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Robotic systems are evolving towards higher degrees of autonomy. This paper re-

views the cognitive tools available nowadays for the ful�llment of abstract or long-

term goals as well as for learning and modifying their behavior.
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Introduction

Machines are powered artifacts intended at performing a given action. They can be viewed as

more or less sophisticated tools, designed for executing speci�c work. Among all the machines

developed by human mind, robots deserve a special place. The standard de�nition (ISO 8373) of

an industrial robot stresses the following key aspects of its unique nature:

• Automatic control: robots deploy their activity without intervention of a human.

• Multifunctionality: robots are not constrained to perform a single, specialized action, but the

same robot arm can execute as di�erent tasks as manipulation, painting, welding, or inspec-

tion, with a simple (possibly automated) tool change.

• Reprogrammability: the trajectories and tasks developed by the robot can be easily modi�ed

by software, i.e., rewriting and/or executing a di�erent program, without the need of read-

justing the hardware.

• Continuous workspace: the robot can position itself in any point within its reach and follow

arbitrary trajectories.

These features distinguish industrial robots from conventional machines. However, the degree

of autonomy of such robots is heavily restricted by their environment: they are only able to deal

with f incidences within a quite constrained and structured world. They are certainly able to ad-

just their trajectories to the actual position and orientation of arriving workpieces, or to react to

failures like the absence of a piece supposed to be there or to observed defects. They can even

respond to certain non-trivial sensory input like computer vision, e.g. for classi�cation or failure

detection. But to cope with the contingencies of the unstructured world outside controlled environ-

ments, some more steps have to be taken. First, sensory input becomes now an unavoidable must.

The world is continuously changing, and agents like robots need to have an updated picture of

the world’s state in order to be able perform meaningful actions. Basic home robots like vacuum

cleaners rely on very simple bug-like sensor systems based on infrared range measuring and con-

tact detection. This su�ces for the duties they are endowed with. The environment is now not as

structured as in the case of industrial robots, but it has still well-de�ned features: a home vacuum-

cleaner robot is not expected to be deployed on the streets, and a lawn-mover robot will rapidly

be stuck in the savannah (if not attacked by a cheetah!). Moreover, the work they have to perform

is quite simple and speci�c.

More advanced interaction with the surroundings like object manipulation or cooperation with

humans requires a quite more sophisticated perception. Computer vision techniques are to be ap-

plied for image processing, object (or people) recognition, and scene understanding (i.e., annotating

its elements and establishing their –mostly spatial– relationships). In many cases, the robot will

need to learn what it is watching at. Learning in perception is in �rst instance a classi�cation or

categorization issue: when not prede�ned by the human through a set of salient features, classes
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have to be constructed from a number of labelled examples, whose attributes have to be general-

ized so that in a later recognition phase the speci�c object perceived is correctly �t within its cor-

responding class. The classi�ed object is automatically bestowed with the characteristic attributes

of its class. Nowadays, with tools like the Convolutional Neural Networks (CNNs) computer vision

is quite reliable in classi�cation, even with regard to visual hindrances like poor illumination or

partial occlusions. However, arti�cial systems are still far from human performance with respect to

interpreting a scene, specially if a number of commonsense or cultural cues are involved.

Perception alone does not su�ce, the robot must also be able to decide which action to per-

form next and to execute this action. Decision making in Robotics is obviously intended to be

an autonomous process. The scope of the required cognitive load ranges from purely reactive to

highly deliberative systems. These di�erent approaches are brie�y reviewed in Section “Decision

making in Robotics”. They provide the framework within which the cognitive processes that are

needed to grant autonomy to the robotic agent take place. The term cognitive process has to be

interpreted as referring to those algorithmic procedures that mimic higher mental processes in hu-

mans, without pretending the machine to own a mind.

Short-term decisions taken by a robot are not quite di�cult to trace (i.e., to follow the process

or to understand how they have been taken) or even to predict, in general. More involved are

long-term decisions, as they rely on a planning process that may include a high number of plan-

ning operators (PO) that represent the individual actions, and a much higher number of possible

combinations of such POs. These POs may be either provided as a �xed repertoire by the human

designer or programmer, or they can be learned by the robotic agent directly from its perception

channels. This said, it is clear that the two relevant cognition processes involved in decision mak-

ing are learning and planning. Despite learning takes place earlier in the information processing

�ow than planning (we will see that this is not always true), we will examine planning �rst (Sec-

tion “Planning”) in order to get a better idea of what has actually to be learned, and then some

learning paradigms will be overviewed in Section “Learning”. These two sections constitute the

core of this presentation, and besides providing a brief description of the corresponding processes,

we will emphasize to which extent their outcomes are determined by human design or interven-

tion. A summary and some re�ections on the latter are �nally provided in the concluding remarks

of the paper.

Decision making in Robotics

The behavior of robots is managed by the control system, like in any automatic machine. In the

case of robots, this control is heavily software-based. The computer programs that decide in any

moment how the robot will respond to speci�c stimuli and how it will perform its duties have

been designed and encoded by human programmers and users. The di�erent control schemata can

be summarized as in1:

1. Reactive control ("don’t think, react")

2. Deliberative control ("think, then act")

3. Hybrid control ("think and act independently in parallel")

4. Behavior-based control ("think the way you act").

1 Maja Matarić, ‘Learning in behavior-based multi-robot systems: Policies, models, and other agents’ (2001) 2(1) Cognitive

Systems Research 81 〈http://dx.doi.org/10.1016/S1389-0417(01)00017-1〉 .
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Purely reactive controls are also the most predictable ones -up to failures-, as any response to

foreseen inputs has been previously programmed by the human, and unforeseen inputs are sim-

ply ignored. The main advantage of this control architecture is its swift response, its main draw-

back its lack of �exibility. Deliberative systems, on the contrary, thanks to their powerful cognitive

tools -which are the subject of the rest of this contribution-, display a far more elaborated adapt-

ability to changing conditions of the environment. Nonetheless, their response may come too late

for a system which is embedded in the real world with all its threats and contingencies, as such

deliberative processes are highly time- and resource-consuming. This justi�es the hybrid control

architecture, which provides immediate response to urgent issues (as long as they are predictable)

thanks to the reactive component, whereas they are also capable of long-term adaptation to the

world changes (sometimes such systems are also said as being both goal and event driven).

As for behavior-based control, it will not be tackled in this paper, but it deserves some words

before proceeding to the cognitive processes. Behaviors can be thought of as small programs en-

coding input-output responses, operating at di�erent levels of abstraction (without making any

hierarchical structure explicit) and highly interconnected. The famous behavior-based subsump-

tion architecture of Rodney Brooks is the paradigmatic example of this control concept, postulat-

ing that complex behaviors can emerge from this interconnectivity and activity of simple behav-

iors. Predictability goes lost as the complexity of the system grows. The idea of emergent behavior

appears also in swarm robotics, each robotic unit being quite simple but the whole swarm being

highly interconnected. Thanks to this dense communication and feedback, simple rules can make

emerge complex behaviors.

As just said, we will concentrate on the cognitive processes of deliberative systems. Although

they are presented independently from one another, it should be clear that reasoning constitutes

in some sense the theoretical background of the other functions, and planning and learning are

intimately related, as the trajectories or the symbolic actions used by the planner may be the out-

put of the learner. Moreover, planning may be part of the learning process (at symbolic level): the

planner uses the rules as learned so far to determine whether they are enough and correct to al-

low the accomplishment of the task. If not, the necessary modi�cations in the symbolic representa-

tion of actions have to be undertaken (rule re�nement). Thus planning does not only provide the

required instruction sequence for task ful�llment (to be translated into robot commands) but also

plays an active role in the learning process.

Knowledge representation and reasoning

Reasoning occupies the highest level in an intelligent robot’s control architecture. Reasoning oper-

ates on a certain kind of knowledge representation (KR), which in Robotics may belong to one of

three types:

• Logic-based KR. Statements are either true or false, and knowledge about the world’s state is

assumed to be complete.

• Probabilistic formulations. Statements are either true or false, but their particular truth value

may be unknown.

• Fuzzy logic formalism. Instead of true or false, a statement may be true up to some degree.

Stated di�erently: while in conventional logic the truth value belongs to the set {0, 1}, in
fuzzy logic it can be any value within the interval [0, 1].

Next, the main features of these KR and associated reasoning types are presented.
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Logic

Logic, and more speci�cally First Order Predicate Logic (FOPL) is the archetypal KR in Arti�cial In-

telligence, where reasoning is based on the powerful deductive mechanism (some reasoning sys-

tems may use inductive, abductive, or other types of logic inference mechanisms as well). Under

simplifying assumptions, logic formulations and its derivate action planning mechanisms (see

Section “Deterministic action planning”) have been used in Robotics with some success. How-

ever, Robotics intrinsically comes with two hard problems for logic formalism. The �rst one is

that robots are physical agents embedded in a changing world, whose actions are responsible of

some of these changes. In logical terms, they have changed the truth value of some facts about the

world, while others remain unchanged. Determining what changes and what remains may not be a

trivial issue (this is known as the frame problem, see also again Section “Deterministic action plan-

ning”). The second point is that sensor information may con�ict with previous beliefs, i.e. state a

contradictory truth value about a known fact. Mechanisms may be foreseen for providing plausi-

ble explanations and resolve such con�icts, but again, this is not trivial to resolve. Such problems

render a logical formulation of robots acting in the world as undecidable in general. Practical solu-

tions consist in considering holding periods for formulas (the notion of situation), or in sacri�cing

completeness2.

Description logics (DL) have been consolidating their suitability for structuring semantic knowl-

edge about the world. By inheriting some of the features of classical KR formalisms like semantic

networks and frame systems, they not only provide semantic structure and consistency to a par-

ticular domain, but also some form of inference, and thus they can be seen as forming “a certain

family of decidable subsets of FOPL”3. DLs entail two main components:

• the upper ontology or terminological knowledge (TBox), that is, the set of concepts of a par-

ticular domain and the relationships between these concepts, in particular equality and sub-

concept or superclass-subclass relation, the latter enabling property inheritance by creating

a hierarchical taxonomy. Concepts are unary predicates, and concept conjunction, disjunction

and negation may be used as combining operators. Roles are binary predicates that allow to

express a semantic relation between two concepts.

• individual objects or assertional knowledge (ABox), for grounding concepts and roles.

DLs come with some reasoning basics like consistency of the concept de�nition, subsumption

and disjointness of concepts, consistency of the ABox with respect to the TBox, concept and role

instances, all of which are decidable in a DL4. DLs are explained in more detail in a number of

works, see5 for a good introduction. DLs are at the base of web ontology languages, like OWL,

devised at developing the semantic net. As for Robotics, serious e�orts have been made to derive

an ontology that allows sharing and exchanging knowledge between robots about objects, tasks

and environments, like KNOWROB, based on DL, which uses OWL and exploits its hierarchical

structure of classes that allows inheritance6. This has been extended with meta-information about

the data to be exchanged, algorithms that were used for creating data and requirements that are

2 Joachim Hertzberg and Raja Chatila, ‘AI Reasoning Methods for Robotics’ in Springer Handbook of Robotics (2008) 〈http://
dx.doi.org/10.1007/978-3-540-30301-5_10〉 .

3 ibid.

4 ibid.

5 Franz Baader, Ian Horrocks, and Ulrike Sattler, ‘Description Logics’ in Ste�en Staab and Rudi Studer (eds), Handbook on

Ontologies (Springer Berlin Heidelberg 2004) 〈http://dx.doi.org/10.1007/978-3-540-24750-0_1〉 .
6 M Tenorth and M Beetz, ‘KNOWROB knowledge processing for autonomous personal robots’ (October 2009) 〈http : / / dx .
doi.org/10.1109/IROS.2009.5354602〉 .
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needed for interpreting it, aiming at robots-to-robots sharing of knowledge across a robotic World

Wide Web in the ROBOEARTH project7. In a top-ranked international professional association like

the IEEE Robotics and Automation Society, a Working Group on “Ontology for Robotics and Au-

tomation” is active since 2012 and have developed already a standard on this subject8.

Probabilistic formulations

As embedded creatures in the world, robots rely on sensors as the main source of information

about their surroundings. However, too often such information is noisy or incomplete, leading to

lack of information. But almost as frequently, this does not mean an absolute ignorance about a

given world state, but some kind of knowledge about the chances of the di�erent alternatives is

available in general. This can be formalized quantitatively with probabilities associated to each op-

tion, and dealt with using tools like Bayes’ rule. This is an inference mechanism for computing the

probability of certain event, given the priors and dependent relevant probabilities. The practical

implementation of this mechanism, that allows to know the probability of a certain cause being be-

hind the observed e�ect, while avoiding the huge computational cost of a naive use of this mech-

anism, is known as Bayes networks (BNs), and for systems evolving with time, dynamic Bayesian

networks (DBNs).

Fuzzy logic

Fuzzy logic allows to reason about qualitative and approximate statements. It can be seen as a gen-

eralization of propositional logic with continuous truth values along the interval [0, 1], and refor-

mulating logical junctors to operate with such numerical values (negation as the complementary

to 1, disjunction as the maximum, conjunction as the minimum, etc.). Fuzzy logic knowledge bases,

containing sets of if-then rules that relate fuzzy values of some variables to the fuzzy values of

others, can be used for inference by forward chaining. Once the fuzzy value of a given variable

is computed, it can be defuzzy�ed by assigning a scalar value like the central point of the corre-

sponding interval of possible values of this variable (if such a numerical value is necessary for the

application at hand).

Planning

Medium- or long-term goals require some kind of planning. Here the absolute timescale is not so

relevant as the evolution of the world’s state: long-term would refer, with this precision in mind,

a time span in which many changes take place. This is generally associated to the fact that the

robot has to concatenate a sequence of actions to achieve such a goal. Each such action modi�es

the world’s state, either just by changing the robot’s con�guration, or by altering some aspects of

the surroundings.

In Robotics two main types of planning have to be distinguished: motion and task planning.

These two types occupy di�erent levels as for degree of abstraction: task planning occurs at a for-

malistic, symbolic level, whereas motion planning takes place in a geometric mock-up of the real

world. In fact, motion planning could be considered to connect task planning to the real execu-

tion of the action commands, as long as such actions involve the displacement of the robot (or of

7 M Tenorth and others, ‘Representation and Exchange of Knowledge About Actions, Objects, and Environments in the

RoboEarth Framework’ (2013) 10(3) IEEE Transactions on Automation Science and Engineering 643 〈http://dx.doi.org/10.
1109/TASE.2013.2244883〉 .

8 http://standards.ieee.org/develop/wg/ORA.html
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a part of it). Action speci�cations are generally qualitative, whereas motion guidelines are quan-

titative, and despite having to consider additional control issues, their translation into executable

motion commands is rather straightforward.

In the next sections the main traits and variants of the two types of planning are overviewed,

in order to provide a rough idea of how they work and to which extent human intervention condi-

tions the outcome of the planner.

Motion planning

The motion planning problem is formalized as given an initial (or start) and a �nal (or goal) con-

�guration of the robot, and a description of the free-space (or, in a complementary fashion, of the

present obstacles), to determine a collision-free motion from the start to the goal. The notion of

con�guration space (C-space) is quite useful: the dimensions of such space correspond to the de-

grees of freedom of the robot, and therefore in such a space the robot becomes a point, and the

solution path is unidimensional. The counterpart is that the planning space has now as many di-

mensions as the number of degrees of freedom of the robot, and the layout of such a space is not

quite intuitive. C-obstacles are all the con�gurations resulting in a collision of the robot with sur-

rounding objects.

Construction of the planning space

In academic toy examples, a geometrical description of the environment where planning takes

place is already assumed to be provided. Other sources of existing environment descriptions are

architectural plans, city maps, roadmaps, geographical maps, etc. The problem is that such maps

often do not provide the level of granularity or detail required by the robot, and more importantly,

they almost surely do not re�ect the real layout as for the presence of obstacles. Furniture is dis-

played at a �xed position in an architectural plan, but chairs can be displaced and occupy unsus-

pected locations. A country map may not show the fences crossing a path, not to speak from all

the mobile obstacles encountered in urban or rural environments, etc. Therefore, if such informa-

tion is used, it has to be complemented with online observations of the environment by the robot.

Aerial photographs or videos taken by a drone may provide such updated information to ground

robots. Alternatively, mobile robots equipped with online cameras and/or range sensors can con-

struct their own maps, following the techniques generically known as Simultaneous Localization

and Mapping (SLAM). Robust algorithms exist nowadays for solving this task.

C-obstacles are di�cult to construct explicitly, besides very simple cases. The randomized mo-

tion planning algorithms explained below, however, avoid this step and resort to e�cient collision-

detection algorithms only when needed.

Sensor-based motion planning

It could be the case that no geometric description of the environment is available at all. Moreover,

the robot may be equipped with just quite simple onboard contact or range sensors. Even with

such limitations it is possible to derive some strategies that allow the robot to �nd a path leading

to the goal. They are known as bug-algorithms, because such robots really act as simple animals

with limited perception. The robot is assumed to have some notion, at any location, of where the

goal is, and proceeds towards it in a straightforward fashion and surrounding obstacles found on

its way.

Planning 7



Classical motion planning

These methods operate on full descriptions of the C-space, i.e. a geometrical model of the space

is available. They include Potential functions, Roadmap methods, Exact and Approximate

cell decompositions. These methods really work well only for simple low-dimensional settings.

Practical methods, working e�ciently for real robots, rely on probabilistic approaches, and have to

sacri�ce completeness for e�ciency. They are shown next.

Randomized motion planning

This family of methods bases its success on sampling the C-space and computing possible robot-

obstacle collisions only at the sampled con�gurations, as well as at some points of the segments

joining them. These methods are said to be probabilistic complete: if a solution path exists, the al-

gorithm will eventually �nd it (the probability is higher the more samples are used). The two main

families of methods are the Multi-query planners where the constructed roadmap can be used

for di�erent queries (i.e., �nding the path between di�erent start-goal point pairs)., the paradig-

matic approach being the probabilistic roadmap method (PRM), whereas the Single-query plan-

ners consider exclusively a speci�c start-goal pair, constructing on the �y a tree-structure for this

planning query, with the Rapidly-Exploring Random Trees (RRT) as the basic algorithm of this fam-

ily.

Beyond basic motion planning

Particular problems go beyond the basic formulation of motion planning, and speci�c methods

have been devised for each of them.

• Di�erential constraints. Planning with constraints on velocity and acceleration is known

as kynodinamic planning (in particular, planning both a path and velocities along it for a

robot arm is termed trajectory planning), and if such di�erential constraints cannot be inte-

grated into derivative-free constraints -like in vehicles with limited turning radius-, we have

a nonholonomic planning problem.

• Multiple robots. In a scenario composed of multiple robots, collision-free paths have to be

found that allow each one of the robots reach its individual goal. Decoupled approaches, like

prioritized planning or �xed-path coordination, are preferred to costly centralized solutions.

• Moving obstacles. It is assumed that the motion of the obstacles is known in advance. In

such cases, an additional temporal dimension could be added to the con�guration space,

with the constraint that only forward paths along this dimension are allowed. Planning in

such a space is computationally hard. Alternatively, the problem may be decoupled into a

path planning and a motion timing part.

• Manipulation planning. Here transit and transfer modes have to be considered, the �rst

being standard motion planning problems of the robot towards a part, the second being the

robot carrying the part. The achievement of stable grasps has also to be included in the plan-

ning.

• Assembly planning. Planning the ways the di�erent parts of an assembly can be brought

together, respecting the precedence constraints between the parts (some part must be mounted

before others).

Planning 8



• Planning with sensing uncertainty. This type of planning copes with limited knowledge

about the con�guration space. Sensor information is employed to plan in an information

space instead, with information feedback about the current state.

Task planning

Task or action planning consists in symbolic planning in terms of statements about the world and

the robot. Actions modify the current world state where they take place, and planning aims at se-

quencing or concatenating actions such that starting at an initial state, a goal state is achieved.

This concept is transversal to scheduling, which means resource allocation (time, energy consump-

tion, etc.) to a set of actions, so that speci�ed deadlines are met while respecting resource limita-

tions9. Planning techniques with time constraints allow to cope with the two problems simulta-

neously, and not in cascade as traditional approaches. However, here we will concentrate on the

planning problem alone.

Deterministic action planning

First planners like STRIPS (developed by Richard Fikes and Nils Nilsson in 1971 at the Stanford

Research Institute for computing simple plans for the mobile robot Shakey) were based on a propo-

sitional logic formulation of the world. States are described by sets of conditions (propositional

variables), so that the initial state entails the set of conditions that are true at the beginning (all

the others are assumed to be false), and the goal state the set of conditions that have to be true

plus the set of conditions that must be false. The planning operators (PO) represent actions, and

are represented by a quadruple that includes two sets for the preconditions (conditions that must

be true and conditions that must be false in order to execute the actions), and the postconditions

or e�ects of the action (again a set of true and another of false conditions). Planning consists then

in determining a sequence of POs that change the world successively from the initial to the goal

state. This planning language is deterministic in that after execution of each action, e�ects hold

completely.

This has inspired what nowadays are known as Planning Domain Description Languages (PDDL).

Algorithms based on PDDL make the planning problem tractable by resorting to simplifying as-

sumptions, that may include10:

• �niteness (the domain has only �nitely many objects, actions, and states)

• information completeness (the planner has all relevant information at planning time)

• determinism (actions have deterministic e�ects)

• instantaneousness (actions have no relevant duration)

• idleness (the environment does not change during planning)

These languages extend the propositional nature of STRIPS by upgrading to predicate logic for-

mulations, that is, allowing the existence of non-grounded variables, besides the constants, in the

describing conditions. Thus, the preconditions and e�ects of the POs representing actions include

also free variables, and planning requires not only �nding a sequence of POs but also grounding

9 Hertzberg and Chatila (n 2).

10 ibid.
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consistently their variables, i.e. determining valid constant values for these variables. For this rea-

son, a PO is now also known as action schema, it is a structure where di�erent groundings are pos-

sible.

The PDDL is also a standard to which di�erent speci�c languages adhere, where some addi-

tional features may exist like argument typing, equality handling, conditional action e�ects, and

some restricted form of FOPL statements11. Temporal planning, that is, allowing actions to spec-

ify durations (thus overcoming the instantaneousness assumption) is a distinctive feature of the

extension PDDL2.112.

Planning not necessarily produces a total order or linear plan, but also partial order or nonlin-

ear plans are a possible outcome. In such plans, a set of actions and an ordering relation between

them are determined, whereas unordered actions may be executed in any sequence (in some for-

malisms even in parallel). Classical formulations of this partial-order plan generation start with the

empty plan, which contains just the initial and the goal conditions, and iteratively introduce new

actions by checking if the generated conditions respect the partial ordering relations. This strategy

would lead straightforwardly towards the solution if all the actions were independent, but quite

frequently it appears that the e�ects of a newly introduced action threaten the partial ordering in

the plan attained so far. A way out of such con�icting and time consuming interactions is to re-

sort to subplans as planning macros, thus obtaining a hierarchical structure for planning, This is

the idea behind hierarchical task networks (HTNs), were the plan is incomplete as long as there

exist unexpanded (i.e., to the lowest level in the hierarchy) subplans.

Newer deterministic planners which have earned considerable success like GRAPHPLAN rely

on the expressive power of planning graphs and the strength of logical inference by planning as

satis�ability. As a drawback, the latter introduces the well-known frame problem, i.e., how to ex-

press changes without having to state explicitly all what remains unchanged. Alternative logic for-

mulations like deductive logic or temporal logic have also originated quite e�cient planners.

Probabilistic action planning

Modern planning approaches cope with the fact that sensors often provide incomplete informa-

tion, which means that planning has to be performed under uncertainty. The standard formula-

tion of this kind of problems is the Markovian decision processes (MDPs). To the conventional sets

of states S and actions A, a new feature is added, namely that action models include conditional

probability distributions for the corresponding state transitions. Typically this means to specify for

each possible e�ect of an action a certain probability of occurrence. The aim is to obtain a policy,

that is a function that maps states into actions, and such a policy may be derived from value it-

eration (VI) or policy iteration (PI) algorithms. As explained later in the context of reinforcement

learning, such methods aim at maximizing the overall utility of the plan (where the utility of an

individual action would be the negative cost associated to this action).

Like in the case of deterministic planners with PDDL, also standards have been provided in

international planning competitions for probabilistic planners: PPDDL (with the �rst P standing for

Probabilistic) and more recently RDDL (inspired in the transition models of DBNs).

One step further is to relax the complete observability assumption of the world state. This

gives raise to the Partial Observability Markov Decision Processes (POMDPs), that add to the MDP

formulation an observation model: a �nite set O of possible observations that the robot can per-

form, as well as the conditional probabilities of making a speci�c observation o in state s. Refor-

11 Hertzberg and Chatila (n 2).

12 ibid.
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mulating planning in the belief space, i.e. probability distributions over the state space correspond-

ing to the robot’s belief of being in such state after executing action a or observing o, the same

search techniques as in MDPs can be applied, namely VI or PI. As belief space is exponentially

larger than state space, only quite simple POMDPs can actually be tackled in this way, although

also some approximations make it more tractable13.

Finally we have to stress again that generally the robots have a �xed repertoire of actions, and

if no combination of such actions produces a satisfactory ful�llment of the goal, the robot ends up

concluding that no plan exists. The way out is providing the robot with the capability of expand-

ing this repertoire. This means learning new actions.

Learning

Outside of the controlled and structured environments where most robots dwelled up to now,

robots have to face a world they know nothing about. Their human programmers may provide

them a declarative description of some of the world’s traits. Such a formal description is obviously

incomplete, inaccurate, simplistic and hardly useful for mere survival. In other words, robots have

to carry out their activity in a world that is

• partially known, (i.e., incomplete knowledge about the world)

• partially observable (not even relevant observation can be taken for granted), and

• dynamic (i.e., changing).

As for the latter, one should add that changes stem either from ambient14 phenomena or from

actions performed by other agents. Some of such changes can be anticipated with reasonable as-

sumptions on expected behaviors: ambient changes may follow physical laws or established rules,

whereas agent actions may adjust to the knowledge about its goals and motivations. Such knowl-

edge may be previously encoded in the robot’s knowledge base, or it must be acquired, i.e. learned.

Non-coded as well as unpredictable knowledge render learning as an unavoidable requisite for au-

tonomous robots to be deployed in unstructured environments. To this end, machine learning tech-

niques apply.

A classical but quite informative classi�cation of learning strategies distinguishes between su-

pervised and unsupervised methods. In supervised learning, there is a teacher providing feedback

to the system about its learning performance, by providing the correct answer after execution of

the learned action or task. This can also be expressed in terms of formulating the goal of learn-

ing in terms of computing the function f that relates a given input X with an output Y , that is,

Y = f(X): in supervised learning, the corresponding Y to certain X is provided by the teacher,

that can supervise how in successive iterations function f is approximated increasingly well. It is

also the teacher who decides when the learning system has achieved an acceptable level of perfor-

mance and learning terminates. The two big families of supervised learning methods are classi�-

cation methods (here, each output Y is a class or category, and function f has to correctly assign

each individual X to its class) and regression algorithms (both variables are numbers and f may

be an analytical function like for example in linear regression). Supervised learning can of course

also take place at a symbolic level, like inductive logic programming, which aims at synthesizing a

13 Hertzberg and Chatila (n 2).

14 including both natural episodes as well as typical –possibly regular– events in human environments, like the alternation

in tra�c lights
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minimal logical program that provides the correct true or false values to the corresponding input

variables. Popular classi�cation methods used in Robotics include:

• Support Vector Machines (SVM), which try to maximize the gap separating the data be-

longing to di�erent classes (the base procedure is linear, but the kernel trick allows for non-

linear separating functions as well).

• Statistical methods like Bayesian learning (an application of the Bayes rule in order to �nd

the probability of a certain class to be the one to which the input data belong, knowing the

priors of class distribution in advance and having determined the likelihoods of the data for

each class in the training phase), and its variants maximum likelihood and expectation maxi-

mization.

• Neural networks (NN), which consist in combining basic computational units, called neu-

rons, linked by weighted connections. Each such neuron computes the weighted sum of

its inputs and �res if this sum is larger than a given threshold. In the learning phase, the

weights associated to each neuron input are updated until the network performs a satisfac-

tory classi�cation. NN allow for online learning, but they provide no insight into the classi-

�er.

The supervised learning paradigm par excellence in Robotics is Learning from Demonstration,

which is described more in detail in the homonymous Section.

Unsupervised machine learning, on the contrary, provides no information about Y to the

learning system. There is no teacher and the system has to determine the implicit structure under-

lying the input data X . That is, it tries to model such distribution or structure, and performance

can be expressed with regards to how well new data adjust to the found structure. Unsupervised

learning families include clustering methods (inputs are grouped in clusters by some proximity

or partitioning criterion, k-means clustering being a popular such algorithm) and association rule

learning (i.e., to discover rules describing large portions of input data). In Section “Reinforcement

learning” we take a closer look at this widely used and typical unsupervised learning scheme in

Robotics.

In the case of a robot, due to its embodiment, embedded in physical surroundings, learning

heavily relies on visual perception. Perception is the input stream from which descriptions about

the current state of the world can be extracted, which in turn allows to couple sensed changes in

the environment to particular actions performed by the robot. Thus, before examining learning

paradigms, a brief overview on perception is provided. Unless othewise stated, we will always re-

fer to visual perception.

Perception

In the context of learning, visual perception is doubtless the most powerful input channel for a

robotic system to obtain a description of the world. It can also be the most e�cient one, because

of the immediate encompassment of a whole scene, as long as the involved visual processes avoid

becoming a computational bottleneck. Computer vision (CV for short) is about processing static

images or a continuous video stream, and this includes, in broad terms, the following steps:

• Image acquisition (with digital mono or stereo cameras, maybe with enhanced features like

range measuring, or signal measuring beyond the visual spectrum),

• Preprocessing (this includes several basic image enhancing processes),
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• Segmentation (division of an image into regions, that may correspond to di�erent objects or

object parts),

• Recognition (bringing image regions in correspondence with object models or labels).

Applications of CV that are relevant for Robotics include object recognition (aka classi�cation,

that is, assigning a speci�c view of an object to its corresponding class, which is prespeci�ed or

has been learned), identi�cation (of an individual object, face, �ngerprint, iris, or the like), or de-

tection (of an object, a defect, a person, etc. within an image). Speci�c instances of recognition like

facial expression recognition or gesture recognition (including its dynamic version along a video

sequence) are of particular interest in human-robot interaction. They are frequently used in the

learning from demonstration context, as shown below. As for this application, another perception

channel reveals as being quite useful, namely measuring the forces exerted on the arm (particu-

larly in kinesthetic learning). To this end, either force/torque sensors mounted on the wrist are

used, or force measurings at the robot’s joints. Turning back to CV, the concurrence of di�erent

recognized objects/people or their spatial relationships may lead to quite basic instances of scene

understanding, which however are still far from the richness of human scene understanding, due

to the lack of knowledge about social and cultural cues.

State of the art tools are Convolutional Neural Network (CNNs), which are arti�cial neural net-

works inspired in the visual cortex of animals and which model visual perception by humans (and

by animals in general). They perform very well in image recognition: they are close to humans

in object classi�cation and detection (as long as images are not altered with �lters, as in current

popular smartphone applications), and even slightly better in �ne grained classi�cation. The la-

belling of the individual images appearing in the databases used for training these CNNs have

been done by humans. Stated di�erently, the basis of classi�cation, the implicit criteria for cate-

gorization have been established by humans. Nonetheless, projects exist nowadays to perform such

categorization automatically, from the text accompanying the images in the world wide web, like

captions of the photographs appearing in the news.

Learning to act

In what follows we examine the two most extended learning techniques in Robotics, which hap-

pen to be quite genuine representatives of unsupervised and supervised learning. We will not go

very deep into the technical detail, and instead try to provide a general idea of how they work,

with special emphasis on the role played by the human programmer.

Reinforcement learning

Reinforcement learning (RL) refers to a set of algorithms devised to obtain an optimal or near-

optimal policy (action selection based on the current state), without intervention of a teacher (i.e.,

they belong to the unsupervised learning category). The setting is conceived as a Markov Deci-

sion Process, the current state and action selected determine a probability distribution on future

states, that is, the e�ect of applying an action depends only on the current state where the action

is applied, regardless to the previous history. Full observability of each state is assumed, although

partial observability formulations do also exist. The only feedback provided to the learner comes

from the environment, where the robot’s actions take place. There are many RL techniques, but

the common features include the following:

• a set of environment and robot states S;
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• a set of actions A that can be executed by the robot;

• policies of transitioning from states to actions;

• rules that determine the scalar immediate reward of a transition;

• rules that describe what the agent observes.

The reward typically comes with the observation of the last transition undergone, and expresses

the degree to which the resulting state (or the action leading to this state) is desirable. The reward

is provided by state observations, but it is up to the designer of the RL algorithm (or the user im-

plementing it) to decide which environment (or robot) features are used for computing the reward.

Rewards express immediate satisfaction degrees, but what really guides the learning process are

the value functions (aka utility functions) of the transitions (or of the states), that correspond to

long-term degrees of desirability. Values are computed from the rewards of the estimated optimal

course of actions leading to the �nal goal of the learning process. A certain state (or the transition

leading to it) may have a high reward but a poor value, and vice-versa. While rewards are directly

taken from state observations, values must be estimated and reestimated again and again from

the sequences of observations a robot makes over its entire lifetime (i.e., from the di�erent action

courses that lead to these sequences of state observations). Some RL methods use a discount factor

associated to future rewards, which allows to tune the relative in�uence of immediate versus long-

term desirability. It should also be noted that most RL methods are stochastic approximations of

exact Dynamic Programming: instead of sweeping over the whole state space, sampling of states

according to the underlying probabilistic model is performed.

Value estimation can thus be seen as central to RL. Nonetheless, evolutionary optimization

methods (like genetic algorithms or simulated annealing), which search the policy space directly,

could be used instead. These methods do not allow to interact directly with the environment while

learning, whereas value function estimation RL does, but they can be used to contrast their results

with those obtained with RL. This online use of RL raises another question, namely the exploration-

exploitation tradeo�: exploring new, potentially more rewarding states vs. exploiting current knowl-

edge. A typical strategy to deal with this issue (among others) is the ǫ-greedy method, where the

action currently believed to be optimal is chosen with probability 1− ǫ, and another random action

is chosen with probability ǫ.

Future projections of the system’s behavior may either be model-based or model-free. The

model mimics the system’s behavior, it allows for simulations of possible courses of actions. An

example of model-based algorithm is Adaptive Real-time Dynamic Programming. Model-free algo-

rithms, on the other hand, do not require any knowledge about the consequences of the individual

actions. Q-learning is a characteristic example of model-free RL algorithm.

Learning from demonstration

Learning from demonstration means basically that the robot is taught by performing the task to

be learned “in front of” it (i.e., it is a supervised learning methodology) The teacher (generally

a human demonstrator) executes several instances of the task in a way that the robot’s percep-

tion system is able to follow their performance. If learning is conceived as taking place in a search

space (the space of all the possible solutions to determining the correct trajectory or the correct se-

quence of actions to attain the goal), then learning from demonstration (LfD) allows to drastically

reduce this space, either by focusing or restricting learning to a close neighborhood of the solu-

tion, or by pruning away the parts corresponding to wrong solutions (by counterexamples). LfD,
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aka imitation learning, is also the way of programming robots in a natural and intuitive way. The

human-robot interaction (HRI) tools used to this end will be examined below, but it is pertinent to

mention now one of these tools, namely kinesthetic guidance. This refers to physically guiding a

robot arm along the desired trajectory by pulling and pushing it at the end-e�ector (or other parts

of the arm). And it is pertinent to mention it here because one of the very �rst industrial robot

programming methods consisted precisely in guiding the robot (directly, with the help of a teach

pendant -a kind of wired remote-, or by driving a lightweight mock-up) along the desired trajec-

tory, which was registered for later reproduction in the execution phase. What distinguishes LfD

from these early programming ways is that not an exact reproduction of the taught trajectory is

sought, but a generalization over several such demonstrations, which are executed in slightly vary-

ing conditions. As a result of the learning process, such a generalization aims at adjusting to the

current conditions during execution.

Skill transfer in LfD means to answer the following questions:

• What to imitate?

• How to imitate?

• Who to imitate?

• When to imitate?

The last two questions haven’t received much attention in research, as in the usual setting there

is just one teacher, and the instants where the demonstration begins and ends are well-established.

What to imitate refers to determine which are the relevant parts of the demonstration that need

to be learned. This is achieved by the repeated demonstrations in the learning phase: only the

relevant parts of the task are expected to be maintained along the demonstrations (thus, certain

variability is desirable). Furthermore, and this is an HRI issue, social cues may be used for focusing

the attention on the important parts of the task: gazing or pointing at region and time-intervals

of interest, using verbal statements, etc. This means of course that the robot has to be previously

endowed with the capacity of interpreting such social cues. Furthermore, it has to be established

whether the robot is intended to reproduce the articular motions of the teacher, to follow the tra-

jectory of the hand, or if only the �nal position attained is relevant. The �rst variant, pursued e.g.

in gesture learning, may be impossible due to large di�erences in the embodiment of teacher and

robot (see the correspondence problem below). In any case, also a metric of imitation performance

has to be de�ned, associated to the di�erent alternatives the imitation may be conceived, namely

as achieving the same �nal relative position, the same absolute position, or the same relative dis-

placement as in the demonstration.

How to imitate addresses the so-called correspondence problem, which relates to the di�erent em-

bodiment of teacher and learner, therefore exhibiting a di�erent kinematic structure (such di�er-

ences may be just a question of scaling, or of di�erent proportions, or even of di�erent number,

disposition or type of joints).

In the research community, LfD is usually distinguished as occurring at trajectory level or at

task (or symbolic) level, and in the previous paragraphs we have been switching indistinctively be-

tween both modalities. At trajectory level, the robot learns to perform basic sensory-motor skills,

and for this reason it can also be envisioned as learning control policies. It is a generalization of

movements, aiming at obtaining a generic representation of motion which allows to encode very
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di�erent types of signals/gestures15. The what-to-imitate problem translates into which variables

have to be chosen to encode a movement. Alternatives addressed by researchers include encoding

at joint level, at task level, or in torque space. The type of motion to be encoded may be cyclic

(i.e., repeated under slightly varying conditions), discrete, or combining both types. Prior to the

actual learning, dimensionality reduction techniques may help to reduce its computational load.

The original recorded signals are projected onto a latent space with fewer dimensions while pre-

serving the maximum amount of information. A typical such technique is Principal Component

Analysis (PCA), where the main direction to be projected upon is the one where the data exhibit

the highest variance, the next one is the following highest variance direction, with the constraint

of being orthogonal to the �rst one, and so forth. The encoding may be based on statistical anal-

ysis (like Gaussian Mixture Models, combined with Gaussian Mixture Regression for the predic-

tions (GMM/GMR), Hidden Markov Models (HMMs), or other), or based on dynamic systems, like

Dynamic Motion Primitives (DMPs), Locally weighted regression (LWR) or even recurrent Neu-

ral Networks16. Vision and proprioceptive sensors are the most common input sources, although

force/torque sensors have also been considered in recent years17, especially for the cues they pro-

vide in collaborative tasks18. As for the latter, robots involved in collaborative tasks, the assign-

ment and switching of the roles of master (teacher) and follower within the same task have also

been studied based on interaction forces19, or switching between reactive and proactive behaviors

by anticipating human motions20.

As for task level learning, the aim is to formulate the task in terms of prede�ned atomic ac-

tions (or small standardized sequences of atomic actions) represented symbolically, for example

as rules in STRIPS-like formalisms. Such rules, if appropriately learned, can be concatenated after-

wards by using a planner to reproduce the sequence of actions that ful�lls the task under slightly

di�erent start and goal conditions. Such sequences of actions can also be encoded and reproduced

using classical machine learning algorithms like HMMs, or graph-based hierarchical encodings21.

Symbolic learning requires the sensory input to be processed and segmented into meaningful

world transitions corresponding to the aforementioned actions. Sequencing entails learning some

kind of precedence constraints between actions. Some actions have to strictly precede others, and

this is discovered after a su�cient number of demonstrations whose variability uncovers such

strict precedence, distinguishing them from actions that only circumstantially happen to occur in

a given temporal order. While task or symbolic learning allows to learn interactively high-level

skills, these methods have the disadvantage of relying on a large amount of prior knowledge (e.g.

about the basic atomic actions) in order that the demonstrated sequences can be segmented consis-

tently.

In LfD, the more demonstrations provided to the robot, the better should the task at hand be

15 Aude Billard and others, ‘Robot Programming by Demonstration’ in Springer Handbook of Robotics (2008) 〈http : / / dx . doi .
org/10.1007/978-3-540-30301-5_60〉 .

16 Masato Ito and others, ‘Dynamic and interactive generation of object handling behaviors by a small humanoid robot us-

ing a dynamic neural network model’ (2006) 19(3) Neural Networks 323 〈http://dx.doi.org/10.1016/j.neunet.2006.02.007〉
.

17 Leonel Rozo, Pablo Jiménez, and Carme Torras, ‘A Robot Learning from Demonstration Framework to Perform Force-

based Manipulation Tasks’ (2013) 6(1) Intell. Serv. Robot. 33 〈http://dx.doi.org/10.1007/s11370-012-0128-9〉 .
18 L Rozo and others, ‘Learning Physical Collaborative Robot Behaviors From Human Demonstrations’ (2016) 32(3) IEEE

Transactions on Robotics 513 〈http://dx.doi.org/10.1109/TRO.2016.2540623〉 .
19 Y Li and others, ‘Role adaptation of human and robot in collaborative tasks’ (May 2015) 〈http://dx.doi.org/10.1109/ICRA.

2015.7139983〉 .
20 W Sheng, A Thobbi, and Y Gu, ‘An Integrated Framework for Human-Robot Collaborative Manipulation’ (2015) 45(10)

IEEE Transactions on Cybernetics 2030 〈http://dx.doi.org/10.1109/TCYB.2014.2363664〉 .
21 Billard and others (n 15).
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learned by the robotic system. However, the more demonstrations have to be shown to the robot,

the more annoying and tedious becomes teaching the task to the robotic unit. Ideally a few demon-

strations should su�ce, as long as they are di�erent enough as to highlight the really signi�cant

traits of the task, as said above. But, with the exception of very simple cases, it is di�cult in gen-

eral to design such a set of signi�cant demonstrations. An interesting way out is to resort to some

kind of incremental learning. Rough versions of the task are learned with as few demonstrations as

possible, and the robot starts executing them right away. Performance may be poor at the begin-

ning, but monitoring of the robot by the programmer or the user allows to detect where improve-

ments are required. The learned task is progressively re�ned by providing new demonstrations.

The errors observed in early performances allow the teacher to identify where the new demonstra-

tions have to provide new insights about the task. Verbal and non-verbal cues can be used by the

teacher to guide the attention of the robot system towards the parts of the task that need to be

improved. This guided incremental learning is often called sca�olding or moulding of the robots

knowledge about the task, it can alse be seen as a variant of coaching.

Driving the attention towards some parts of the task or speci�c locations of the setting is a typ-

ical application of HRI. Social cues have been investigated and applied to this end. They encode

in some sense priors of the statistical learning methods, speeding up learning. Non-verbal cues

include pointing and gazing, whereas verbal instructions require some form of natural language

processing. Even the prosody of spoken instructions has been studied in the search of such so-

cial cues. As said above, CV techniques are needed for interpreting the gestures associated to such

attention-driving cues.

Last but not least, another way of avoiding a huge number of demonstrations is transferring

the re�nement of action learning to an unsupervised method. This has the advantage of reducing

drastically the search space of the latter, thanks to the demonstrated tasks, while avoiding to fur-

ther resort on the teacher for obtaining a more accurate performance. Typically, such unsupervised

task re�nement learning consists in some form of RL. In22 the perspective is somehow complemen-

tary: a (relational) RL approach is enhanced with occasional requests to the teacher, who performs

demonstrations oriented at pruning the search space signi�cantly. The own system provides sug-

gestions on which aspects should be covered by the demonstration. The idea behind this approach

is that the time of the human teacher is much more valuable than the robot’s time and thus re-

quests should be kept at a minimum.

Finally it should be stressed that some LfD schemes resort to biological analogues, being the

most characteristic those models that try to mimic the functioning of Mirror Neuron Systems,

which are responsible of imitation in animals.

Conclusions

In this contribution we have presented a brief overview on the most salient cognitive techniques

that can provide robots with a certain degree of autonomy, and some kind of smart response in

front of a continuously changing world, with predictable evolutions but also surprising contingen-

cies. In �rst place we have perception, the input to the control system and thus to decision mak-

ing. Perception depends on the identi�cation parameters provided by the human designers/programmers,

and modern classi�cation algorithms like the powerful CNNs operate on labeled data (or contex-

tual information). In other words, the semantic content has been previously given by humans. This

22 David Martínez, Guillem Alenyà, and Carme Torras, ‘Relational reinforcement learning with guided demonstrations’

[2016] Arti�cial Intelligence 〈http://dx.doi.org/10.1016/j.artint.2015.02.006〉 .
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statement can also be extended to methods learning from data extracted from internet, with the

potential risks attached to such an uncontrollable source.

In simple reactive controls the response is always perfectly de�ned, and can be reliably pre-

dicted, up to errors or failures. The problem becomes more involved when higher cognitive func-

tionality is invoked. Motion planners compute paths of the robots (maybe trajectories, if the dif-

ferent velocities along the path are also considered) and even such an apparently innocuous duty

can have social or ethical implications if, for example, such a path appears traversing a sensible

area. The geometrical basis of such planners excludes any moral responsibility of the robotic agent,

as it corresponds to the human programmer to exclude such areas from free-space, or to foresee

their possible existence if the system builds its maps autonomously, and in this case, the means for

identifying such areas should be provided.

As for task planning, we have seen that deterministic planners rely on logical linking of ac-

tions. Of course this can become arbitrarily complex, but at least traceability of plans is granted.

Undesired side-e�ects from some actions can be traced back for uncovering the conditions that

produce them, which in turn may have consequences on the design of the actions (more than on

the process of planning per se). Probabilistic task planners, on the other hand, are more di�cult

to trace back-if not impossible- due to the randomness of some decisions23: the probability of oc-

currence of each e�ect is naturally known, but the actual e�ect that �nally takes place is clearly

unknown until it happens. Such probabilities may provide a quantization of the liability of the hu-

man designer to each outcome, a kind of calculated risk, but the chaining of several actions may

introduce rapidly a high degree of complexity, as for the combinatorics of e�ects. Moreover, it is a

common practice to include a number of spurious e�ects within a generic “noise” e�ect with cer-

tain probability.

We have seen the two paradigmatic learning strategies. Supervised learning, and in particular,

learning from demonstration clearly assigns the whole responsibility of what is learned to the

teacher, the one who provides the demonstrations. Liability may be limited by the learning per-

formance of the system, and the errors that may arise during the learning process. In unsuper-

vised learning the issue is a little bit more tricky, although what is considered a reward to guide

the learning development is of course a decision of the designer. Even the fact that it is long-term

value function and not the immediate reward, as we have seen, what determines action selection,

the computation of the value function still bases on what the designer has considered to be the

state variables to promote. Model-based learning even allows for a certain kind of predictions.

In sum, cognitive processes in robotic systems have been designed and implemented by hu-

mans. Deterministic processes can be predicted, as for their evolution and �nal result, or traced

back. In the case of probabilistic processes, also certain predictions on their behavior can be made,

with associated probabilities of occurrence, although combinatorics and insu�cient computing

power may pose some limits to the designer’s or programmer’s anticipation capabilities. This can

be partially alleviated by performing a worst-case analysis, which reduces the options to consider.

In any case, it is up to the human programmers/users to decide whether complexity and uncer-

tainty may shelter questionable decisions of the robotic system. As for today, there is nothing like

an autonomous will of a robotic system, and the morality of its actions is the morality of its hu-

man designers, programmers or users.

23 unless, of course, a register of all the history, i.e., of the whole sequence of states and actions, is kept, and not just the

�nal result
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