
Searching and Tracking People in Urban Environments

with Static and Dynamic Obstacles

Alex Goldhoorna,∗, Anaís Garrella, René Alquézara, Alberto Sanfeliua

aInstitut de Robòtica i Informàtica Industrial (CSIC-UPC). Llorens Artigas 4-6, 08028
Barcelona, Spain.

Abstract

Searching and tracking people in crowded urban areas where they can be oc-

cluded by static or dynamic obstacles is an important behavior for social robots

which assist humans in urban outdoor environments. In this work, we propose

a method that can handle in real-time searching and tracking people using a

Highest Belief Particle Filter Searcher and Tracker. It makes use of a modified

Particle Filter (PF), which, in contrast to other methods, can do both search-

ing and tracking of a person under uncertainty, with false negative detections,

lack of a person detection, in continuous space and real-time. Moreover, this

method uses dynamic obstacles to improve the predicted possible location of the

person. Comparisons have been made with our previous method, the Adaptive

Highest Belief Continuous Real-time POMCP Follower, in different conditions

and with dynamic obstacles. Real-life experiments have been done during two

weeks with a mobile service robot in two urban environments of Barcelona with

other people walking around.

Keywords: Urban Robotics, Search and Rescue Robots,

Human-robot-interaction, Particle Filter

Preprint submitted to Journal Robotics and Autonomous Systems September 30, 2017

Figure 1: Dabo performs the search-and-track task with a target (wearing a tag for recognition)

in different urban environments.

1. Introduction

Mobile service robots should be able to search and track persons in urban

environments in order to assist and serve people. However, these areas con-

tain obstructions, such as static obstacles (e.g. walls, pillars, trees, etc.), and

dynamic obstacles (e.g. other people walking around, passing bikes, cars, etc.)5

which make the task of searching and tracking a person difficult. And the de-

tection failures and noise introduced by the sensors make it even more complex.

Research into human-robot interaction in the field of search-and-track is still

new in comparison to traditional service robotics tasks, such as serving food in

hospitals. Therefore, prior research in this particular field is relatively minimal.10

Most of the current research predominantly studies robots that participate in

human-robot interaction, such as companions [1].

Another important application is the search-and-rescue task in urban en-

vironments where robots: (i) find and rescue victims in the rubble or debris

as efficiently and safely as possible, and (ii) ensure that human rescue work-15

ers’ lives are not put at great risk [2]. Generally, USAR (Urban Search and

Rescue) environments are highly cluttered, and all robots that operate in these

environments do not have a priori information about dynamical obstacles in the

scene. These conditions make it extremely difficult for robots to autonomously

navigate in the scenes and identify victims, therefore, current applications of20

∗Corresponding author
Email address: agoldhoorn@iri.upc.edu (Alex Goldhoorn)

2

mobile robots in USAR operations require a human operator. Furthermore,

autonomous urban service robots should be able to search and track people in

a safe and natural way [3].

In this paper, we present a new method, the Highest Belief Particle Filter

Searcher and Tracker (HB-PF Searcher & Tracker) for searching and tracking25

a person. Our presented method is able to work in urban environments with

dynamic and static obstacles, under uncertainty, person’s false detections, lack

of a person’s detection, in continuous space and in real-time. Furthermore, we

present an extension which takes dynamic obstacles into account when predict-

ing the person’s location. Moreover, we compare our method with our previ-30

ously presented Adaptive Highest Belief CR-POMCP Follower [4] in different

areas with dynamic obstacles present, see Section 5.1.

Additional considerations are required to make the system work properly.

For example, sensory noise, normally Gaussian, is inevitable in real-life sit-

uations, and false negative and false positive detections tend to occur. The35

presented method takes the first two problems into account, and can handle

situations with false positive detections of a short duration.

Finally, the validation of the method is accomplished throughout an exten-

sive set of simulations and real-life experiments, see Fig. 1. For the later we

accomplished of about 1.3 km of autonomous navigation, with more than an40

hour of successful experiments during two days of experimentation.

First, the related work is discussed, then Section ?? In Section 4, the ex-

perimental setup is introduced and in Section 5 the simulations and the real

experiments are discussed. Finally, the last section contains the discussion and

conclusions of our work.45

2. Related Work

In this work, we present several methods that can be used by an autonomous

robot, in order to search and track a person in an urban dynamic cluttered

environment.

3

Trafton et al. [8] used a cognitive architecture, ACT-R [9], to play hide-and-50

seek. Their research was based on experiments with a 3.5 year old child. They

used a layered architecture in which the lower layer contained navigation, and

the top layer the cognitive architecture. The created ACT-R module learned

how to play hide-and-seek generating new rules. In [10], a human and robot

were following an other person cooperatively. Both methods focused on cognitive55

methods, which require a high amount of symbolic knowledge of the world.

3. Highest Belief Particle Filter Searcher and Tracker

Our goal is to search and track a person in an urban environment that has

static and dynamic obstacles. We have already seen in the related work that

there exist different good techniques for searching or tracking only. In our work60

we present a method that is based on the particle filter, but it can do searching

and tracking using the same algorithm.

3.1. Basic Particle Filter

A particle filter can be used to track the state of a robot [24], or a robot and

a person [25]. In our case we track and search for the person, and therefore the65

state is defined as the position of the person: s = (x, y). Since the exact state

(i.e. position of the person) is not known, it is estimated by using a large number

of particles. A basic particle filter is shown in Algorithm 1. The particles are

first propagated in line 3 according to p(st|sit−1
), then the weight of particle i

is calculated in line 4, and after this, resampling is done in lines 7-10.70

3.2. Modifications of the Basic Particle Filer for Search-and-Track

To make the particle filter suitable for searching, we have made two impor-

tant changes. First, the initial distribution is based on the initial observation,

taking into account the locations where the person could be hidden. Second,

the lack of observation to update the particles is also used.75

The initialization of the N particles is done randomly based on the observa-

tion o = (oagent, operson), as shown in Algorithm 2. If the person is visible then

4

Algorithm 1 A basic particle filter.

1: S̄t = St = ∅
2: for i = 1 to N do

3: sample sit ∼ p(st|sit−1
)

4: sit,w = p(o|sit)
5: S̄t = S̄t ∪ {sit}
6: end for

7: for i = 1 to N do

8: sample sit ∈ S̄t with probability sit,w

9: St = St ∪ {sit}
10: end for

Algorithm 2 Initialization of the modified particle filter.

1: function Init(o,N)

2: S = ∅
3: for i = 1 to N do

4: if operson = ∅ then ⊲ i.e. person not visible

5: s = RandomNotVisiblePos(o)

6: else

7: s = o

8: end if

9: s = N (s, σpersonI)

10: S = S ∪ {s}
11: end for

12: return S

13: end function

its position is used, otherwise a random position in the map that is not visible

to the seeker is chosen. After that, Gaussian noise is added to the position of

the person in line 9.80

In the prediction step we assume the person to have moved according to a

Gaussian (with standard deviation σperson) in a random direction (θ):

st = st−1 +N (1, σperson)[cos θ, sin θ]
T (1)

The update step was modified, see Algorithm 3, such that the particle weight

5

Algorithm 3 Changed update step that also takes into account cases where

there is no observation, using w(s, o), see Eq. (2).

1: function Update(o,S,N)

2: ∀s∈S : sw = w(s, o)

3: ∀s∈S : sw = sw/
∑

k∈S kw ⊲ normalize

4: S̄ = ∅
5: for i = 1 to N do

6: s̄ sample from S ⊲ with probability s̄w

7: S̄ = S̄ ∪ {s̄}
8: end for

9: S = S̄

10: end function

is changed, even if no observation is available of the person:

w(s, o) =







































0, if ¬isValid(s)

e−|operson−s|2/σ2

w , if isValid(s) ∧ operson 6= ∅

wcons, if isValid(s) ∧ operson = ∅ ∧ Pvis(o, s) = 0

winc(1− Pvis(o, s)), otherwise

(2)

where isValid checks if the state is a valid free position in the map. If the person

is visible, a probability is calculated based on the distance between the observed

location and the particle location, where for a higher σw higher distances are

accepted (we set σw = 1.0). If the person is not visible, then we can not measure

the error of the particles (distance), but we can only check if the particle should

be visible or not to the agent, and therefore is at least consistent or not. If

the particle is not visible, it is consistent with the observation, and we give it

a constant weight wcons (0.01). However, if there is a probability of seeing the

particle Pvis(o, s) (Eq. (3)), then a lower weight winc << wcons is used (we set it

to 0.001). The visibility probability is defined as the following piecewise linear

6

formula:

Pvis(o, s) =























0, if RayTrace(oagent, s) not free

pv,max, if d < dv,max

max(0, pv,max − αvis(d− dv,max)), otherwise

(3)

where RayTrace is used to check the visibility, and d = ‖s − oagent‖. The

constants for our robot setup were estimated based on the real experiments,

and resulted in: dv,max = 3.0, pv,max = 0.85 and αvis = 0.17.

3.3. Highest Belief Calculation to Estimate the Person Location

The particle filter method, until now, gives a probability map of the person’s85

location. Like discussed previously and in [4], we decided to use a grid to find the

highest belief. To prevent the agent from changing too quickly from one point to

another, the goal is maintained during several time steps (3 steps in simulation

and 3 s during the experiments). In larger maps the belief grid cells should not

be too small in order to accumulate enough particles. Also a maximum search90

distance of 25 m (dmax_search) was set in order to have the robot not go too far;

only in the case of not finding any highest belief in this area, the search space

was increased to the whole map.

Like in [21], the observed location by the robot is used when the person is

visible such that the precision is higher and we do not depend on the grid.95

3.4. Extension of the method to handle Dynamic Obstacles

In our previously presented method [21], we predicted the possible locations

of the person based on the known map of the environment. For the method to

work with dynamic obstacles, we added false negatives to the prediction phase.

In this work, however, we also take into account dynamic obstacles that can100

occlude the person. For this, we have also taken into account the detected

dynamic obstacles when executing the RayTrace function.

The use of dynamic obstacles in the prediction of the particle locations helps

to prevent falsely not detecting the user. In the case of not taking into account

7

dynamic obstacles, the system assumes - after not detecting anything - that the105

area in its surrounding is free. When dynamic obstacles are taken into account,

particles behind them are given a higher weight wcons, see Eq. (2). Handling

false positive detections is more difficult, but they can be partly treated by

the particle filter method. Several iterations are needed in which the incorrect

observation is detected in order to concentrate all the particles to that location.110

In a worst-case scenario where most particles are concentrated at the incorrect

location they are propagated away from it as soon as the incorrect detection is

lost.

4. Experimental Setup

In this section the experimental setup is explained: first we give some details115

about the used mobile robot and the used algorithms to localize the robot

and person; next, the environments in which the experiments were done are

commented.

4.1. The Robot

For the experiments we have used our mobile service robot Dabo, which has120

been created during the URUS project [26], together with its twin Tibi. They

were designed to work in urban pedestrian areas and to interact with people.

Tibi and Dabo are based on a two-wheeled Segway RMP200 platform, which

can work as an inverted pendulum in constant balancing, can rotate on the

spot (nonholonomic), and they have wheel encoders providing odometry and125

inclinometers providing pitch and roll data. To perceive the environment they

are equipped with two Hokuyo UTM-30LX 2D laser range sensors used to detect

obstacles and people, giving scans over a local horizontal plane at 40 cm above

the ground, facing forward and backward. The lasers have a long detection

range of 30 m, and a field of view of 270◦ which is limited to 180◦ for each of130

the lasers because of the carcass of the robot, which leaves a blind zone of about

47 cm on each side. A PointGrey Ladybug 360◦ camera located on the top of

the head is used for computer vision purposes.

8

As social robots, Tibi and Dabo (see Fig. 1) are meant to interact with

people, and to perform this they have: a touchscreen, a speaker, movable arms135

and head, and LED illuminated face expressions. Power is supplied by two sets

of batteries, one for the Segway platform and one for the computers and sensors,

giving about five hours of full working autonomy. Two onboard computers (Intel

Core 2 Quad CPU @ 2.66 and 3.00 GHz with 4 GB RAM) manage all the running

processes and sensor signals. An external laptop (Intel Core i5-2430M @ 2.40140

and 3.00 GHz with 4 GB RAM) is used to run the search-and-track algorithm,

and for external monitoring. As operating system the systems run Ubuntu 14.04

with ROS (Robot Operating System), a middleware.

4.2. People Recognition And Dynamic Obstacles

4.3. Robot Mapping and Navigation145

4.4. Environments and Maps

Since there are no standard search-and-track data sets, we have used a large

environment (Telecos Square Fig. 2(b) and 2(c), 60 m × 55 m of which 1400 m2 is

accessible), which represent diverse pedestrian urban environmental types, and

a smaller environment, the FME (Facultat de Matemàtiques i Estadística) lab;150

17 m × 12 m, 170 m2 accessible). Both outdoor urban environments are located

respectively at the North and South Campus of the Universitat Politècnica de

Catalunya (UPC), Barcelona, Spain.

The FME environment is outdoor, but partly covered by a roof, and since

no obstacles were in the field we placed several artificial ones, as can be seen155

in Fig. 2(a). The Telecos Square is the largest environment which contains a

square, and two covered areas with several columns. Through both areas people

pass by frequently, especially the last since it is the center of the campus.

5. Simulations and Real-life Experiments

To verify the methods, first we did simulations, and thereafter real-world160

experiments were done in urban environments.

9

(a)

(b)

(c)

Figure 2: The FME map (a) with a size of 17 m × 12 m, and an accessible surface to the

robot of about 170 m2. The Telecos Square map (b,c) with a size of 60 m × 55 m of which

about 1400 m2 is area accessible to the robots. The center image shows the map used for

localization with the robot (blue), detected people (green), and the laser range detections.

The right image shows the probability map, i.e. belief, of where the person could be; here red

indicates a high, white a low, and light blue zero probability. The blue circle indicates the

location of the robot, the light blue circles are the locations of other nearby people, and the

cross is the robot’s goal.

10

5.1. Simulation

The maps contain discrete cells which either are free or obstacles, . A ray

tracing algorithm is used in simulation to detect visibility. Although the map

contains cells, coordinates of the agents are continuous, and for each iteration165

the agents do a step of 1 cell distance (also in diagonal, thus not
√
2). The

vision of the robot is limited due to occlusions by obstacles and the maximum

visibility distance. The latter is estimated using real experimental data, like

explained in Section 3. The visibility probability Eq. (3) is also used to simulate

observations, i.e. an observation with the real person’s location is returned with170

a probability of Pvis(o, s), otherwise an empty observation is returned. The

simulations do not include neither acceleration, nor friction, nor collision, for

simplicity. Furthermore, the agents are not allowed to be neither outside the

map nor on top of an obstacle.

The algorithms calculate a goal, and in the simulator the agent is moved one175

step at a time in the goal’s direction using the shortest path. The persons are

simulated by giving them goals to go to. They start at a random position with

a random goal. In each iteration, the goal is approached one step, and when

the goal is reached, a new random goal is chosen.

A noisy crowded environment has been simulated by adding groups from 10180

to 100 people to the scene. These people moved, as the person to be found, to

randomly selected goals. By doing this, they reduce the robot’s visibility.

The tested algorithms are the HB-PF Searcher and Tracker, the Adaptive

HB-CR-POMCP Follower, both with and without the use of dynamic obstacles.

As a reference method, we added a following seeker which always sees the person,185

the See All Follower, independent of its distance and obstacles.

More than 8000 experiments have been done, repeating each of the conditions

at least 140 times. For each run of simulations, the robot’s start position, and

the person’s start and end position were generated randomly. To make the

comparison as fair as possible, the same positions were used for the five tested190

algorithms, such that the initial state and the person’s movement were the same,

which was repeated several times for the same conditions.

11

The experiments are separated in search, and track. In the first, the person

starts hidden from the seeker and stays there, and the simulation stops when

the seeker finds the person and is close to it. Simulations are stopped if the195

maximum time passed: 500 steps for the FME map, and 5000 for the Tel.

Square map. Here we measure the time (steps) the seeker needs to see the

person. In the track experiments, the seeker starts close to the person and 500

steps are done for the FME map, and 1000 for the Tel. Square map. Here we

measure the distance to the person, the time of visibility, and the recovery time,200

which is the time the agent needs on average to see the person again.

Furthermore, a measurement of the belief error εb has been introduced which

indicates the error of the person’s location in the belief with respect to the real

location. The value εb is a weighted distance between the person’s location in

the belief and the real location (only measured in simulation):

εb =
∑

x∈A

bx‖x− p‖ (4)

where A is the discrete map, x represents a grid cell, and bx is the belief of

cell x. The average of this value is used to compare the beliefs.

5.2. Algorithm Parameter Values

The values of the parameters used in the simulations and real experiments205

are shown in Table 1, and were obtained experimentally. The algorithms update

their particles or belief every iteration, and the highest belief points are calcu-

lated every 3 s in the real experiments and every 3 iterations in the simulations

if the person is not visible.

5.3. Results210

The results of the simulations, the 140 repetitions, are shown in

In the search phase the first visible step (the discrete time until the person

was found) was measured, for which only a significant difference was found with

the See All Follower. The high standard deviation is due to the large difference

in the starting position of the robot and person for the simulations. The distance215

12

Table 1: The parameter values used during the real experiments and simulations. ∗For simu-

lation we use discrete time steps, for the real experiments seconds are used.

Parameter FME Tel.Sq.

N 1000 5000

σperson (m) 0.3

wcons 0.01

winc 0.001

σw (m) 1.0

HB cell size (m × m) 1× 1 3.8× 3.8

Belief update time∗ 3 s; 3 steps

dmax_search (m) 10 25

to the person during the tracking phase was found to be significantly less for the

HB-PF Searcher & Tracker (p < 0.001; Wilcoxon Ranksum test) in comparison

with the Ad. HB-CR-POMCP Follower, except for in the FME map without

people walking around. When looking at the belief error Eq. (4), there is no

clear difference between the methods.220

The visibility was found to be significantly higher (p < 0.001; Fisher’s exact

test) for the HB-PF Searcher & Tracker, except for the case of 100 random

people walking around. For the HB-PF Searcher & Tracker algorithm, the use

of the detected dynamic obstacles in the algorithm had a positive effect on the

distance to the person when tracking, on the bigger map (p < 0.01; Wilcoxon225

Ranksum test). Also for the visibility this had a positive influence.

The runtime of the algorithms is not significantly different, for search the

average was about 250 ms/iteration, and for track about 216 ms/step. Note

that the run time mainly depends on the number of particles for the HB-PF

Searcher & Tracker or on the number of belief points for the Ad. HB-CR-230

POMCP Follower.

Using the dynamic obstacles, which have been detected to update the prob-

ability map, has a great advantage in certain situations, as shown in Fig. 3.

13

Table 2:

Type of Measurement N
u
m

.
P
er

s.

S
ee

A
ll

F
.

H
B
-P

F
S
&

T
(d

)

H
B
-P

F
S
&

T

A
d
.H

B
-C

R
-

P
O

M
C

P

F
.(

d
)

A
d
.H

B
-C

R
-

P
O

M
C

P
F
.

First visible step 0 2.4± 3.2 4.5± 5.8 4.7± 8 5.3± 6.9 5± 6.5

(time steps) 10 3.1± 3.7 7.2± 9.1 6.9± 10.7 7.7± 11.8 7.4± 10.1

(search) 100 8.4± 6.4 67.4± 71.1 90± 111.1 65.2± 78.8 59.9± 67.5

Visibility 0 100% 93.7% 93.4% 94.5% 93.9%

(%) 10 100% 59.3% 56.5% 59.5% 58.4%

(track) 100 100% 2.4% 1.8% 2.8% 2.8%

Distance to pers. 0 1.0± 0.4 2± 1.4 2± 1.4 1.9± 1.5 1.9± 1.5

(m) 10 1.0± 0.4 3.2± 2.5 3.4± 2.6 3.3± 2.8 3.5± 2.9

(track) 100 1.0± 0.4 5.6± 2.9 5.4± 2.8 6± 3.2 6± 3.2

Belief Error 0 4.2± 3 4.4± 3.3 5.1± 3.1 5± 3.2

(ǫb) (m) 10 5.1± 3.2 5.4± 3.4 6± 3.1 5.7± 2.9

(search) 100 7.4± 1.9 8± 3.4 7.7± 1.8 7.5± 1.8

Belief Error 0 1.1± 1.1 1.1± 1.1 0.8± 1.3 0.9± 1.4

(ǫb) (m) 10 2.5± 2.5 2.8± 2.7 2.5± 2.9 2.6± 3

(track) 100 6.4± 1.9 6.3± 2.9 6.6± 2 6.7± 2

Recovery time 0 1.2± 0.5 2.4± 1.9 2.5± 2.1 2.4± 3.2 2.7± 3.8

(time steps) 10 2.2± 3.8 3.5± 4.4 3.9± 4.6 3.6± 5.2 3.8± 5.5

(track) 100 3.2± 5.7 48.8± 54.5 63± 67.2 46.5± 55.8 46.7± 53.9

14

Table 3:

Measurement N
u
m

.
P
er

s.

S
ee

A
ll

F
.

H
B
-P

F
S
&

T
(d

)

H
B
-P

F
S
&

T

A
d
.H

B
-C

R
-

P
O

M
C

P

F
.(

d
)

A
d
.H

B
-C

R
-

P
O

M
C

P
F
.

First visible step 0
13.0± 110± 106.2± 114.6± 110.4±

16.2 336.2 369.6 264.3 233.2

(time steps) 10
13.8± 105.6± 96.5± 93.7± 107.4±

21.7 285.5 273.8 189.3 237.1

(search) 100
14.4± 115.6± 127.7± 121.2± 117.5±

17.2 264.9 265.9 300.5 246.9

Visibility 0 100% 62.7% 61.6% 58.5% 60.4%

(%) 10 95.6% 51.2% 45.6% 48.8% 49.0%

(track) 100 70.5% 13.8% 12.8% 15.9% 15.7%

Distance to pers. 0.0 0.8± 0.4 8.2± 9.1 8.6± 9.5 8.5± 9.0 8.3± 9.1

(m) 10.0 0.8± 0.4 9.4± 9.4 11.0± 10.4 9.8± 9.6 9.6± 9.4

(track) 100.0 0.8± 0.4 13.6± 9.4 15.4± 10.4 13.8± 9.7 13.8± 9.6

Belief Error 0.0 25.4± 11.8 26.1± 9.4 23.8± 6.9 23.4± 6.5

(ǫb) (m) 10.0 25.9± 10.0 26.5± 9.8 23.0± 6.9 23.4± 7.1

(search) 100.0 25.4± 9.3 25.2± 9.2 23.2± 6.2 23.3± 6.9

Belief Error 0.0 7.5± 10.1 7.8± 10.2 7.7± 9.4 7.4± 9.6

(ǫb) (m) 10.0 9.0± 10.2 10.8± 11.3 9.2± 10.0 9.0± 9.9

(track) 100.0 14.9± 9.2 16.7± 10.4 14.1± 9.3 14.2± 9.2

Recovery time 0 1.2± 0.5 14.9± 31.6 15.3± 32.5 19.5± 34.2 19.1± 34.8

(time steps) 10 2.2± 3.8 13± 27.9 15.6± 35.5 15.4± 31.6 15.5± 32.2

(track) 100 3.2± 5.7 22.2± 42.7 24.8± 48.6 19.7± 41.2 20.1± 41.9

Recovery dist. 0.0 1.0± 0.4 11.9± 25.3 12.2± 26.0 15.6± 27.4 15.3± 27.8

(m) 10.0 1.8± 3.0 10.4± 22.3 12.5± 28.4 12.3± 25.3 12.4± 25.8

(track) 100.0 2.6± 4.6 17.8± 34.2 19.8± 38.9 15.8± 33.0 16.1± 33.5

15

(a) (b)

Figure 3: (a) The simulated seeker using dynamic obstacles, and (b) not using dynamic

obstacles. The left image of the image pair shows the person as red circle, the blue circle as

the robot, and yellow circles are other people walking around. The black cells are obstacles,

light gray are cells visible to the person, and dark gray are not visible cells. The right part

shows the probability map, i.e. belief, of where the person could be where red is a high

probability, white low, and light blue zero.

Left can be seen the situation where there are particles maintained behind the

detected dynamic obstacles, whereas in Fig. 3(b) that area is already cleaned.235

In this simulation the first method needed 21 steps to find the person, whereas

the latter needed 366 steps, because it went around the obstacle, thinking that

the person could only be hidden behind obstacles. See a demonstration video on

http://www.iri.upc.edu/groups/lrobots/search-and-track/ras2016/.

5.4. Real-life Experiments240

6. Conclusion

Acknowledgements

This work has been partially funded by the EU project AEROARMS Euro-

pean project H2020-ICT-2014-1-644271 and the CICYT project DPI2013-42458-

P.245

16

http://www.iri.upc.edu/groups/lrobots/search-and-track/ras2016/

References

[1] K. Dautenhahn, S. Woods, C. Kaouri, M. L. Walters, K. L. Koay, I. Werry,

What is a robot companion-friend, assistant or butler?, in: Proceedings

of the IEEE International Conference on Intelligent Robots and Systems

(IROS), 2005, pp. 1192–1197.250

[2] B. Doroodgar, M. Ficocelli, B. Mobedi, G. Nejat, The search for survivors:

Cooperative human-robot interaction in search and rescue environments

using semi-autonomous robots, in: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010, pp. 2858–2863.

[3] A. Garrell, M. Villamizar, F. Moreno-Noguer, A. Sanfeliu, Proactive be-255

havior of an autonomous mobile robot for human-assisted learning, in: Pro-

ceedings of IEEE RO-MAN, 2013, pp. 107–113.

[4] A. Goldhoorn, A. Garrell, R. Alquézar, A. Sanfeliu, Continuous real time

pomcp to find-and-follow people by a humanoid service robot, in: Pro-

ceedings of the IEEE-RAS International Conference on Humanoid Robots,260

2014, pp. 741–747.

[5] J. G. Trafton, A. C. Schultz, D. Perznowski, M. D. Bugajska, W. Adams,

N. L. Cassimatis, D. P. Brock, Children and robots learning to play hide and

seek, Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-

robot interaction (2006) 242–249.265

[6] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, Y. Qin,

An integrated theory of the mind., Psychological review 111 (4) (2004)

1036–60.

[7] W. G. Kennedy, M. D. Bugajska, M. Marge, W. Adams, B. R. Fransen,

D. Perzanowski, A. C. Schultz, J. G. Trafton, Spatial Representation and270

Reasoning for Human-Robot Collaboration, Artificial Intelligence (2007)

1554–1559.

17

[8] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (Intelligent Robotics

and Autonomous Agents), The MIT Press, 2005.

[9] M. Montemerlo, S. Thrun, W. Whittaker, Conditional particle filters for275

simultaneous mobile robot localization and people-tracking, in: Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA), Vol. 1, IEEE, 2002, pp. 695–701.

[10] A. Goldhoorn, R. Alquézar, A. Sanfeliu, Analysis of methods for playing

human robot hide-and-seek in a simple real world urban environment, in:280

ROBOT (2), Vol. 253 of Advances in Intelligent Systems and Computing,

Springer, 2013, pp. 505–520.

[11] A. Sanfeliu, J. Andrade-Cetto, M. Barbosa, R. Bowden, J. Capitán,

A. Corominas, A. Gilbert, J. Illingworth, L. Merino, J. M. Mirats,

P. Moreno, A. Ollero, J. a. Sequeira, M. T. J. Spaan, Decentralized Sensor285

Fusion for Ubiquitous Networking Robotics in Urban Areas, Sensors 10 (3)

(2010) 2274–2314.

18

	Introduction
	Related Work
	Highest Belief Particle Filter Searcher and Tracker
	Basic Particle Filter
	Modifications of the Basic Particle Filer for Search-and-Track
	Highest Belief Calculation to Estimate the Person Location
	Extension of the method to handle Dynamic Obstacles

	Experimental Setup
	The Robot
	People Recognition And Dynamic Obstacles
	Robot Mapping and Navigation
	Environments and Maps

	Simulations and Real-life Experiments
	Simulation
	Algorithm Parameter Values
	Results
	Real-life Experiments

	Conclusion

