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Abstract This chapter proposes a leak localization architecture and an associated
methodology in Water Distribution Networks (WDNs) using pressure models and
classifiers. In a first stage of the proposed architecture, residuals are obtained by
comparing available pressure measurements with the estimations provided by a
WDN model. In a second stage, a classifier is applied to the residuals with the aim of
determining the leak location. The classifier is trained with data generated by simu-
lation of the WDN under different leak scenarios and uncertainty conditions. Several
classification approaches are considered and compared. The proposed methodology
is tested both using synthetic and experimental data with real WDNs of different
sizes. The comparison with the current approaches shows a performance improve-
ment.

1 Introduction

The traditional approach to leakage control is a passive one, whereby the leak is
repaired only when it becomes visible. Recently developed acoustic instruments
[17] allow to locate also invisible leaks, but unfortunately, their application over a
large-scale water network is very expensive and time-consuming. A viable solution
is to divide the network into District Metered Areas (DMA), where the flow and the
pressure at the input are measured [19, 25], and to maintain a permanent leakage
monitoring: leakages in fact increase the flow and decrease the pressure head at the
DMA entrance. Various empirical studies [18, 31] propose mathematical models to
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describe the leakage flow with respect to the pressure at the leakage location. Best
practice in the analysis of DMA flows consists in estimating the leakage when the
demand is minimum. This typically occurs at night, when the customers demand
is low and the leakage component represents a great percentage of the pipe flow
[25]. Therefore, practitioners monitor the DMA or groups of DMAs for detecting,
locating and estimating the leakage level by analyzing the minimum night flow [25].
However, leakage detection may not be easy, because of unpredictable variations
in consumer demands and measurement noise, as well as long-term consumption
trends and seasonal effects.

Several works have been published dealing with leak location methods for WDN
(see [25] and references therein). For example, in [8], a review of transient-based
leak detection methods is offered. In [35], a method is proposed to identify leaks
by using blind spots based on the analysis of acoustic and vibrations signals [15]
toghether with models of buried pipelines which allow the prediction of wave ve-
locities [21]. In [34], Genetic Algorithms were proposed to solve an optimization
problem which quantify and locate water losses. More recently, [20] have developed
a method to locate leaks and estimate its outflow by using Support Vector Machines
(SVM) that analyzes data obtained by a set of pressure sensors of a pipeline net-
work. Another set of methods is based on inverse transient analysis [9, 16]. The
main idea is to analyze the pressure data collected over the occurrence of transitory
events by means of the minimization of the difference between the observed and
the calculated parameters. In [13, 14], it is shown that unsteady-state tests can be
used for pipe diagnosis and leak detection. The transient-test based methodologies
use the equations for transient flow in pressurized pipes in frequency domain and
then, information about pressure waves is taken into account too. More recently, the
use of k-Nearest Neighbors (k-NN) and neuro-fuzzy classifiers for leak localization
purposes has been proposed by [29] and [33].

Model-based leak detection and isolation techniques have also been studied start-
ing with the seminal paper of [24] which formulates the leak detection and local-
ization problem as a least-squares parameter estimation problem. Unfortunately, the
parameter estimation of water network models is not an easy task [28]. The prob-
lem of leak localization in WDNs can be addressed as a particular case of Fault
Detection and Isolation (FDI) in dynamic systems [2]. DMA hydraulic bevahior is
described by a non-linear model expressed as set of algebraic equations with no ex-
plicit solution that can only be solved using numerical methods as the one proposed
by [32]. This limits the applicability of most model-based FDI approaches that re-
quire to transform or manipulate the model to generate a set of residuals with the
desired FDI specifications. Thus, only primary (direct) residuals could be generated
that are sensitive to more than one leak because DMA typically present a dense
mesh of highly interconnected pipes. This fact additionally to the reduced number
of sensors make the isolation task difficult. For this reason specific model fault di-
agnosis methods for leak localization should be developed. A first contribution in
this line can be found in [22] and [23] where a model-based method that relies on
pressure measurements and leak sensitivity analysis is proposed. This method con-
sists in computing on-line residuals, i.e. differences between the measurements and
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their estimations obtained using the hydraulic network model, and defining respec-
tive thresholds that take into account the modeling uncertainty and the noise. When
some of the residuals violate their threshold, the leak signature is matched with a
leak sensitivity matrix to determine which of the possible leaks is present. Although
this approach is efficient under ideal conditions, its performance decreases due to the
nodal demand uncertainty and measurement noise. This method has been improved
by [5] taking into account an analysis along a time horizon. This work presents a
comparison of several leak isolation methods. It must be noticed that in cases where
flow measurements are available, leaks could be detected easily since it is possible to
establish simple mass balance in the pipes. See for example the work of [26] where
a methodology to isolate leaks is proposed by using fuzzy analysis of the residu-
als. This method calculates the residuals between the flow measurements and their
estimation using a model without leaks. Although the use of flow measurements is
feasible in large water networks, this does not occurs when there is a dense mesh of
pipes with only flow measurements at the entrance of each DMA. In this situation,
water companies consider as a feasible approach the possibility of installing some
pressure sensors inside the DMAs, because they are cheap and easy to install and
maintain.

In this chapter, a new model-based approach for leak localization in WDNs us-
ing pressure models and classifiers is presented. This methodology is intended to be
used after the leak has been detected by means of the analysis of the night DMA
water demands [25], and after the application of the validation and reconstruction
methodology described by [10] to the sensors used for leak localization. Following
a model-based methodology successfully tested in [22] and [23], a pressure model
of the considered WDN is used in a first stage to compute residuals that are indica-
tive of leaks. In a second stage, a classifier is applied to the obtained residuals with
the aim to determine the leak location. This on-line scheme relies on a previous off-
line work in which the network model is obtained and the classifier is trained with
data generated by extensive simulations of the network. These simulations consider
three types of uncertainties: leaks with different magnitudes in all the nodes of the
network, differences between the estimated and real consumer water demands and
noise in pressure sensors. The underlying idea is to obtain a classifier able to dis-
tinguish the leak location independently of the unknown real leak magnitude and
the presence of uncertainties associated to the water demands and the pressure mea-
surements.

2 Background and Motivation

2.1 Principle of Model-Based Leak Location Approaches

Model-based approaches aim to locate leaks in a water distribution network by com-
paring pressure measurements with their estimations obtained by using the hydraulic
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network model. Usually, this methodology is used for locating leaks within a given
leak size range defined by the water network management company. The minimum
size is related to the sensor resolution and modelling/demand uncertainty, and the
maximum size is defined as the value such that the leak behaves as a burst such
that it can be seen in the street. Model-based leak localization methods are based
on comparing the monitored pressure disturbances caused by leaks at certain in-
ner nodes of the DMA network with the theoretical pressure disturbances caused
by all potential leaks obtained by using its respective model [23]. This comparison
uses the residual vector r ∈Rns , obtained from the difference between the measured
pressure at DMA inner nodes p ∈ Rns and the pressure at these nodes calculated by
using the network model considering a leak-free scenario p̂o ∈ Rns , i.e.

r(t) = p(t)− p̂o(t). (1)

The dimension of the residual vector r, ns, depends on the number of inner
pressure sensors installed in the DMA. In recent years, some optimal sensor place-
ment algorithms have been developed to determine where the pressure head sensors
should be installed inside the DMA with minimum economical costs (number of
sensors), a suitable performance regarding leak localization is guaranteed, see [22],
[7], [27] among others.

The number of potential leaks, f ∈ Rnn , is considered to be equal to the number
of DMA nodes nn, since from the modeling point of view, as proposed by [22] and
[23], leaks are assumed to occur in these locations.

2.2 Limitations of Sensitivity Analysis Approaches

Most model-based leak localization approaches rely on the sensitivity-to-leak analy-
sis [22, 23] where the theoretical pressure disturbances caused by all potential leaks
are stored in the leak sensitivity matrix Ω ∈ Rns×nn (with as many rows as DMA
inner pressure sensors, ns, and as many columns as potential leaks in all nodes nn).
Then, leak isolation is based on matching the residual vector (1) with the columns
of the sensitivity matrix by using some metrics as for example, the correlation or
the angle (see [5] for details). The leak sensitivity matrix can be mathematically
formalized as follows

Ω =


∂ r1
∂ f1

. . . ∂ r1
∂ fnn

...
. . .

...
∂ rns
∂ f1
· · · ∂ rns

∂ fnn

 , (2)

where each element Ω i, j measures the effect of the leak f j in the residual ri as-
sociated to the pressure at node i. In practice, it is extremely difficult to calculate
Ω analytically because a water network is a large scale multivariable non-linear
system which equations can only be solved numerically as discussed in the intro-
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duction. Thereby, the sensitivity matrix is generated by simulation of the network
model and evaluating the sensitivity Ωi, j as

Ωi, j =
p̂i, f j − p̂i,0

f j
, (3)

where p̂i, f j is the predicted pressure in the node when a nominal leak f j is forced in
node j and p̂i,0 is the predicted pressure associated with the sensor i under a scenario
free of leaks [22]. Then, the sensitivity matrix is obtained by repeating this process
for all nn potential faults .

An important drawback of the leak sensitivity approach is that the practical eval-
uation of (3) depends on the nominal leak f j [3, 4]. If the real leak size is different
from the nominal one, the real sensitivity will be different from the one computed
using (3). Moreover, the sensitivity is also affected by the nodal demand uncer-
tainty [11] since this demand is not measured but estimated using historical records
of water consumption and using the aggregated DMA consumption pattern. These
uncertainties will deteriorate the leak localization results obtained by using the sen-
sitivity approach. The approach proposed in this chapter aims to overcome these
difficulties.

3 Proposed Method

3.1 Basic Architecture and Operation

The method for on-line leak localization proposed in this chapter relies on the
scheme depicted in Figure 1, and it is based on computing pressure residuals and
analyzing them with a classifier. The hydraulic model is built using the Epanet hy-
draulic simulator1 by considering the DMA structure (pipes, nodes and valves) and
network parameters (pipe coefficients). After the corresponding calibration process
using real data, it is assumed that the hydraulic model is able to represent precisely
the WDN behavior. However, it must be noted that the model is fed with estimated
water demands in the nodes (d̂1, · · · , d̂nn ). In practice, nodal demands (d1, · · · ,dnn )
are not measured (except for some particular consumers where Automatic Meter-
ing Readers (AMRs) are available) and are typically obtained by the total measured
DMA demand d̃WDN and distributed at nodal level using historical consumption
records. Hence, the residuals are not only sensitive to leaks but also to differences
between the real demands and their estimated values. Additionally, pressure mea-
surements are subject to the effect of sensor noise v and this also affects the resid-
uals. Taking all these effects into account, the classifier must be able to locate the
real leak present in the WDN, that can be in any node and with any (unknown) mag-
nitude, while being robust to the demand uncertainty and the measurement noise.
Finally, the operation of the network is constrained by some boundary conditions c

1 https://www.epa.gov/water-research/epanet
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(such as the position of internal valves, reservoir pressures and flows) that are known
(measured) and must be taken into account in the simulation and can also be used
as inputs for the classifier.
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Fig. 1 Leak localization scheme

3.2 Methodology Overview

The exploitation of the architecture presented Figure 1 relies on a methodology that
distinguishes several off-line and on-line procedures.

3.2.1 Off-line

The application of the architecture presented in Figure 1 relies on an off-line work
whose main goal is to obtain a classifier able to distinguish the potential leaks un-
der the described uncertainty conditions. In particular, the method proposed in this
chapter considers an off-line design based on the following stages:

• Modelling - A model for the WDN is obtained, calibrated and implemented with
Epanet. The model is basically built by taking into account the network structure
and by applying flow balance conservation and pressure loss equations (see [22]
and [23] for details).
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• Data generation - The model implemented is extensively used to generate data in
the residual space for each possible leak and for different operating and uncer-
tainty conditions.

• Classifier training and evaluation - The classifier is first trained with a subset
of the initial data set, then it is applied to testing data in order to estimate its
performance.

The data generation stage is critical since the availability of representative data
is a necessary condition for obtaining a good classifier. Since the amount of data
collected from the real monitored WDN is limited, a way to obtain a complete train-
ing data set is by using the hydraulic simulator. Hence, training and testing data are
generated by applying the scheme depicted in Figure 2, which is similar to the one
presented in Figure 1 but with the main difference of substituting the real WDN by
a model that allows to simulate the WDN not only in absence but also in presence
of faults.

WDN model
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Fig. 2 Data generation scheme

The presented scheme is exploited in order to:

• Generate data for all possible leak locations, i.e. for all the different nodes in the
WDN ( f̄i, i = {1,2, ...,nn}).

• Generate data for each possible leak location with different leak magnitudes
within a given range ( f̄i ∈ [ f−i , f+i ]).

• Generate sequences of demands and boundary conditions ĉi that correspond to
realistic typical daily evolution in each node.
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• Simulate differences between the real demands and the estimations computed by
the demand estimation module ((d̄1, ..., d̄nn) 6= (d̂1, ..., d̂nn)).

• Take into account the measurement noise in pressure sensors, by generating syn-
thetic Gaussian noise (v̄).

The artificial data obtained from simulations is divided into training and testing
sets. The training stage is based on a learning procedure where the input is the (la-
beled) training data set and the result is a classifier that must be able to correctly
classify new data instances into the correct class. The generalization ability of the
obtained classifier is checked in the validation stage, in which the performance in-
dexes are computed for the testing data set.

The details of the training stage are particular of the type of classifier used.
The results presented have been obtained by using two different well-known clas-
sifiers: the k-Nearest Neighbor (k-NN) classifier [1], which is non-parametric, and
the Bayesian classifier, which is parametric. The details about the training of both
classifiers will be provided in the next subsections.

The evaluation of classifiers normally relies on the use of the confusion matrix
Γ , that summarizes the results obtained when the classifier is applied to the testing
data set. The confusion matrix is a square matrix with as many rows and columns
as nodes of the network (potential leak locations), when it is applied to the leak
localization problem with the associated terminology. Each coefficient Γi, j indicates
how many times a leak in node i is recognized as a leak in node j. Table 1 illustrates
the concept of the confusion matrix applied to leak localization.

Table 1 Confusion matrix Γ

f̂1 · · · f̂i · · · f̂nn

f1 Γ1,1 · · · Γ1,i · · · Γ1,nn

...
...

...
...

...
...

fi Γi,1 · · · Γi,i · · · Γi,nn

...
...

...
...

...
...

fnn Γnn,1 · · · Γnn,i · · · Γnn,nn

In case of a perfect classification, Γ is diagonal, with Γi,i =m, for all i= 1, · · · ,nn,
being m the size of the testing data set. In practice, non-zero coefficients will appear
outside the main diagonal. For a leak in node i, the coefficient Γi,i indicates the num-
ber of times that the leak is correctly identified as f̂i, while ∑

nn
j=1 Γi, j−Γi,i indicates

the number of times that is wrongly classified. The overall accuracy (Ac) of the
classifier is defined as

Ac =
∑

nn
i=1 Γi,i

∑
nn
i=1 ∑

nn
j=1 Γi, j

. (4)
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3.2.2 On-line

Once the classifier has been trained and validated, it can be used on-line to localize
leaks. According to Section 3.1, the classifier can be directly used to detect leaks
based on the instantaneous values of the computed residuals.

However, this strategy may provide limited results if there is a high level of un-
certainty. The use of a temporal reasoning that takes into account not only the instan-
taneous values of the residuals but all the values within a time horizon is suggested
as already suggested in [6]. This idea is implemented in different forms depending
on the type of classifier that is used, details are provided in the next subsections.

3.3 k-NN Classifier Implementation

3.3.1 The k-NN Classifier

One of the well accepted and established methods for classification is the k-NN
algorithm [1], which is available in most numerical packages (e.g. Matlab, R, etc.).
Its basic version works as follows. When a new data realization has to be classified,
the distance (typically, the Euclidean distance is used, but many other options are
available) to all the instances of the training data set is computed. Then, the k nearest
neighbors are selected and a voting procedure is applied, where each neighbor votes
for its own class and the class with more votes is chosen. The process is illustrated in
Figure 3, where a value k = 3 is used and the new data instance is associated to the
class C3 since two of the three minimal distances correspond to training instances
of that class. The value for k is typically bigger than one to improve the robustness
against outliers and it must be smaller than the minimum number of instances of
a single class from the training data set. The k-NN classifier is said to be a lazy
classifier since the training procedure is limited to the storage of the training set and
all the computations are deferred until the classification process is performed.

3.3.2 Time Reasoning

If the uncertainty in the demands, the leak magnitude or the noise level are large
then the direct application of the classifier can provide poor leak localization results.
This also happens when other ways of evaluating the pressure residuals are used (as
the ones described in Section 2). To smooth the effect of demand uncertainty, leak
magnitude and noise, typically the analysis of the residuals evolution is performed
in a time horizon, i.e. the values for the residuals in the last N time instants are
considered [6].

A simple temporal reasoning can be based on taking into account the leak lo-
calization results provided by the classifier inside the time horizon and applying a
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Fig. 3 The k-NN algorithm

voting scheme, concluding that the candidate leak is located in the node that more
times has been selected by the classifier.

A second and more sophisticated option could be to use the information con-
tained in the confusion matrix. Hence, at each time instant t, when the classifier is
providing a leak in node j as an explanation for the values of the residuals at the
current time instant t, the whole column j of the confusion matrix is stored. This
column provides an estimation of the probabilities p( fi| f̂ j), i.e. the probabilities of
a leak at node i when the classifier indicates that the leak is at node j, according to
the information available for current time instant t. Then, the sum of column vectors
stored along the time horizon N is computed. In the obtained vector, the position of
the coefficient with highest value indicates the most probable leak according to the
information provided by the data in the time horizon [t−N +1, t].

3.4 Bayesian Classifier Implementation

3.4.1 Bayesian Classification

Assume that we have a finite set of possible leak situations (i.e. classes), fi, i =
1, ...,nn and a finite set of measuring devices x j, j = 1, ...,ns. Assume also that we
have a model of the system behavior which allows the computation, at each time
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instant t, of ns residual signals r j, j = 1, ...,ns. When a leak occurs, all the residuals
are activated up to some extent different from zero.

Given the residuals, the objective is to apply a Bayesian leak discrimination pro-
cedure in order to identify which leak or leaks may occur based on the observed
behavior. Such a diagnosis procedure based on Bayesian reasoning is explained be-
low.

At every time sample t, the probability of a leak occurrence is estimated as a
result of the application of the Bayes Rule

P( fi | r(t)) =
P(r(t) | fi)P( fi)

P(r(t))
, i = 1, ...,nn, (5)

where P( fi | r(t)) is the posterior probability that the leak fi had caused the observed
residual vector r(t) = (r1(t) · · ·r j(t))T , P(r(t) | fi) is the likelihood of the residual
r(t) assuming that the active leak is fi, P( fi) is the prior probability for the leak fi,
and P(r(t)) is a normalizing factor given by the Total Probability Law,

P(r(t)) =
nn

∑
i=1

P(r(t) | fi)P( fi). (6)

Regarding the prior probabilities, unless we have any additional information, an
unprejudiced starting point is to consider all them equally probable, that is, P( fi) =
1
nn

, i = 1, ...,nn. To estimate the likelihood value P(r(t) | fi), we need to perform a
previous calibration task in order to obtain the joint probability density function for
each leak in the residual space, P(r | fi), i= 1, ...,nn. The calibration stage is detailed
in a next section. Note that, in contrast to standard naïve Bayesian classifiers, we do
not need to assume independence between the residuals.

The application of (5) produces a set of values P( fi | r(t)), ∑
nn
i=1 P( fi | r(t)) =

1, that can be used to decide which leak is acting over the system. Note that, at
each time sample t, we have information about the probability associated with each
leak situation. Thus, there can be many competing leaks, each one with a different
probability value. The leak with the highest posterior probability can be selected as
the most likely leak, or all the leaks with a posterior probability above a pre-specified
threshold can be selected as leak candidates.

3.4.2 Recursivity

The results can be improved if (5) is recursively applied, that is, if the posterior
probability P( fi | r(t)) is used as the prior probability for the next time sample. This
way, as long as new measurement data are available, the probabilities are updated
and many of the competing leaks can be discarded.

The only drawback is that if any of the leaks takes the posterior probability value
of 1 at any t, then all the remaining leaks take the 0 probability value, therefore
preventing them to have a future value different from zero due to the recursive ap-
plication of (5). This drawback can be easily overcomed by forcing all probabilities
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to have a maximum value of, say, 0.99. When a leak fi presents the probability
P( fi | r(t))> 0.99, we force it to be P( fi | r(t)) = 0.99 and we can force the remain-
ing leaks to be P( fn | r(t)) = 1−0.99

nn−1 , n = 1, ...,nn,n 6= i.

3.4.3 Bayesian Time Reasoning

Additionally, the results can be improved if a time horizon N is introduced. In this
case, the posterior probability can be computed on the basis of the N previous time
samples, that is, to compute P( fi | r(t)), we recursively can apply the following
equation

P( fi | r(t−N +n)) =
P(r(t−N +n) | fi)P( fi | r(t−N +n−1))

P(r(t−N +n))
,

i = 1, ...,nn, n = 1, ...,N,

(7)

where an unprejudiced starting point may be P( fi | r(t−N)) = 1
nn

, i = 1, ...,nn.

3.4.4 Calibration of the Probability Density Functions

Unlike the k-NN classifier, the Bayes classifier requires a more elaborated training
where a joint Probability Density Function (PDF) for each leak class in the residual
space, P(r | fi), i = 1, ...,nn, has to be estimated.

The first step is to decide the probability family. The Law of Large Numbers
states that most situations lead to a Gaussian probability density function if the
number of samples is high enough. Several tests can be applied to the residual values
to assess if they are Gaussian distributed or not. For instance, we can apply the
well-known Kolmogorov-Smirnov [12] or the Anderson-Darling [30] tests, among
others.

Figure 4 shows the two leak distributions calibrated by means of Gaussian prob-
ability function. Leak 1 is better adjusted because it takes into account the cross-
correlation between residuals r1 and r2. On the other hand, leak 2 is adjusted by as-
suming statistic independence between residuals r1 and r2 and therefore the fitting is
not so accurate. Note also that other probability distribution families different from
Gaussian could be used, including multimodal and non-parametric distributions.

4 Case Studies

In this section, two DMA case studies of increasing size and complexity (Hanoi and
Nova Icària) are introduced to assess the performance of the proposed methodology.
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Fig. 4 Calibration for leaks 1 and 2

For these DMAs, leaks are considered in any of the demand nodes. The known
variables are the input pressures and flows of the networks (reservoir boundary con-
ditions) and some pressures at the inner nodes of the DMAs where sensors would be
located (see [7, 27] and [3] for details about optimal sensor location). It is considered
that the demand pattern is known for all demand nodes but with some uncertainty
as proposed by [11]. The leak magnitude is assumed to be unknown but bounded
by a known interval (minimum and maximum leak magnitudes). Finally, noise in
pressure sensors is considered too.

For the two DMAs, leak localization results under different uncertainty scenar-
ios are presented and discussed. Moreover, for the second (and biggest) DMA the
results of localizing a real leak are also presented.

4.1 Hanoi Case Study

The proposed methodology has been first applied to the simplified model of the
Hanoi (Vietnam) DMA network, depicted in Figure 5. This model consists of 1
reservoir, 34 pipes and 31 nodes. Measurements of two inner pressure sensors placed
in nodes 14 and 30 are available as considered in other works [29].
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In order to illustrate the performance of the proposed methodology, four different
studies have been carried out under the following particular conditions:

• A leak size uncertainty study considering a leak range between 25 and 75 l/s
(0.84 and 2.51 % of the total amount of water demanded, which is 2991 l/s).

• A study considering noise in pressure measurements with an amplitude of ±5 %
of the mean value for all pressure residuals.

• A demand uncertainty study considering an uncertainty of±10 % of the nominal
demand node values.

• A study considering that all the three uncertainties previously defined are simul-
taneously present in the DMA.

For each study, two complete data sets have been generated for each node (po-
tential leak locations), one for training purposes and the other one for testing the
leak localization performances. Each set used for testing, associated to a leak at a
given node, is called a leak scenario. The variables conforming the data are the input
flow d̃DMA and the two residuals r1 and r2 associated to pressure measurements in
nodes 14 and 30, respectively. The feature space used as input for the classifier is
represented in Figure 6. The sampling time used in the simulations is 10 minutes,
but hourly average values of variables are used to improve the leak location perfor-
mance. Different daily input flow patterns have been simulated as the one depicted
in Figure 7. Accordingly to the scheme presented in Figure 1, the pressure residuals
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have been obtained by means of a WDN simulator (Epanet model of the network)
where the uncertainties described above have been considered.
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Fig. 6 Hanoi residual space with uncertainties (each color represents a leak in a different location)

In order to determine whether the three classifier inputs (r1, r2 and d̃DMA) follow
a Gaussian distribution, a one-dimension Kolmogorov-Smirnov test on a training
data set of 480 samples (for each of the 31 leak nodes) has been performed. As
a result, the three inputs can be considered Gaussian distributed for a significance
level of 3%.

The results obtained by the proposed method in the four different studies have
been compared to the ones obtained by using the leak-sensitivity analysis with the
angle metrics proposed by [5] and summarized in Section 2. For the Angle method
only the two residuals are used because the flow measurement has a great value and
tends to reduce the effect of residuals in the diagnosis, thus resulting in worse results.
The sensitivity matrix (2) has been computed using (3) and by considering nominal
leak conditions in every demand node (v̄ = 0, d̄ = d̂ and fi = 50 [l/s] i = 1, ...,nn).
The results obtained by using the Angle method and the two proposed methods,
in both cases considering only one sample (N = 1) and the equivalent number of
samples of one day (N = 24) in the leak location diagnosis are summarized in Table
2. The values presented in the table correspond to the overall accuracy Ac defined
in (4).
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Fig. 7 Example of a daily Hanoi flow pattern

Table 2 Accuracy results in Hanoi network

Study N = 1 N = 24
k-NN Bayes Angle k-NN Bayes Angle

Leak uncertainty 60.21 83.60 76.61 77.41 83.87 77.41
Noise in measurements 69.62 83.19 73.79 83.87 83.87 70.96
Demand uncertainty 31.18 39.11 41.39 58.06 45.16 64.51
All together 32.12 48.25 36.96 74.19 83.87 54.83

As it can be seen, the three methods provide good performance in the leak un-
certainty case because of the linear directional variation of most of the residuals for
this kind of uncertainty [3]. It must be noted that in the case when only demand
uncertainty is considered, the classifier-based methods perform worse than when all
the uncertainties are considered together, this happens because the leak uncertainty
spread the residual data providing a better separation (and for the Bayesian classifier
the distribution tends to be more Gaussian).

When the time horizon and recursivity described in Section 3.4.1 are applied,
it can be seen that there is an improvement in the performance achieved in all un-
certainty cases (except for the case of the noise uncertainty for the Angle method,
where the full performance is achieved since the first sample, and then fluctuates
within the time horizon around the same values).
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The effect of the horizon length N in the performance (Accuracy) for the three
studied methods is also analyzed using the last study (to create the figures an ex-
tended data set, ten times larger, has been used). The results for the k-NN classifier
are shown in Figure 8, the results for the Bayesian classifier are shown in Figure
9, and the results for the Angle method are shown in Figure 10. The term“node re-
laxation” refers to the number of nodes in topological distance between the node
with the real leak and the node where the classifier predict the leak for which the
diagnosis is still considered correct.
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Fig. 8 Accuracy results over a time horizon for the k-NN classifier in Hanoi network

As expected, the accuracy increases with the time horizon length N. It can be
observed that it reaches a steady state value when N is around twenty hours. This
result justifies the use of a time horizon corresponding to one day and it agrees with
the results already presented by [5].

Finally, Figure 11 shows a comparison of the three studied methods by using
a different performance indicator, the Average Topological Distance, which is the
minimum distance in nodes between the node candidate and the node where the
leak exists.

The results show the good performance of the classifiers, especially the Bayesian
classifier, which works better than the k-NN classifier when the data has a clear
distribution (if not, the k-NN performs better as it can be seen in the Table 2 for the
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Fig. 9 Accuracy results over a time horizon for the Bayesian classifier in Hanoi network

demand uncertainty case), and also has a better reasoning over time. Also, in Figure
11, it can be seen that the Bayesian classifier tends to point a closer class when it
fails than the k-NN classifier, but it can increase its performance at that point by
choosing a bigger k value. To sum up, the Bayesian classifier should be used when
the classes present a Gaussian distribution, and the k-NN classifier otherwise.

4.2 Nova Icària Case Study

The Nova Icària network, shown in Figure 12, is one of the DMA networks of the
Barcelona WDN. This network consists in 1520 nodes, 1646 pipes, 2 reservoirs and
2 valves, each one after the reservoirs with the aim of maintaining a certain pressure
level. Inside the network, the pressures measured by five sensors installed in nodes
3, 4, 5, 6 and 7 are known, together with the flow entering the DMA and the set
points for the valves.

As in the previous network examples, some leak localization studies have been
carried out by simulation. But additionally, a real case is studied. For this real case,
experimental data captured under normal network operation and under the presence
of a real leak is used. The leak was created by the water company that operates
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Fig. 10 Accuracy results over a time horizon for the Angle method in Hanoi network

the network by opening a fire hydrant. The experiment took place on December 20,
2012 at 00:30 h and lasted around 30 hours with a leak size about 5.6 [l/s], being
the total demand of water in the range between 23.5 and 78 [l/s] approximately.
Additionally, data captured in a normal operation scenario of five days before the
leak scenario was also obtained. For more details see [23]. The sampling time of
all data sensors is 10 minutes. In order to decrease the effect of uncertainties, the
average value of every six samples has been considered every hour, i.e. 30 and 120
hourly samples are available for the leak and normal operation scenarios. An accu-
rate Epanet model of the network and node demand estimations were provided as
well.

First, the system has been simulated considering the operating conditions of the
fault-free scenario (input flow, boundary conditions and demand distributions). The
differences between the 120 hourly samples of the five inner pressure sensors and
the pressures estimated by the hydraulic model have been used to estimate the real
uncertainty of the network (demand uncertainty, modeling errors and noise in the
measurements). On the other hand, nominal hourly leak residuals r0

i (t), i= 1, . . . ,nn,
t = 1, . . . ,24 have been computed as the difference of the estimated pressures in the
five inner sensors in a leak scenario and the ones estimated in the normal operation.

A k-NN classifier (with k = 3) has been trained for leak localization and vali-
dated. The inputs of the classifier are: the five pressure residuals, the flow that enters
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Fig. 11 Average topological distance results in a time horizon in Hanoi network

the DMA and the two set points of the valves. The data used in the training and test-
ing stages are the 24 samples of nominal hourly residuals directly and adding the
real uncertainty (120 samples): 96 samples for training and 48 for validation. The
same training data sets generated are used to calibrate the PDFs for the Bayesian
classifier.

Figure 13 shows the result of the two proposed methods after applying 24 hourly
samples: the k-NN classifier indicates that the leak is in node 3 while the real leak
is in node 996, which means that the topological distance is 13 nodes, and the geo-
graphical linear distance is around 184 meters. For the Bayesian classifier, the node
candidate is 403 which has a topological distance of 10 nodes and a geographi-
cal linear distance of 183 meters. As a comparison, the application of correlation
method [23] provides as node candidate the node 1036 (this result is also shown
in Figure 13), which is at a distance of 17 nodes and 222 meters of the real leak
location.
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5 Conclusion

This chapter has proposed a new method for leak localization in WDNs that com-
bines the use of pressure models with classifiers. A model of the considered WDN
is used in a first stage to compute pressure residuals that are indicative of leaks. In
a second stage, a classifier is applied to the obtained residuals with the aim of de-
termining the leak location. This on-line scheme relies on a previous off-line work
in which the model is obtained and the classifier is trained with data generated in
extensive simulations of the network under different leak conditions. These sim-
ulations consider leaks with different magnitudes in all the nodes of the network,
differences between the estimated and consumer real water demands and noise in
pressure sensors. The proposed method has been compared with a previous leak lo-
calization method described in the literature through their application to two DMA
case studies of different size and complexity obtaining satisfactory results.
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Fig. 13 Comparison of different leak location methods in Nova Icària network
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