.

• cv: Velocity term. A↵ects the behaviour (it tries to drive
at the maximum allowed speed). v f ,vp is the ending ve-
locity of the candidate velocity profile. vmax,desired is the
maximum allowed velocity at the current moment.

• ca: Acceleration term. It has an impact in comfort and ef-
ficiency. amax,vp is the maximum acceleration value of the
candidate velocity profile. amax,braking is the acceleration
value (always < 0) of the maximum allowed braking of
the host vehicle.

• cobs,s and cobs,d: Static and dynamic terms. f is a scale
value and � is the decay of the exponential function. d

is the distance from a obstacle (static or dynamic) to the
host vehicle (they have been modelled as circles). If d is
smaller than a threshold, then the cost is penalized with P:

cobs =

8>><
>>:

f · e(�1/�)·d + P, i f d < threshold

f · e(�1/�)·d, otherwise
(8)

The function, without the penalization term, is shown in
Figure 8.
Unlike other approaches that penalize collisions with an
infinite cost, as [17], it is preferred to preserve the value.
Then, in a situation where all the candidate solutions
present high cost (for instance, an unavoidable obstacle),
the planner will give always the minimum cost solution, so
it will be the less dangerous one. In fact, in this ultimate
situations the output is a maximum braking until stopping
inside the lane, which is the safest action that a human
driver could do.

Figure 8: Obstacle cost function cobs, without the penalization term

The chosen velocity profile for each candidate path is the
one with minimum dynamic cost Jdynamic. Then, each candi-
date path forms a maneuver candidate, as it has a velocity pro-
file associated, and the static cost function Jstatic is computed.
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Finally the minimum cost maneuver is the chosen one, which
minimizes the total cost function J (Eq. 7).

7. Simulations

7.1. Simulation environment

The motion planner and the low level vehicle control have
been implemented in MATLAB. The Stanley’s lateral controller
[19] has been used together with a longitudinal controller which
takes into account the dynamics of the vehicle. More con-
cretely, the steering column has been modelled with a first order
system and the used longitudinal model takes into account gear
changes and internal combustion engine torque response. The
control system has been validated and adjusted through simula-
tion using data from a SEAT Cupra car.

The chosen scenarios have been selected because they repre-
sent real-life common situations in urban and road driving, and
they are challenging tests to validate the correct behaviour of
the proposed motion planner.

Lanes are represented with the border lines (in black) and
its center-lines (in blue). The path followed by the host vehi-
cle is shown in green. The host vehicle (in red and purple) is
plotted at a regular interval of time. The simulations are per-
formed in MATLAB using a mid-range computer hardware and
the average computation for each simulation cycle with static
and dynamic obstacles is 250 ms. Taking into account that a
real application code in C++ being executed is around 10 times
faster, this method can run at 25 ms, even without considering
implementation optimizations.

7.2. Static environments

Fig. 9 shows a simulation in a road environment without
any obstacle in the lanes. The maximum allowed velocity is
15 m/s, and the host vehicle starts at 11.11 m/s (40 km/h).
At the beginning, it accelerates to the maximum speed, until
encountering the ”S” turn, which is passed at 7 m/s. Then,
speed is incremented up to 12 m/s because of the left turn, and
in the final straight section the vehicle accelerates again to the
maximum allowed speed.

Fig. 10 shows the same environment, but with several static
obstacles, represented by circles in the lanes. This simulates an
urban scenario, for instance with vehicles parked in double row.
The vehicle avoids the obstacles moving inside the lane but also
changing lanes.

(a) Followed path. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 9: Simulation without any obstacle.

Figure 10: Detail of a static obstacle avoidance maneuver during a ”S” turn.
Dimensions in [m]

8



7.3. Dynamic environments

The simulations present in this section take into account the
influence of the dynamic obstacles in the near future.

7.3.1. Overtaking in one way track and with oncoming tra�c

Next simulations show examples of overtaking. When over-
taking, one consideration to be taken into account is the plan-
ning horizon. Fig. 11a shows a planning example of a whole
overtaking maneuver. In this situation, the planning horizon
is assumed to be long enough to allow the complete maneuver
planning. The planner can anticipate dynamic obstacles up to
the maneuver completion, so if it initiates the overtaking is be-
cause it is safe. If the left lane is an oncoming tra�c lane, this
horizon must be fulfilled in order to guarantee safety.

Now, consider another situation, shown in Fig. 11b. In this
case, due to some reason, the perception system range is smaller
than the needed horizon for overtaking. What should the plan-
ner do? If the other lane has the same way, planning only a
lane change maneuver to the other lane is safe enough, because
the host vehicle only has to be careful with vehicles coming be-
hind. But in the case of oncoming tra�c, the overtaking cannot
be performed. If the obstacle is static, the best solution is to
stop the host vehicle safely in its lane.

(a) Enough prediction horizon to plan a complete overtaking maneuver

(b) Smaller prediction horizon due to restrictions in the perception range

Figure 11: Planning horizon considerations

Fig. 12 shows an overtaking maneuver in a one way track
(both lanes have the same direction). The host vehicle starts at
14 m/s and tries to reach the maximum speed of 15 m/s, but
then it encounters a slower vehicle ahead going at 5 m/s. At
first, the motion planner plans a velocity profile to 6,5 m/s be-
cause the complete maneuver until the desired horizon of 100
m ahead cannot be done. But when the host vehicle gets closer
to the ahead vehicle, the planner finds a feasible overtaking so-
lution.

In the simulation of Fig. 13 the host vehicle is travelling in
a 2-way track. It encounters the lane blocked ahead by some
static obstacles, and there is an oncoming vehicle in the other
lane. The planner slows down smoothly to 1 m/s remaining in
the right lane until the oncoming vehicle (in blue) passes by.
Then it can cross to the left lane and finish the maneuver.

Overtaking in a 2-way track can be done only if the maneu-
ver is predicted to its end, otherwise it is discarded and the host
vehicle slows down and follows the dynamic obstacle (the pre-
ceding vehicle). Fig. 14 shows a simulation where the host
vehicle can take advantage of its initial higher velocity and re-
turn to the right lane before the oncoming tra�c. However, if
the oncoming tra�c prevents the manoeuvre, the host vehicle

will wait behind. This behaviour can be seen in Fig. 15. Di↵er-
ent responses can be obtained adjusting the weights of the cost
terms, and also changing the repulsion function parameters of
Eq. 8.

7.3.2. T-intersection

To enter in a T-intersection is mandatory to anticipate the
oncoming vehicles, which come in both directions. Fig. 16
shows a conservative simulation, where the host vehicle slows
down to 2 m/s and let the tra�c pass before. On the other
hand, Fig. 17 is a more aggressive situation, where the host
vehicle takes advantage of a gap between vehicles and enters to
the intersection at its maximum allowed speed due to the lateral
comfort acceleration, that is 8 m/s.
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(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 12: Overtaking of a slower vehicle in a one way track. Red vehicle is
the host.

(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 13: Overtaking of a static obstacle in a two way track
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(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 14: Overtaking of a slower vehicle in a two way track with oncoming
tra�c. Red vehicle is the host. Aggressive case

(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 15: Overtaking of a slower vehicle in a two way track with oncoming
tra�c. Red vehicle is the host. Conservative case
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(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 16: Incorporation in a T-intersection, in several instants of time.
Conservative case

(a) maneuver at di↵erent instants. Dimensions in [m]

(b) Vehicle velocity over time (in red) and planned velocity profiles (in blue), in [m/s]

Figure 17: Incorporation in a T-intersection, in several instants of time.
Aggressive case
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8. Conclusions

After analyzing the simulations, it is verified that the pro-
posed methods of path and velocity profile generation behaves
correctly and help to overcome successfully all the presented
situations, which correspond to representative cases that occur
in on-road driving.

The proposed approach for the path generation, using the G
2-

splines, performs above expectations and a real-time computa-
tion can be obtained. The paths can be generated only with
basic information of the initial and final endpoints, which con-
tributes to reduce complexity and improves performance, flexi-
bility and the ease of use of the algorithm.

The proposed method for the velocity profile generation be-
haves smoothly and provides a fully analytic solution that can
deal with any arbitrary situation. Moreover, it allows to directly
adjust the desired acceleration instead of the maneuver time and
this helps to the selection and pruning of a candidate set of ve-
locity profiles, taking into account kinematic and dynamic con-
straints.
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