
Chapter 12
Model Predictive Control of Water Networks
considering Flow

Abstract Water transport networks (WTN) are generally used to convey water from
production plants or sources to storage tanks close to the consumptions areas. Tanks
are usually built with enough elevation to guarantee the service pressure required
for their associated consumption area. WTNs contain large water mains and control
elements, such as pumping stations and valves, linking the sources to consumption
areas. Their operational control involves planning the control actions at pumping
stations and valves ahead in time for periods of 24 to 48 hours, according to demand
prediction. Then, the control problem is a resource allocation problem, with costs
associated to water acquisition and treatment (production) and to electricity costs of
pumping operations. Model predictive control (MPC) techniques are very suitable
to perform the real-time operational control of water transport networks, as they can
compute, ahead of time, the best admissible control strategies for valves, pumps, or
other control elements in a network to meet demands and achieve an operational
goal. Typical goals in the management of water transport networks are: minimum
energy consumption, cost minimization, service safety, smoothness of control ac-
tions, pressure regulation and others. This chapter will show the fundamentals of
control oriented modelling in water transport networks and it will be shown, with
real case studies that MPC can provide an efficient solution to predictive water re-
source allocation, which outperforms traditional operational management, improv-
ing the above-mentioned operational goals.

12.1 Introduction

Decision support systems provide useful guidance for operators in complex net-
works, where resources management best actions are not intuitive. Optimization
and optimal control techniques provide an important contribution to a smart man-
agement strategy computation for drinking water networks (DWN), see [26], [16],
[12]. Similarly, problems related to modelling and control of water supply, transport
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and distribution systems have been object of important research efforts during the
last few years (see, e.g., [3], [8], [1], [10].

In general, DWNs contain multiple tanks, pumping stations, valves, water sources
(superficial and underground) and sectors of consumer demand. Operational con-
trol of DWNs using optimal control techniques has been largely investigated (see
[3]). This chapter proposes the use of model predictive control (MPC) techniques
to generate flow-control strategies in a transport network, delivering water from the
drinking water treatment plants to the consumer areas to meet future demands. Set-
points for pumps and valves are computed by optimizing a performance index ex-
pressing operational goals such as economic cost, safety water storage and smooth-
ness in flow control actions. The main point is to highlight the advantages of using
optimization-based control techniques, such as MPC, to improve the performance
of a water transport network, taking into account their large-scale nature (in terms
of number of dynamic elements and decision variables), the nature of the desired
control objectives and the type and behaviour of the system disturbances (drinking
water demands). The developed control strategies have been tested on the drinking
water transport network of Barcelona.

12.2 Problem statement

12.2.1 Operational control of water networks

Complex nonlinear models are very useful for off-line operations (for instance, cali-
bration and simulation). Detailed mathematical representations such as the pressure-
flow models for DWNs allow the simulation of those systems with enough accuracy
to observe specific phenomena, useful for design and investment planning. How-
ever, for on-line computation purposes such as those related to global management,
a simpler and control-oriented model structure must be conveniently selected. This
simplified model includes the following features:

(i) Representativeness of the main network dynamics: It must provide an evalua-
tion of the main representative hydrological/hydraulic variables of the network
and their response to control actions at the actuators.

(ii) Simplicity, expandability, flexibility and speed: It must use the simplest ap-
proach capable of achieving the given purposes, allowing very easily to expand
and/or modify the modelled portion of the network.

(iii) Amenability to on-line calibration and optimization: this modelling approach
must be easily calibrated on-line using data from the telemetry system and
embedded in an optimization problem to achieve the network management
objectives.

Figure 12.1, adapted from [23] and [14], shows a hierarchical structure for a real-
time control (RTC) water system. There, the MPC, as the global control law, deter-
mines the references (set points) for the local controllers placed at different elements
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Fig. 12.1 Hierarchical structure for RTC system.

of the networked system. These references are computed according to measurements
taken from sensors distributed around the network. The management level provides
the MPC with its operational objectives, which are reflected in the controller design
as the performance indices to be enhanced, which can be either minimized or max-
imized, depending on the case. Finally, water systems control requires the use of a
supervisory system to monitor the performance of the different control elements in
the network (sensors and actuators) and to take appropriate correcting actions in the
case where a malfunction is detected, to achieve a proper fault-tolerant control [2].

In most water networks, the operational control is managed by the operators from
the telecontrol centre using a SCADA (Supervisory Control And Data Acquisition)
system. Operators are in charge of supervising the network status using the teleme-
try system and providing the set-points for the local controllers, which are typically
based on PID algorithms. The main goal of the operational control of water net-
works is to meet the demands at consumer sites, but at the same time with minimum
costs of operation and guaranteeing pre-established volumes in tanks (to preserve
the satisfaction of future demands) and smooth operation of actuators (valves and
pumps) and production plants.

Water consumption in urban areas is usually managed on a daily basis, because
water demand generally presents daily patterns and reasonably good hourly 24-
hour-ahead demand predictions may, in general, be available. Therefore, this hori-
zon is appropriate for evaluating the effects of different control strategies on the
water network, with respect to operational goals. However, other horizons may be
more appropriate in specific utilities. The approach proposed here is based on de-
mand satisfaction at the transport level, taking into account the supply conditions.
For illustration, it uses -but is not restricted to- a 24-hour horizon, with hourly sam-
pling. When applied in real time conditions, the computation of optimal strategies
is updated, with new data from the water network, every hour with a sliding 24-hour
horizon.
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At the supply water basin level, strategic planning deals with sustainable use of
the water resources, seasonal variations in reservoirs and water levels, etc., so that
planning horizon, sampling times and control time steps are usually much longer.
In this work, the long-term planning objectives for the supplies are taken into ac-
count as bands of admissible requests from the supplies to the transport, production
and distribution areas. These admissible bands define bounds on flow from reser-
voir, aquifer, and river sources. Production plant limitations are also used and these
may vary according to weather-related factors, operational schedules and/or break-
downs. The computation of optimal strategies must take into account the dynam-
ics of the complete water system and 24-hour-ahead demand forecasts, availability
predictions in supply reservoirs and aquifers, defined by long-term planning for sus-
tainable use and predictions of production plant capacity and availability. Moreover,
the telemetry system and operational database will provide the current state of the
water system.

12.2.2 Operational control of water network using MPC

Water networks are very complex multivariable systems. MPC provides suitable
techniques to implement the operational control of water systems to improve their
performance, since it allows to compute optimal control strategies ahead in time for
all the control elements [5, 13]. Moreover, MPC allows taking into account phys-
ical and operational constraints, the multivariable input and output nature, the de-
mand forecasting requirement, and complex multi-objective operational goals of
water networks. The optimal strategies are computed by optimizing a mathemati-
cal function describing the operational goals in a given time horizon and using a
representative model of the network dynamics, as well as demand forecasts.

12.3 Proposed approach

The aim of using MPC techniques for controlling DWN is to compute, ahead in
time, the input actions to achieve the optimal performance of the network accord-
ing to a given set of control goals. MPC strategies have some important features
to deal with complex systems such as DWNs, namely the amenability to include
disturbance forecasts, physical constraints and multivariable system dynamics and
objectives in a relatively simple way.
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Fig. 12.2 Example of a basic topology of a generic drinking water transport network. Note that
the interaction of the main constitutive elements shown here: sources supply water to the system
by means of pumps or valves, depending of the nature of the particular source (superficial or
underground). Water is moved by using manipulated actuators in order to fill detention tanks and/or
supply water to demands sectors.

12.3.1 Modelling

Several modelling techniques dealing with DWNs have been presented in the liter-
ature; see, e.g., [3, 15]. Here, a control-oriented modeling approach that considers
a flow-model is outlined, which follows the principles presented by the authors in
[7, 8] and [19]. The extension to include the pressure-model can be found in Chap-
ter Chapter 13. A DWN generally contains a set of pressurized pipes, water tanks at
different elevation, and a number of pumping stations and valves to manage water
flows, pressure and elevation in order to supply water to consumers.

The DWN model can be considered as composed of a set of constitutive elements,
which are presented and discussed below. Figure 12.2 shows, in a small example,
the interconnection of typical constitutive elements.
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12.3.1.1 Tanks

Water tanks provide the entire DWN with the storage capacity of drinking water at
appropriate elevation levels to ensure adequate water pressure service to consumers.
The mass balance expression relating the stored volume v in the n-th tank can be
written as the discrete-time difference equation

vn(k + 1) = vn(k) + ∆t

∑
j

q jn
in (k) −

∑
h

qnh
out(k)

 , (12.1)

where q jn
in (k) denotes the manipulated inflows from the j-th element to the n-th tank,

and qnh
out(k) denotes the manipulated outflows from the n-th tank to the h-th element

(which includes the demand flows as outflows). Moreover, ∆t corresponds with the
sampling time and k the discrete-time instant. The physical constraint related to the
range of admissible storage volume in the n-th tank is expressed as

vmin
n ≤ vn(k)≤ vmax

n , for all k, (12.2)

where vmin
n and vmax

n denote the minimum and the maximum admissible storage ca-
pacity, respectively. Notice that vn might correspond with an empty tank; in practice
this value can be set as nonzero in order to maintain an emergency stored volume.

For simplicity, the dynamic behaviour of these elements is described as a function
of volume. However, in most cases the measured variable is the tank water level (by
using level sensors), which implies the computation of volume taking into account
the tank geometry.

12.3.1.2 Actuators

Two types of control actuators are considered: valves and pumps, or more precisely,
complex pumping stations. A pumping station generally contains a number of indi-
vidual pumps with fixed or variable speed. In practice, it is assumed that the flow
through a pumping station is a continuous variable in a range of feasible values. The
manipulated flows through the actuators represent the manipulated variables, de-
noted as qu. Both pumping stations and valves have lower and upper physical limits,
which are taken into account as system constraints. As in (12.2), they are expressed
as

qmin
um
≤ qum

(k)≤ qmax
um
, for all k, (12.3)

where qmin
um

and qmax
um

denote the minimum and the maximum flow capacity of the m-
th actuator, respectively. Since this modelling is stated within a supervisory control
framework, it is assumed that a local controller is available, which ensures that the
required flow through the actuator is obtained.
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12.3.1.3 Nodes

These elements correspond to the network points where water flows are merged or
split. Thus, nodes represent mass balance relations, modelled as equality constraints
related to inflows – from other tanks through valves or pumps – and outflows, the
latter being not only manipulated flows but also demand flows. The expression of
the mass balance in these elements can be written as∑

j

q jr
in (k) =

∑
h

qrh
out(k), (12.4)

where q jr
in (k) denotes inflows from the j-th element to the r-th node, and qrh

out(k)
denotes outflows from the r-th node to the h-th element. From now on, node inflows
and outflows will be denoted by qin and qout, even if they are manipulated variables
(denoted by qu).

12.3.1.4 Demand Sectors

A demand sector represents the water demand of the network users of a certain
physical area. It is considered as a measured disturbance of the system at a given
time instant. The demand can be anticipated by forecasting algorithms, which are
integrated within the MPC closed-loop architecture. For the cases of study in this
chapter, the algorithm proposed in [21], among others discussed in Chapter 6, is
considered. This algorithm typically uses a two-level scheme composed of

(i) a time-series model to represent the daily aggregate flow values, and
(ii) a set of different daily flow demand patterns according to the day type to cater

for different consumption during the weekends and holidays periods. Every
pattern consists of 24-hourly values for each daily pattern.

The algorithm runs in parallel with the MPC algorithm. The daily series of
hourly-flow predictions are computed as a product of the daily aggregate flow value
and the appropriate hourly demand pattern. Regarding the daily demand forecast,
its corresponding flow model is built on the basis of an ARIMA time-series model-
ing approach described in [20]. Then, the structure of the daily flow model for each
demand sensor may be written as

yp(k) = −b1y(k − 1) − b2y(k − 2) − b3y(k − 3) − b4y(k − 4)
−b5y(k − 5) − b6y(k − 6) − b7y(k − 7), (12.5)

where the parameters b1, . . . ,b7 are estimated based on historical data. The 1-hour
flow model is based on distributing the daily flow prediction provided by the time-
series model in (12.5) using an hourly-flow pattern that takes into account the
daily/monthly variation as follows:
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yph(k + i) =
ypat(k, i)

24∑
j=1

ypat(k, j)

yp(k), i = 1, . . . ,24, (12.6)

where yp(k) is the predicted flow for the current day k using (12.5) and ypat(k) is the
prediction provided considering the flow pattern class corresponding to the current
day. Demand patterns are obtained from statistical analysis.

12.3.2 Control-oriented model

Considering the set of compositional elements described above, the control-oriented
model can be obtained by joining those elements and their corresponding dynamic
descriptions. In a general form, the expression which collects all these dynamics can
be written as the mapping

x(k + 1) = g(x(k),u(k),d(k)), (12.7)

where x∈X⊆Rnx corresponds to the system states, u∈U⊆Rnu denotes the system
inputs (manipulated variables) and d ∈ D ⊆ Rnd denotes the system disturbances.
g : Rnx ×Rnu ×Rnd → Rnx is an arbitrary system state function and k ∈ Z+.

In the case of DWN, (12.7) is associated to the set of tank expressions in (12.1).
Hence, a control-oriented discrete-time state-space model that can be written as [19]

x(k + 1) = Ax(k) + Bu(k) + Bp d(k), (12.8)

where, in particular, x corresponds to the water volumes v of the nx tanks, u repre-
sents the manipulated flows qu through the nu actuators (pumps and valves), and d
corresponds with the vector of nd water demands (measured disturbances affecting
the system). A, B, and Bp are the system matrices of suitable dimensions. Note that,
since the system control-oriented model of a DWN does not collect the static dy-
namics described by DWN nodes in (12.4), then (12.8) can be further rewritten as

x(k + 1) = Ax(k) +Γµ(k), (12.9a)[
Eu Ed

]
µ(k) = 0, (12.9b)

where Γ = [B Bp], µ(k) = [u(k)T d(k)T ]T , and Eu, Ed are matrices of suitable
dimensions. It can be seen that (16.10a) comes from the mass balance in tanks while
(16.10b) comes from the network nodes. Also notice that when all the network flows
are manipulated, then A is an identity matrix of suitable dimensions.
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12.3.3 Control criteria

It is possible to use different control objectives depending on the operational goals
considered by the network managers. This section describes the most common con-
trol objectives and the resultant multi-objective cost function. Therefore, this chapter
considers and discussed the following control objectives [17, 19]:

Minimization of water production and transport costs

The main economic costs associated with drinking water production are due to treat-
ment processes, water acquisition or use costs and, most importantly, to electricity
costs associated to pumping. Delivering this drinking water to appropriate pressure
levels through the network involves important electricity costs in booster pumping
as well as elevation from underground devices. In a specific case, this objective can
be mathematically formulated as the minimization of

J1(k), (α1 +α2(k))T u(k), (12.10)

where α1 corresponds to a known vector related to water production costs, depend-
ing on the selected water source, and α2(k) is a vector of suitable dimensions asso-
ciated to the energy pumping costs. Note the k-dependence ofα2 since the pumping
cost has different values according to the variable electric tariffs along a day.

Appropriate management of safety water storage

The satisfaction of water demands must be fulfilled at all times. However, some
risk prevention mechanisms need to be introduced in the tank management so that,
additionally, the stored volume is preferably maintained above certain safety value
for eventual emergency needs and to guarantee future water availability. Therefore,
this objective may be achieved by minimizing the following expression:

J2(k) =

{
(x(k) − xsafe)T (x(k) − xsafe) if x(k)≤ xsafe,

0 otherwise,
(12.11)

where xsafe is a term which determines the safety volume to be considered for the con-
trol law computation. This term might appear as unnecessary given the guarantees
of the MPC design but, since a trade-off between the other costs and the volumes is
present, the controller would tend to keep the lowest possible the tanks water vol-
umes. This fact would reduce the safety of the system to handle unexpected extra
demands, such as fire extinction, among others.
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Smoothing of control actions

Valves must also operate smoothly in order to avoid big transients in the pressurized
pipes. This fact could lead to poor pipe condition. The use of a smooth reference
changes also helps the lower-level regulator performance. Similarly, water flows re-
quested from treatment plants must have a smooth profile due to plants operational
constraints. To obtain such smoothing effect, control signal variation between con-
secutive time intervals is therefore penalized. The penalty term to be minimized is

J3(k) = ∆u(k)T ∆u(k), (12.12)

where ∆u(k), u(k) − u(k − 1).

Multi-objective performance function

The multi-objective performance function J (k) that gathers the aforementioned
control objectives, either in the case of DWN or SN can be written as

J (k) =
ϕ∑
j=1

γ jJ j(k), (12.13)

where a set of ϕ control objectives are considered and, in turn, a multi-objective
open-loop optimization problem (OOP) is stated. The prioritization of the control
objectives is performed by using the order of the mathematical cost function asso-
ciated to each objective, and also a set of appropriate weights γ j. These weights
are selected off-line by means of trial and error procedures, taking into account
the priority of each objective within the cost function. More sophisticated tuning
methodologies for tuning multiobjective control problems based on lexicographic
minimizers [18], goal programming [9], or Pareto-front computations [25] may be
also considered.

12.3.4 MPC problem formulation

Collecting the parts described in previous subsections, the MPC design follows the
traditional procedures presented in [5, 13, 22], which involve solving an optimiza-
tion problem over a prediction horizon Hp, where a cost function is minimized sub-
ject to a set of physical and operational constraints. Once the minimization is per-
formed, a vector of Hu control actions over Hp is obtained. Only the first component
of that vector is considered and applied to the plant. The procedure is repeated for
the next time instant taking into account the feedback measurements coming from
the system, following the classic receding-horizon strategy.

In general terms, the MPC controller design is based on the solution of a OOP
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V(k,Hp) = min
Hp∑
i=0

ϕ∑
j=1

γ j J j(k + i|k), (12.14)

subject to the system model and the physical and operational constraints, where Hp
corresponds to the prediction horizon, and index k represents the current time instant
while index i represents the time instant along Hp. Hence, notation k + i|k denotes
the time instant k + i given k. Note that (12.14) corresponds with (12.13) over the
prediction horizon.

According to the case, the minimum of V(k,Hp) is achieved by finding a set of
optimal variables which generally correspond with the manipulated variables of the
system model but that could include further variables of diverse nature. Hence, for a
prediction window of length Hp and considering z∈RsHp as the set of s optimization
variables for each time instant over Hp, the multi-objective optimization problem
can be formulated as

min
{z∈RsHp}

f (z) (12.15a)

subject to

H1(z)≤ 0, (12.15b)
H2(z) = 0, (12.15c)

where f (z) comes from the manipulation of (12.14). Moreover, H1(z) and H2(z) are
vectors of dimensions riHp×1 and reHp×1, respectively, containing the constraint
functions. Here, ri is the number of inequality constraints and re is the number of the
problem equality constraints. It can be observed that (12.15b) and (12.15c) gather all
problem constraints including those from the system model, the physical restrictions
of its variables and the operational and management constraints.

Assuming that the OOP (12.15) is feasible for z ∈ RsHp , there exists an optimal
solution given by the sequence

z∗ ,
(
z∗(0|k),z∗(1|k), . . . ,z∗(Hp|k)

)
(12.16)

and then the receding horizon philosophy sets [13]

zMPC(x(k)), z∗(0|k) (12.17)

and disregards the computed inputs from k = 1 to k = Hp, repeating the whole process
at the following time step. Equation (12.17) is known as the MPC law.

Therefore, the MPC problem formulation in DWNs gives the expressions for
each of the problem parts described above. Thus, mapping (12.7) must be replaced
by the system modelling in (16.10) when treating a DWN. Finally, constraints in
(12.15b) and (12.15c) are conveniently expressed taking into account the type of
network and its constitutive components, for example, constraints in (16.10b) must
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be included when a DWN is considered. Constraints (12.2) and (12.3) are always
included. In order to manage the uncertainty of the system disturbances over the
prediction horizon, a suitable approach is the stochastic paradigm, which includes
explicit models of uncertainty/disturbances in the design of control laws and by
transforming hard constraints into probabilistic constraints. As reviewed in [4], the
stochastic approach is a classic one in the field of optimization, a renewed attention
has been given to the stochastic programming [24], as a powerful tool for robust con-
trol design, leading to the Stochastic MPC and specially to the Chance-Constrained
MPC (CC-MPC) [11] (see Chapter Chapter 13).

12.4 Simulations and results

As an application case study to show the performance of the proposed modelling and
control approach, some results of its application off-line (in simulation) in several
real scenarios in the Barcelona WTN are presented. A simulator of this network
has been built using MATLAB/SIMULINK and validated using real data coming
from real scenarios (see Figures 10 and 11 and the corresponding explanations in
Chapter 2). This allows testing the controller against a virtual reality introducing for
example real demand in the simulator different from the predicted demand used by
the controller. The MPC controller was implemented with the PLIO tool presented
in [6] that uses GAMS/CONPOPT solver to solve the corresponding optimization
problem. This general-purpose decision support tool has been developed to allow
the user to implement optimal/predictive control techniques in large-scale drinking
water systems (see Figure 12.3).

The modeling and predictive control problem solution algorithms are designed
for real-time decision support, in connection with a SCADA system. The hydraulic
modeling relies on simple, but representative enough dynamic equations whose pa-
rameters are recalibrated on-line using recursive parameter estimation and real data
obtained from sensors in the network. Demand forecast models, based on time se-
ries analysis, are also dynamically updated. The real-time calibration using recursive
parameter estimation methods contributes to deal with hydraulic uncertainty. This
modeling choice, as well as the optimization method selection allows to deal with
very large scale systems. Another distinguishing feature is its capability to accom-
modate complex operational goals.

In Figure 12.4, the evolution of volume at a number of tanks is shown. The simu-
lator output is shown in blue, while red is used for the real data. In some cases, small
discrepancies between both volume curves are not associated to modelling errors but
to errors in real data due to a faulty sensor. The most important conclusion after this
process is that this simulator allows making the model validation process easier. The
model has been validated and accepted by Aguas de Barcelona as representative of
the network real behaviour.

The Barcelona WTN is organized in different pressure levels. Figure 12.5 presents
the several pressure levels in different colours. Each sector will be supplied through
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Fig. 12.3 PLIO interface corresponding to the model manager module than allows creat-
ing/updating the model of the water network in a user friendly way.
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Fig. 12.4 Model validation based on the comparison between real volumes and the simulated ones.

a storage tank. The distribution network that connects each storage tank with in-
dividual consumers will not be modelled in detail but will be summarised as an
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Fig. 12.5 Barcelona Water Network demand sectors.

aggregated demand. Each demand will be modelled using a time series pattern. Fig-
ures 12.6 and 12.7 presents the validation of the daily and hourly demand forecast in
the sector c176BARsud using the demand forecast algorithm presented in Section
12.3.1.4.

12.4.1 Test scenarios

To test and adjust the MPC controller, different scenarios have been chosen. The
main difference between the selected scenarios is related to source operation. So,
the objectives of this study are:

- To compare the effects of the MPC strategies with those of the currently applied
control strategies.

- To show the effects of source management in the total operation cost, including
electrical and water costs.

With reference to source management, two different scenarios are shown:

Scenario 1: Scheduled flow. In this case the flow of all sources is fixed to real
values obtained from real historical data.
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Fig. 12.6 Validation of the aggregate daily demand forecast corresponding to the sector
c176BARsud.
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Fig. 12.7 Validation of the hourly demand forecast corresponding to the sector c176BARsud.

Scenario 2: Flow optimization. The optimizer calculates the flow to be abducted
from each source at each time step, taking into account its operational limits,
according to long term planning.
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Table 12.1 Total input volume for studied days.

Date Total input volume (m3) Mean flow (m3/s)

23/07/2007 633694 7,334
24/07/2007 668136 7,733
25/07/2007 617744 7,150
26/07/2007 627406 7,262

Mean 7,370

Scenario 3: Fixing main source. The main source of water is fixed while the
others are optimized.

The parameters taken into account for the calibration of the model are the ini-
tial volumes and safety storage volumes in tanks, as well as the objective function
weights for each of the operational goals (the economical, safety and smoothness
factors). Objective function weights are calibrated by experimentally analysing their
effects on the compromise between the operational goals, with historic data. In [25],
the authors have explored multi-objective optimisation techniques to tune them in
a more sophisticated way. Tank initial and safety storage volumes are taken from
real historic data of each scenario, in order to make optimisation results comparable
with current control strategy.

The period in both scenarios is 96 hours (4 days), and all of them correspond to
the same period, between July 23 and July 26 of 2007. It means that the demand is
the same in both scenarios, so they are comparable. To estimate the demand of each
sector the demand forecast method presented in Section 12.3.1.4 is used. The total
demanded volume for each day is obtained from the total contribution from each
source. In Table 1 values of volume per day are shown.

12.4.2 Results and discussion

In all the test scenarios, the MPC controller computed solutions to meet demands
and operational constraints at all times, while optimizing the operational goals.
Some illustrative results of the MPC application on the complete Barcelona WTN
are presented in this section. For these tests the same model is used.

Scenario 1: Scheduled flow

In this first scenario, source flows are imposed using real data obtained from Aguas
de Barcelona historical database. The interesting point of this scenario is the com-
parison between MPC control and current control strategy: water sources manage-
ment is the same in both cases. This scenario is used to show the potential of MPC
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Fig. 12.8 Sources flow evolution for Scenario 1: scheduled flow.

Table 12.2 Current control strategy costs in percentage.

Date Electricity cost Water cost Total cost

23/07/2007 33,13 66,87 100,00
24/07/2007 34,66 65,34 100,00
25/07/2007 32,00 68,00 100,00
26/07/2007 31,29 68,71 100,00

for minimizing the electrical (pumping) cost. The evolution of source flows is shown
in Figure 12.8.

In Table 12.2, electrical and water cost in percentage of the total cost for the
current control strategy are shown. In Table 12.3, costs for the MPC control as an
increase or decrease percentage with regard to current control are presented.

Water production cost (acquisition and treatment) represents a value near 70 %
of the total cost, and there is no variation of this cost in the MPC control because
of the fixed sources. With regard to electrical cost the improvement is between 10
and 25 %, which represents a decrease of the total cost between 3 and 8 %. To show
the differences between the current control and the MPC control, some tank volume
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Table 12.3 MPC improvement in percentage for Scenario 1 (scheduled flow) regarding to Table
12.2 values.

Date Electricity cost Water cost Total cost

23/07/2007 -23,27 +0,00 -7,71
24/07/2007 -10,56 +0,00 -3,66
25/07/2007 -20,61 +0,00 -6,59
26/07/2007 -18,58 +0,00 -5,81
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Fig. 12.9 Some tanks volume evolution: current control and MPC control comparison.

and actuators flow plots are shown. In Figure 12.9, some tank volume evolution can
be seen, as well as maximum and security volumes.

The smoothness term is not the only factor with effects on pump operation. The
electric tariff for each pump is another factor that affects pump operation in order
to minimise electrical cost. In Figure 12.10, the effects of the electricity cost are
shown. It can be seen that if it is possible, pumps only run during the cheapest
period (e.g. iPalleja1). In cases where, with a maximum flow during off-peak hours
the necessary volume is not reached, pumps must work during other periods. Pump
iFnestrelles200 is an example of this case. Since it is not enough to pump during the
cheapest period, this pump is pumping during the medium cost period too, but with
a maximum flow lower than in the cheapest one.
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Fig. 12.10 Electrical fee effects on pumps operation.

Scenario 2: Flow optimization

In this second scenario, the source flows are optimised. It means that the only lim-
itation is the minimum and the maximum flow of actuators in the output of each
source. In this case both electrical and water cost are optimised, so it is expected
to obtain a higher improvement in the total cost referring to the Scenario 1, where
sources flow was fixed. This scenario represents a theoretical solution of the water
management in the Barcelona WTN. Indeed, the optimization carried out gives total
freedom to the different sources, whilst on a real situation sources are not unlim-
ited or unrestricted: its availability as well as its future guarantee compromise the
total amount of water entering the system from each source. Therefore, the hereby
shown results give us an idea of how far flows optimization could go if there were
no sources restrictions. In Figure 12.11, sources flow evolution is shown. As it can
be seen, Llobregat’s mean flow is about 5 m3/s (which is the maximum possible
contribution of this source), while the lack of water necessary to satisfy the total
demand is taken from Ter and Abrera. Underground sources water cost is penalised
to avoid its over-exploitation.
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Fig. 12.11 Sources flow evolution for Scenario 2: flow optimization.

Table 12.4 Scenario 2 improvement with regard to current control case (Table 12.2).

Date Electricity cost Water cost Total cost

23/07/2007 18,92 -50,70 -27,63
24/07/2007 14,04 -32,56 -16,41
25/07/2007 26,29 -43,91 -21,45
26/07/2007 26,09 -44,43 -22,36

Electrical and water cost obtained in this scenario is compared with both the
current control case and the MPC case of Scenario 1 (scheduled flow). In Tables
12.4 and 12.5 this comparison is shown.

The first point to emphasize is the high water improvement, between 30 % and
50 %. As shown, it seems that maximizing water taken from Llobregat, water cost is
clearly decreased. On the other hand, electrical cost is increased, but the decrease of
the total cost in this second scenario regarding to current control case and Scenario
1 is important.
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Table 12.5 Scenario 2 improvement with regard to Scenario 1 case (scheduled flow).

Date Electricity cost Water cost Total cost

23/07/2007 54,99 -50,70 -21,59
24/07/2007 27,51 -32,56 -13,23
25/07/2007 59,08 -43,91 -15,91
26/07/2007 54,86 -44,43 -17,57

Fig. 12.12 Electrical and water cost when fixing Llobregat source.

Scenario 3: Fixing main source

The two main sources of the Barcelona water network are the Llobregat and Ter
rivers. Barcelona’s average demand is about 7.5 m3/s. For ecological reasons, Aguas
de Barcelona company uses Llobregat source at its maximum capacity which value
depends on the river flow. The rest of flow is supplied by Ter source. From Figure
12.12, it can be noticed that both sources affect the economic cost in an inverse
way. Increasing the amount of water extracted from Llobregat source reduces the
water cost while increasing the electrical cost. On the other hand, the Ter source
behaves on the opposite sense: increasing the amount of water extracted from this
river reduces the electrical cost while augmenting the water cost. The reason for
this behaviour is due to a smaller water price in the case of Llobregat. But, since
Llobregat source is located close to the sea level, while Ter source is in the upper
part of the city, electrical costs will be higher in case of the Llobregat source since
more pumping will be required to supply water from this source. In the case when
sources are not fixed, the optimal combination leads to take most of the water from
Llobregat source and the remaining from the Ter source.
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Table 12.6 Summary of results for scenarios presented.

Cost Current control Scenario 1 Scenario 2

Electrical 32,77% -18,26% +21,34%
Water 67,23% 0 -42,90%
Total 100% -5,94% -21,96%

12.4.3 Complementary comments

In Table 12.6, a brief summary of results presented is shown, as a mean value of
four days of study. The costs of Scenarios 1 and 2 are referred to current control
values.

From this table conclusions that can be emphasized are:

- Maximizing the flow from the source Llobregat to optimize total cost.
- Flow optimization allows higher improvement with regard to fixed real flows be-

cause the optimiser can maximise Llobregat’s flow contribution if it is possible.
Sometimes it is not possible because of reasons not related to network character-
istics (operational limits of actuators and tanks).

- Ter total cost (only water cost because there is no pump) is higher than the Llo-
bregat one (water and electrical cost associated). This fact, sources behaviour and
results of both test scenarios indicate that:

– Reduction of electrical cost involves reduction of the contribution from Llo-
bregat.

– Reduction of water cost involves reduction of Ter source contribution.
– Total cost is minimised by maximising Llobregat source contribution.

12.5 Conclusions

MPC techniques provide useful tools for generating water management strategies in
large and complex water networks, which may be used for decision support, as well
as for fully automated control of a water network. This work describes the use of
MPC for flow management in a large water system, involving supplies, production
plants and water transport into the distribution areas. The chapter presents the ap-
plication of a unified approach to the water system management including supplies,
production, transport and distribution areas. The modelling and predictive control
solutions are designed for real-time decision support. The hydraulic modelling relies
on simple, but representative, dynamic equations and recursive real-time parameter
calibration using updated data from telemetry. Demand predictions are also dynami-
cally updated. The potential of these techniques for real-time control of water supply
and distribution has been shown with two representative examples of complex op-
erational situations. The test scenarios are based on real situations which are known



261

to have caused difficulties to operators and, in some cases, severe effects on the
service to consumers. The application described in the chapter deals with these sce-
narios successfully, by producing control strategies that rearrange flows, production
plant levels, pumping from underground sources, etc. in a way that demands are met
at all times with improved results with respect to management goals. This type of
decision support is extremely useful for water system operators in large-scale sys-
tems, especially those involving several different water management levels (supply,
production, transport, distribution), where the control solutions may not obvious are
successfully implemented.
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