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ABSTRACT

The size of the population with cognitive impairment is increasing
worldwide, and socially assistive robotics offers a solution to the
growing demand for professional carers. Adaptation to users gen-
erates more natural, human-like behavior that may be crucial for a
wider robot acceptance. The focus of this work is on robot-assisted
cognitive training of the patients that suffer from mild cognitive
impairment (MCI) or Alzheimer. We propose a framework that
adjusts the level of robot assistance and the way the robot actions
are executed, according to the user input. The actions can be per-
formed using any of the following modalities: speech, gesture, and
display, or their combination. The choice of modalities depends on
the availability of the required resources. The memory state of the
user was implemented as a Hidden Markov Model, and it was used
to determine the level of robot assistance. A pilot user study was
performed to evaluate the effects of the proposed framework on
the quality of interaction with the robot.
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1 INTRODUCTION AND RELEVANT WORK

The average life expectancy has increased significantly and conse-
quently has the number of senior citizens who often suffer from
reduced cognitive abilities, which affects their ability to live inde-
pendently and makes them reliant on professional care. The focus
of our work is the development of a socially assistive robot (SAR)
for cognitive training that helps patients with mild cognitive im-
pairment (MCI). A study shows that people prefer interacting with
robots than with virtual agents when receiving healthcare instruc-
tions [2]. Moreover, some examples of SAR for cognitive training
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Figure 1: Sequential memory exercise setup

have already been proposed in literature [4]. In this work, we pro-
pose a sequential memory exercise scenario (Fig. 1). The user and
scenario requirements were developed in collaboration with the
medical staff from Fundacié ACE, Barcelona Alzheimer Treatment
& Research Center, to ensure the transferability of the results to
the everyday practice with the patients. The robot’s primary role is
to help the user to perform the exercise correctly. Depending on
the user’s performance, the robot can adjust its action; for example,
it can confirm a correct move or provide assistance in case of error.
Besides, the robot has an algorithm to select and use only modal-
ities with appropriate resources. We proposed a framework that
integrates these mechanisms in order to produce adaptive robot
behavior.

2 RESEARCH APPROACH AND
METHODOLOGY

The proposed framework adapts to user input in two ways. First, it
provides adaptive assistance using a Hidden Markov Model (HMM),
and secondly, it executes actions using modalities with required
resources. One of the major features of the framework (Fig. 2)
is modality transfer, i.e., it uses modalities to perform the action
depending on the availability of their respective resources [1]. The
proposed sequential memory exercise consists in sorting the shapes
on the board in a specified order. Because direct measuring of user’s
memory is impossible, we decided to estimate the probability that
the user remembers a sequence using an HMM. This approach is
inspired by the application of HMM in robotic tutoring systems
[3]. In our sequential memory exercise, the unobservable variables
correspond to probabilities that the user remembers a particular
shape. The level of assistance that the robot provides depends on
the estimated probability. User action is the observation, and it can
be: making the correct guess, making a wrong guess, requesting
help and reaching a time limit without providing any guess.

The robot can adjust the level of assistance. Besides confirming
the correct guess, the robot can provide hints that guide the user
towards the right solution. Thus, by not immediately providing the
right answer, the robot stimulates user’s effort to recall the shape
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Figure 2: Resource-based modality selection

order. We defined three levels of robot assistance: high, medium
and low. At the high level, the robot discloses the correct shape to
the user. At the medium level, the robot shows two shapes of which
one is correct. Finally, at the lowest level of assistance, the robot
just indicates that the user made a mistake. This level of assistance
is not considered when the user asks for assistance.

Robot actions are task-specific. In the proposed scenario, the
actions are aimed at assisting the user to perform the correct move.
Modalities represent the communication channels between the user
and the robot, but also define a way robot actions are executed.
Modalities require resources, which can be cognitive (user atten-
tion), or physical (board space, or speaking floor). For example, in
case of user attention, the robot will not use the screen if the user
is not looking at it. On the other hand, the robot will not point to
a shape while the user’s hand is inside the board space. The same
goes for the speaking floor: the robot will not speak when the user
is speaking. The possibility to freely define a resource required by
a modality provides flexibility in the design of robotic systems. As
shown in the diagram of the proposed resource-based modality se-
lection algorithm in Fig. 2, the resource manager (RM) is informed
by the resource monitors about the availability of their correspond-
ing resources. RM informs the action executor (AE) about the state
of all the resources, while AE communicates to RM requests for
resources from all modalities. Action logic (AL) determines what
action will be executed and when. In our scenario, AL is defined by
the adaptive assistance and the exercise rules.

One important feature of the resource-based modality selection
is the robot’s ability to independently interrupt the execution of
each modality if the required resource suddenly becomes unavail-
able. This gives the robot a human-like reactive behavior, such as
stopping to speak when the user starts speaking or pulling back the
arm when the user moves inside the board space to grasp a token. It
is important to note that the proposed framework enables transfer
of actions between the modalities according to the resources that
are available to the robot, which ensures robustness in performing
an action. Moreover, the framework is scalable because it allows
adding new modalities and actions, and redefining their relations,
i.e., what modalities will be used to perform each action. Even re-
programming the robot to perform a new task can be achieved by
defining a task-specific set of modalities and associated actions,
which allows the generalization of results.

3 RESULTS AND REMAINING WORK

At the beginning of the exercise, the robot displayed the shapes
on the screen, one by one, in a random order. After that, the user
could start to sort the shapes on the designated squares in the lower
section of the board. The robot provided feedback after each move,
either by informing the user that the move was correct or providing
assistance in case of error. Additionally, participants were allowed
to verbally request assistance. Both a request for assistance and an
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Table 1: Robot actions and associated modalities

Action Modality ~ Description

Display ~ Show "Wrong" and a X mark
Wrong choice  Speaker  "Sorry, but that is wrong."
Gesture  "Negative" gesture

Display  Show the correct and a wrong shape
Partial help Speaker  "It’s either $Shapel or $Shape2."
Gesture  Point to correct and a wrong shape

Display ~ Show the correct shape
Complete help  Speaker  "Correct shape is $Shape."
Gesture  Point towards the correct shape

Display  Show "Correct" and a check mark
Correct choice  Speaker  "Correct, next move."
Gesture  Confirmatory gesture

incorrect move were time-penalized; however, the penalty for an
incorrect move was higher (30 s) than for a requested assistance
(15 s). Thus, motivating the users to engage in the interaction with
the robot. The available robot actions and associated modalities
are shown in Table 1. High, medium and low level of assistance
correspond to complete help, partial help, and wrong choice actions,
respectively. Three modalities, speech, gesture, and display, relied
on the availability of their corresponding resources, speaking floor,
board space, and user attention, respectively.

The pilot study was performed with six participants, of ages
between 24 and 32. The focus of the preliminary experiments was
on the adaptive use of modalities, while the robot assistance was
reduced to the high level. We compared the implementation of
the proposed resource-based framework with the use of all the
modalities regardless of the user input (baseline system). To eval-
uate the user behavior and interaction quality, we tracked their
performance, usage of modalities and we asked the participants to
fill in a Likert scale questionnaire. Users performed slightly better
when interacting with the robot with the resource-based modality
selection. It should be noted that the experiments were performed
with healthy participants, and some participants found the exercise
easy to do and minimally interacted with the robot.

The preliminary results will allow us to identify user profiles
in order to develop a personalized interaction with the robot, for
example, to learn about the user’s preferred interaction modality.
It will also allow us to propose personalized assistance strategies
on how to improve individual user performance. In the future, we
plan to perform studies with patients with MCI.
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