
Randomized Planning of Dynamic Motions

Avoiding Forward Singularities

Ricard Bordalba, Llúıs Ros, and Josep M. Porta

Institut de Robòtica i Informàtica Industrial (CSIC-UPC)
08028 Barcelona, Catalonia

{rbordalba,ros,porta}@iri.upc.edu

Abstract. Forward singularities, also known as direct, or actuator sin-
gularities, cause many problems to the planning and control of robot
motions. They yield position errors and rigidity losses of the robot, and
generate unbounded actions in typical control laws. To circumvent these
issues, this paper proposes a randomized kinodynamic planner for com-
puting trajectories avoiding such singularities. Given initial and final
states for the robot, the planner attempts to connect them by means of
a dynamically-feasible, singularity-free trajectory that also respects the
force limits of the actuators. The performance of the strategy is illus-
trated in simulation by means of a parallel robot performing a highly-
dynamic task.

Keywords: Kinodynamic planning, singularity, constrained system, RRT.

1 Introduction

The kinodynamic motion planning problem constitutes an important research
theme in robotics. The problem entails computing trajectories connecting two
given states, both with a prescribed position and velocity of a robot. The trajec-
tories must be free of collisions and have to be consistent with the system dynam-
ics, i.e., they can only involve acceleration profiles compatible with the limited
forces deliverable by the actuators. The problem has been extensively studied for
open-chain robots, and general practical solutions have been given [14], promi-
nent ones being those based on randomized methods [15]. In comparison, the
topic has received much less attention in the case of robots with closed kine-
matic chains (see [8] and references therein). These robots complicate the prob-
lem substantially because their state space is, in general, an implicitly-defined
manifold not admitting a global parameterization. As a result, the extension of
randomized methods like [15] to the closed-chain case is difficult since (1) it is
not easy to come up with a mechanism to uniformly sample an implicitly-defined
state space, (2) the numerical integration of the motion equations alone (disre-
garding the loop closure constraints) generates trajectories that drift away from
such space, and (3) the mechanism exhibits forward singularities, whose traver-
sal may compromise the control of the robot at execution time [2,10,5,16]. The
first two difficulties were recently addressed by Bordalba et al. [8], who showed



2 R. Bordalba et al.

that the iterative construction of manifold atlases provides effective sampling
and numerical integration schemes over the state space. The purpose of this pa-
per is to address the third difficulty: to make the planner in [8] robust to the
presence of forward singularities.

It is well known that in a forward singularity the velocities of the actuators do
not determine the full configuration velocity of the robot [4,6,5]. Such singulari-
ties, however, also have an impact on the system dynamics. The robot becomes
underactuated, being unable to traverse these configurations under arbitrary ac-
celerations. In their proximity, in fact, the inverse dynamic problem yields very
large or unbounded motor actions, which can cause controllability issues or even
a breakage of the mechanism. To circumvent these issues, several strategies have
been proposed. For example, one can use actuation redundancy to avoid all, or
almost all forward singularities [17], or design specific control laws able to tra-
verse the singularities with bounded actions and consistent accelerations [10,12].
Although both approaches are interesting, they also come with a few caveats.
The use of additional actuators yields more complex robot designs, and current
motion controllers used to traverse singularities tend to be intricate and may not
cope with all possible degeneracies of the forward kinematic map [16]. An alter-
native is to avoid the singularities at the planning stage, but current planners
for this purpose cannot cope with dynamic constraints. As described in [3], such
planners avoid the singularities by treating them as obstacles, or by defining
a singularity-free configuration space. While the former approach requires the
configuration space to be globally parametrizable, the latter remains applicable
to general robot designs. This justifies the strategy we present in this paper,
which extends the work in [3] to also satisfy dynamic constraints.

Our approach relies on a system of equations characterizing the singularity-
free state space of a robot (Sec. 2). The solution set of this system is a smooth
manifold diffeomorphic to the classic state space, but with all forward singu-
larities removed. We also adapt the dynamic equations of the robot to define
an action-varying vector field on this manifold, which we use to steer the robot
between two states, while avoiding forward singularities (Sec. 3). We illustrate
the planning method on a parallel robot that has to perform a highly dynamic
task (Sec. 4) and draw a few conclusions from the study (Sec. 5).

2 Dynamics on the singularity-free state space

Let us assume that the configuration of our robot is described by means of a
tuple q = (a, r) of nq generalised coordinates, where a contains the na actuated
degrees of freedom of the robot, and r encompasses the remaining coordinates
in q. Since the robot contains closed kinematic chains, the components of q will
not be independent; they will be subject to a system of ne equations

Φ(q) = 0, (1)

where Φ(q) is a differentiable vector function defined by the loop closure con-
straints. Generically, then, the configuration space C of the robot will be a man-
ifold of dimension dC = nq − ne formed by all points q satisfying Eq. (1).



Planning Dynamic Motions amidst Singularities 3

Although we have defined C, the planning of dynamic motions is better solved
in the state space X of the robot. In closed-chain systems, this space is tradition-
ally defined as the set of pairs (q, q̇) that satisfy Eq. (1) and its time derivative

Φq · q̇ = 0, (2)

where Φq = ∂Φ
∂q . However, since we wish to generate motions avoiding forward

singularities, we shall define X using an additional constraint. Recall here that
a forward singularity is a point q for which the ne×ne Jacobian Φr = ∂Φ/∂r is
rank deficient [4]. To exclude these singularities from X , thus, we need to enforce
det(Φr) 6= 0. This can be satisfied by introducing the constraint

b · det (Φr) = 1, (3)

where b is a newly-defined auxiliary variable. Note that if we let d = det (Φr),
then Eq. (3) can be written as b · d = 1, which defines a hyperbola that never
crosses the d = 0 axis of the (b, d) plane. In our formulation, thus, X will be
the set of points x = (q, q̇, b) satisfying the system formed by Eqs. (1)-(3). For
short, this system will hereafter be written as

F (x) = 0. (4)

Now note that the time evolution of the robot is determined by its motion
equations, which can be obtained using the Euler-Lagrange formalism for ex-
ample. In our case, the fact that Φr is full rank for all x ∈ X guarantees that
Φq is also full rank on X . This allows the motion equations to be written in
the explicit form q̈ = f(q, q̇,u) for all x ∈ X , where u ∈ R

na is the vector of
actuator forces of the robot. By defining v = q̇, we can then write this equation
in the first-order form used in numerical integration schemes:

[

q̇

v̇

]

=

[

v

f(q,v,u)

]

. (5)

The evolution of b is also governed by a differential equation, which can be
obtained by taking the time derivative of Eq. (3) to yield

ḃ = −
b

det (Φr)
·
d

dt
(det (Φr)). (6)

By noting that ẋ = (q̇, v̇, ḃ), Eqs. (5) and (6) can be compactly written as

ẋ = g(q,v, b,u). (7)

Note that for each value of u, Eq. (7) defines a vector field over X , which can be
used in conjunction with Eq. (4) to integrate the motion of the robot forward in
time, using proper numerical methods [19]. Given two states of X , xs and xg,
the goal of our planner is then to find an action trajectory u(t) such that the
trajectory x(t) determined by Eqs. (4) and (7) for x(0) = xs satisfies x(tf ) = xg

for some time tf > 0. For any time t ∈ [0, tf ], moreover, we shall require x(t) to
stay inside a region Xfeas ⊂ X of non-collision states, and we shall confine u(t)
to a bounded subset U ∈ R

na given by the actuator force limits.



4 R. Bordalba et al.

PSfrag replacements

xs

xs

xg

xg

xnear

xnew

xrand

R
dX

R
dX

P
V

ψ
X

ys

yg

Fig. 1: Left: Extension process of an RRT. Right: Construction of an RRT on an
implicitly-defined state space manifold.

3 Planning in the singularity-free state space

To explain the planner in an easy way, we follow [7]. Suppose initially that the
variables in x are independent; i.e., that Eq. (4) does not apply, so that X can be
thought of as R2nq+1. In this situation, we can look for a trajectory connecting
xs with xg by constructing a rapidly-exploring random tree (RRT) over X [15].
The RRT is rooted at xs and it is grown incrementally towards xg while staying
inside Xfeas. Every tree node stores a feasible state x ∈ Xfeas, and every edge
stores the action u ∈ U needed to move between the connected states. This
action is assumed to be constant during a fixed time ∆t. The expansion of the
RRT proceeds by applying three steps repeatedly (Fig. 1, left). First, a state
xrand ∈ X is randomly selected; then, the RRT state xnear that is closest to
xrand is computed according to some metric; finally, a movement from xnear

towards xrand is performed by applying an action u ∈ U during ∆t seconds.
The movement from xnear towards xrand is simulated by integrating Eq. (7)
numerically, which yields a new state xnew that may or may not be in Xfeas.
In the former case, xnew is added to the RRT, and in the latter it is discarded.
To test whether xnew ∈ Xfeas, xnew is checked for collisions by using standard
algorithms [13], and the joint positions are computed to check whether they stay
within bounds. The action u applied is typically chosen as the one from U that
brings the robot closer to xrand. One can either try all possible values in U (if it
is a discrete set) or only those of ns random points on U (if it is continuous). To
force the RRT to extend towards xg, xrand is set to xg once in a while, stopping
the whole process when a RRT leaf is close enough to xg. Usually, however, a
solution trajectory can be found more rapidly if two RRTs respectively rooted
at xs and xg are grown simultaneously towards each other. The expansion of
the tree rooted at xg is based on the integration of Eq. (7) backwards in time.

When the coordinates in x are constrained by Eq. (4), X becomes an non-
linear manifold of dimension dX = 2dC . This fact complicates the generation of
RRTs over X because there is no straightforward way to randomly select points
x satisfying Eq. (4), and the numerical integration of Eq. (7) easily drifts away



Planning Dynamic Motions amidst Singularities 5

from X when standard methods for ordinary differential equations are used.
However, these two issues can be circumvented by constructing an atlas of X in
parallel to the RRT [8].

An atlas is a collection of charts mapping X entirely, where each chart is a
local diffeomorphism ψ from an open set P ⊆ R

dX of parameters to an open set
V ⊂ X (Fig. 1, right). The V sets can be thought of as partially-overlapping tiles
covering X , in a way that every x ∈ X lies in at least one set V . Assuming that
an atlas is available, the problem of sampling X boils down to generating random
values y in the P sets, since these values can always be projected to X using
x = ψ(y). Also, the atlas allows the conversion of the vector field defined on X

by Eq. (7) into one in the coordinate spaces P , which permits the integration of
Eq. (7) using local coordinates [19]. As a result, the RRT motions satisfy Eq. (4)
by construction, eliminating any drift from X to machine precision.

The construction of the atlas is incremental. The atlas is initialized with two
charts covering xs and xg, respectively (Fig. 1, right). Then, these charts are
used to pull the expansion of the RRT, which in turn adds new charts to the atlas
as needed, until xs and xg become connected. To be able to construct the charts,
the method requires X to be smooth, i.e., with a well-defined tangent space at
all of its points. However, using the formulation in Section 2, we can see that
this property holds. Observe that all functions defining F (x) are differentiable,
so that the Jacobian of F (x),

Fx = F q,q̇,b =











Φq 0 0

∂Φq
∂q · q̇ Φq 0

b · ∂ det(Φr)
∂q 0 det(Φr)











, (8)

is well defined at every x ∈ X . This Jacobian, moreover, is full rank for all x ∈ X

because each of the diagonal blocks contains a non-vanishing minor of maximal
size (since det(Φr) 6= 0 for all x ∈ X , Φq is guaranteed to be full rank on X ).
By the implicit function theorem, these facts imply that X is smooth.

4 A weight throwing task

PSfrag replacements

q1

q2

q3

q4

q5

gravity

x

y

Q

d

LL

ll

Fig. 2: A 5-bar robot.

The previous planner has been im-
plemented in C and it has been in-
tegrated into the CUIK Suite [18].
We next illustrate its performance on
planning a weight throwing task for a
5-bar robot with the geometry shown
in Fig. 2. The angles q1 and q5 are ac-
tuated, allowing to control the (x, y)
position of point Q, which is taken as
the end effector. Various versions of this mechanism have been used both in re-
search and the industry, including the DEXTAR and RAPI-MOD models from



6 R. Bordalba et al.

PSfrag replacements
Mode ++ Mode −−

Mode +− Mode −+

Qs

Qg

9.7m/s
12◦

Fig. 3: Left: Forward singularities of the 5-bar robot (in red). Right: the same
singularities, classified according to the different working modes.

ÉTS de Montréal [9] and Gridbot Technologies [1]. In our version, the base dis-
tance is d = 0.6472 [m], and the proximal and distal link lengths are L = 1.14
[m] and l = 0.9 [m], respectively. With these dimensions, the workspace of Q is
the grey area shown in Fig. 3, left. The task to be planned consists in picking
an object of 1 [kg] located at point Qs, to later throw it from point Qg with
the shown velocity. To increase the difficulty of the task, we limit the motor
torques to ±15 [Nm], forcing the planner to generate pendulum-like motions
that increase the kinetic energy progressively, until the required velocity at Qg

is achieved. The mass of each link is 0.5 [kg] and the moments of inertia of the
proximal and distal links (with respect to their center of gravity) are of 0.0541
[kg·m2] and 0.0338 [kg·m2], respectively.

We recall from [9] that the forward singularities of this robot occur when the
distal links get aligned, i.e., when q3 is either 0 or π. The positions of Q for which
such an event occurs are depicted in red in Fig. 3, left. From this figure it appears
that the workspace is severely limited by the presence of forward singularities,
but note that each position of Q can be attained by up to four inverse kinematic
solutions of the robot. Each solution corresponds to one working mode identified
by the signs of q4 and q2 in the range [−π, π]. If we separate the singularities
according to these signs, larger singularity-free regions arise (Fig. 3, right).

Some existing planners require the use of only one working mode [11], but
the full motion range of the robot can only be exploited when working mode
changes are allowed. This is especially true in highly dynamic motions like the
ones we require, in which the rapid movements of the robot, and its inertia,
will frequently favor the mode changes. Our planner is beneficial in this respect,
because it works in the state space manifold of the robot, on which the changes
will occur in a natural way.



Planning Dynamic Motions amidst Singularities 7

Fig. 4: Trajectory computed by the planner. Each snapshot depicts the forward
singularities of the current working mode. See also youtu.be/ENKX0wrZAKM.

Fig. 4 shows the trajectory obtained by the planner, which lasts for 7.5
seconds, and takes 150 CPU seconds to be computed on average, on a Macbook
Pro with an Intel i7 processor. Note how the robot begins to oscillate to the
right, to later go left, climb to the top-most position, and finally complete a full
revolution about the base to gain momentum before throwing the load. See the
video in youtu.be/ENKX0wrZAKM for an animation. As we appreciate, many
working mode changes occur during the move and the robot never crosses the
forward singularity locus (the sign of q3 is always kept constant). The video also
shows that, if we plan the same task without singularity avoidance constraints
(Eqs. (3) and (6)), we obtain trajectories that easily cross the singularities. As
we mentioned in the introduction, this fact would hinder the control of the robot
during task execution.

5 Conclusions

This paper has proposed a randomized planner to compute dynamic trajectories
avoiding forward singularities. The planner relies on a system of equations char-
acterizing the singularity-free state space of the robot, and on an ordinary dif-
ferential equation describing the robot dynamics in such space (Eqs. (4) and (7),
respectively). A great advantage of the planned trajectories is that they can be
stabilized by means of simple computed-torque control laws [2], because the in-
verse dynamic problem always yields bounded actions in their vicinity. A second
advantage is that, when executing the trajectories, it suffices to sense the posi-
tions and velocities of the actuators in order to keep track of the full robot state.
The remaining coordinates can always be recovered with the forward kinematic
maps, which never degenerate in non-singular configurations. Our current efforts
are focused on validating the planned trajectories in real robots.

Acknowledgements Work partially funded by the Spanish Ministry of Economy and

Competitiveness under projects DPI2014-57220-C2-2-P and DPI2017-88282-P.



8 R. Bordalba et al.

References

1. RAPI-MOD: Ultrafast scara robot. URL http://gridbots.com/rapi mov.html
2. Aghili, F.: A unified approach for inverse and direct dynamics of constrained multi-

body systems based on linear projection operator: applications to control and sim-
ulation. IEEE Transactions on Robotics 21(5), 834–849 (2005)

3. Bohigas, O., Henderson, M.E., Ros, L., Manubens, M., Porta, J.M.: Planning sin-
gularity-free paths on closed-chain manipulators. IEEE Transactions on Robotics
29(4), 888–898 (2013)

4. Bohigas, O., Manubens, M., Ros, L.: Singularities of non-redundant manipulators:
A short account and a method for their computation in the planar case. Mechanism
and Machine Theory 68, 1–17 (2013)

5. Bohigas, O., Manubens, M., Ros, L.: Singularities of robot mechanisms: Numerical
computation and avoidance path planning. Springer (2016)

6. Bohigas, O., Zlatanov, D., Ros, L., Manubens, M., Porta, J.M.: A general method
for the numerical computation of manipulator singularity sets. IEEE Transactions
on Robotics 30(2), 340–351 (2014)

7. Bordalba, R., Porta, J.M., Ros, L.: Randomized kinodynamic planning for cable-
suspended parallel robots. In: Cable-Driven Parallel Robots, pp. 195–206. Springer
(2018)

8. Bordalba, R., Ros, L., Porta, J.M.: Randomized kinodynamic planning for con-
strained systems. In: IEEE International Conference on Robotics and Automation
(2018). To appear.

9. Bourbonnais, F., Bigras, P., Bonev, I.A.: Minimum-time trajectory planning and
control of a pick-and-place five-bar parallel robot. IEEE/ASME Transactions on
Mechatronics 20(2), 740–749 (2015)

10. Briot, S., Arakelian, V.: Optimal force generation in parallel manipulators for pass-
ing through the singular positions. The International Journal of Robotics Research
27(8), 967–983 (2008)

11. Cortés, J., Siméon, T., Laumond, J.P.: A random loop generator for planning the
motions of closed kinematic chains using PRM methods. In: IEEE International
Conference on Robotics and Automation, pp. 2141–2146 (2002)

12. Hill, R.B., Six, D., Chriette, A., Briot, S., Martinet, P.: Crossing type 2 singularities
of parallel robots without pre-planned trajectory with a virtual-constraint-based
controller. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6080–6085 (2017)

13. Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: A survey. Computers
& Graphics 25(2), 269–285 (2001)

14. LaValle, S.M.: Planning Algorithms. Cambridge University Press, New York (2006)
15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. International

Journal of Robotics Research 20(5), 378–400 (2001)
16. Özdemir, M.: Removal of singularities in the inverse dynamics of parallel robots.

Mechanism and Machine Theory 107, 71–86 (2017)
17. Parsa, S.S., Boudreau, R., Carretero, J.A.: Reconfigurable mass parameters to cross

direct kinematic singularities in parallel manipulators. Mechanism and Machine
Theory 85, 53–63 (2015)

18. Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The Cuik
Suite: Analyzing the motion of closed-chain multibody systems. IEEE Robotics
and Automation Magazine 21(3), 105–114 (2014)

19. Potra, F.A., Yen, J.: Implicit numerical integration for Euler-Lagrange equations
via tangent space parametrization. J. of Struct. Mechanics 19(1), 77–98 (1991)

http://gridbots.com/rapi_mov.html
http://doi.org/10.1109/tro.2013.2260679
https://doi.org/10.1016/j.mechmachtheory.2013.03.001
http://www.springer.com/us/book/9783319329208
https://doi.org/10.1109/tmech.2014.2318999
http://doi.org/10.1109/ROBOT.2002.1014856
http://doi.org/10.1016/S0097-8493(00)00130-8
http://planning.cs.uiuc.edu/
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/MRA.2013.2287462
http://doi.org/10.1080/08905459108905138

	Randomized Planning of Dynamic Motions Avoiding Forward Singularities

