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Abstract— This paper presents a computational procedure
based on viability theory to evaluate the fault tolerance ad-
missibility of a given fault configuration of a nonlinear system
controlled by means of a predictive control law. The admissible
solution set for the control problem, including the effect of
faults, is determined using viability kernel and capture basin.
Finally, water heater part of pasteurization process is provided
as benchmark in order to show the usefulness of viability theory
for fault tolerance evaluation.

I. INTRODUCTION

Modern control systems are developed taking into account
the demand for reliability, safety and fault tolerance. Conse-
quently, it is necessary to design control systems which are
capable of tolerating potential faults. A closed-loop control
system which can tolerate component malfunctions, while
maintaining desirable performance and stability properties is
said to be a fault tolerant control system [1].

Viability theory develops mathematical and algorithmic
methods for investigating the adaptation to viability con-
straints of evolutions governed by complex systems under
uncertainty [2]. Viability is a theory that until now has mostly
used in safety verification in control systems [3]. Viability
theory has also been found useful in areas different from
automatic control as e.g. economics or biology [4], [5S].
This theory provides some concepts that are actually more
general than what is used in set and set-invariance theory.
Viability kernel is an accepted tool for safety verification.
However, the problem with this theory is how to compute the
different sets involved. Nowadays, several algorithms have
been proposed that can approximate these sets effectively.
Some of these algorithms are surveyed [3]. Finding the
viability theory concepts that can be used in fault tolerance
evaluation is a major contribution of this paper. This paper
will also try to relate these concepts with set-based concepts
introduced to address the admissibility evaluation defined in
[6] in the context of Model Predictive Control (MPC).

Faults will cause changes in the set of feasible solutions.
This causes that the set of admissible solutions for the control
objective could be empty. Therefore, the admissibility of the
control law facing faults can be determined knowing the
feasible solution set. One of the aim of this paper is to
provide methods to compute this set and the evaluate the
admissibility of the control law.
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This paper will focus on the fault tolerant evaluation of a
given fault configuration, considering a nonlinear predictive
control law with constraints. The method proposed in this
paper is not of analytical but of computational nature. It
follows the idea proposed by [6]. Faults can cause changes in
the constraints related to the control signals (inputs), which
modifies the set of feasible solutions of the MPC controller.
This can cause the set of admissible solutions for a given con-
trol objective to be empty. An algorithm based on viability
theory concepts will be provided to evaluate the admissibility
of the control law for a given fault configuration.

Finally, water heater part of pasteurization process is
provided as benchmark in order to show the usefulness of
viability theory for fault tolerance evaluation.

This paper is organized as follows. In Section II, some
definitions and preliminary concepts are provided in con-
text of viability theory. Problem formulation is presented
in Section III. How viability theory can be used in fault
tolerance evaluation is a task that will be addressed in Section
IV. An algorithm is developed for admissibility evaluation
of a given fault configuration will be the main outcome of
this section. Water heater section of pasteurization process is
considered as a benchmark in Section V in order to illustrate
the proposed approach. Finally, in Section VI concluding
remarks are drawn.

II. VIABILITY THEORY BACKGROUND

A. Viability theory concepts
Consider a discrete-time nonlinear dynamic system of the

form
x(k+1) = f(x(k),u(k)
x(k)eX 1)
ulk)eu

Assume that the system (1) is defined in a proper open set

O C R" and that there exist a globally defined solution for
every initial condition x (0) € O. The evolutionary system:

S§:X — C(0,+;X)

maps any initial state x € X to the set S (x) of evolutions x (.)
starting from x(0) and governed by (1).

Definition 2.1 (Viability Kernel [2]): The viability kernel
of K under the evolutionary system S is the set Viabg (K) of
initial states x (0) € K from which starts at least one evolution
x(t) € S(x) viable in K for all times ¢ > 0:

x(0) e K|3x(.) € S(x)
Vt>0,x(t)eK} @

Definition 2.2 (Capture Basin [2]): The capture basin of
C (viable in K) under the evolutionary system S is the set

Viabg (K) := {

such that
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Fig. 1. A sample of viability kernel [2]
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Fig. 2. A sample of capture basin [2]

Capts (K,C) of initial states x(0) € K from which starts at
least one evolution x(¢) € S(x) viable in K on [0,7) until
the finite time 7 when the evolution reaches the target at
x(T) eC.

Definition 2.3 (Regulation Map [2]): A set-valued map
x— R(x) CU (x) is called a regulation map governing viable
evolutions if the viability kernel of K is viable under the
control system of (1), i.e.

Vx €K, Rx(x)={ucU|f(x,u)€ Viabs(K)} (3)

B. Set computation using a LPV models and zonotopes
Here, we want to explain how defined sets can be cal-
culated. The approach proposed in this paper is based on
transforming the non-linear model (1) in a LPV (or quasi-
LPV) representation
x(k+1) =A(p (k) x (k) + B (p (k) u (k)
x(k) €K “
ulkyeU
The set of states and controls will be represented in a

zonotopic form
K=k .®H/pB"

U= uc@Huﬁd

where k. and u. are center vectors, H; and H, are zonotope
matrix and & is Minkowski sum. The backward reachable
set over a single time step is computed as

Reachy (K) =A~" (p (k)) {K® (~B(p (k)))U} ~ (5)

Here A~!(.) denotes the preimage of a set under the map
A R" — R". Note that we consider that A is invertible.
This is a fair assumption because we are mainly concerned
with discrete-time systems that arise from the discretization
of continuous time systems. Such systems have a dynamics
matrix of the form A = exp(A.) which is always invertible
[3]. Following computation algorithm in [7], we can find this
reachable set using zonotopes by

Reachp (K) = t ® HB" (6)
where
= mid (A(p (k) ™) ke mid (~A(p (1) B(p (k) ) e
H=[J Jh 1 4]
Ji = segd> (A(p (k))*lHk)

diam (A(p (k)™
ow),

(N
where 'mid’ denotes the center and ’diam’ the diameter of
the interval and <} is zonotope inclusion [7]. For computation
of viability kernel, this backward reachable set is calculated
step by step. The reachable tube will finally converge toward
the viability kernel. It is important to notice that the set
of estimated states is approximated by a zonotope that
has an increasing number of segments Reachp(K) using
this method. In order to control the domain complexity, a
reduction step is thus implemented. Here, we use the method
proposed in [8] to reduce the zonotope complexity.

Finally, for computation of capture basin, we can find
backward reachable tube using (5) for desired time steps.
Final reachable set is the capture basin.

I1I. PROBLEM FORMULATION

The solution of a control problem consists in finding a
control law in a given set of control laws U such that the
controlled system achieves the control objectives O while its
behavior satisfies a set of constraints C. Thus, the solution
of the problem is completely defined by the triple (O,C,U)
[9].

System objectives. The occurrence of the faults should
not change the system objectives. If there is a possibility
of still achieving the system objectives in the presence of
certain faults, the system is said to be fault tolerant with
respect to that objectives and to these faults. The task is to
design some control law which is able to do that. Otherwise,
if the objectives cannot be achieved in the presence of the
considered faults, the system is not fault tolerant with respect
to that objectives and to these faults. Since the current
objectives cannot be achieved, the problem is transformed
into finding new objectives that are of interest in the current
situation, and to design the control law which is able to
achieve these new objectives.



System constrains. The occurrence of faults may obvi-
ously changes the constraints C(6) of the problem. First,
the constraints may remain the same but the parameters may
change. Second, the constraints themselves might change.
Both cases can be shown by the change of C,(6,) into
Cy(6y), where n and f denotes nominal and faulty case,
respectively.

Admissible control law. The occurrence of faults may
also change the set of admissible control laws. Like previous
discussions, the new set of admissible control laws in noted
Ur while the nominal one is U,.

Let us denote the sequence variables over the time horizon
N

¥ = (xk)g/:(xo,xl,...,xN),
i = (w)y "= (uo,ur,...,un—1).

Thus, in the case of a linear constrained predictive control
law, the triple (O,C,U) is defined by

O : min J(%, i) (8)
u
subject to
X1 = f(x (k) u(k))
c:{ weU ke[ N—1CN )
xeX ke[0,N]CN
where
U 2 (R umin < tt < thmax} (10)
X £ {x€Rxpin <x < Xmar}, (11)

The control law belongs to the set U and it is obtained
using the receding horizon philosophy [10]. This technique
consists on taking only the first value from the sequence
ii computed at each time instant by solving the previous
optimization problem. The initial states xy are updated from
measurements or state estimation. The objective function J
is defined, in general form, as

N—1

J(%,d) = ¢ (xn) + i D(x;, u;)

i=0

12)

where ¢ is a function that constrains the final state value over
N and & is a function of states and inputs. Depending of
the applications, the objective function forces the system to
follow a reference (uyes,Xref) OI to optimize some economic
performance index.

A. Including fault tolerance

Fault tolerant control is concerned with the control of the
faulty system. This can be done by changing the control
law without changing the plant (adaptation, accommodation),
or by changing both the control and the system (reconfig-
urration). As the result of the fault, the control problem
is transformed from (0,C,(6,),U,) into (O,Cy(6y),Uy).
Suppose that both Cy (Gf) and Uy are perfectly known, then
the fault tolerant control law has to solve <0,C ¥ (Gf) U f>. It
such a solution exists, the system is fault tolerant with respect
to the objective O and the fault situation Cy (6y),Uy. If the

problem (O,Cs (6y),Uy) has no solution, then the system
is not fault tolerant and the objective reconfiguration has to
be explored.

Passive fault tolerance. In passive fault tolerance, the
control law is not changed when the fault occurs. This means
that the system objectives can be obtained when the system is
healthy, as well as when the system is faulty. Note that since
the control law is not changed, the passive fault tolerance
approach is similar to the robust approach when uncertain
systems are considered. Indeed, faults can be considered
as uncertainties which affect the system parameters. The
difference lies not only in the size and interpretation of
these changes, but also in the fact that the structure of the
constraints may change as the result of faults.

Active fault tolerance. In active fault tolerance, each of
the problems

<0,Cn (9,,) s Un> and <O,Cf (Gf) ,Uf>

f € F, has its own specific solution, thus allowing for much
more demanding objectives. However, for each of these
problems to be solved the knowledge about Cy (6y) and Uy
must be available. This is the role of fault detection and
isolation algorithm. According to the performance of fault
diagnosis algorithm, three cases can be considered:

1) The fault diagnosis algorithm is able to provide an
estimate C'f (éf) ,Uf of the fault impact. Then, the
problemAto bg solved is the standard control problem
(0.Cr (8r),0y).

2) The fault diagnosis algorithm is able to provide an
estimate ' (®/) , Uy of the fault impact, where [/ is a
set of possible constraints and 6 r is a set of associated
parameters. Then the problem to be solved is the robust
control problem <O,ff (C:)f) ,U f>.

3) The fault diagnosis algorithm detects and isolates the
faults, but it cannot provide any estimate of the fault
impact. Designing the control of completely unknown
system is not possible, therefore, knowledge about
that system could be obtained using e.g. learning ap-
proaches. Then, an estimation of the fault impact could
indeed be obtained, which would bring the problem
back to case 2.

Fault accommodation is the fault tolerant control strategy
which is associated with cases 1 and 2. On the other hand,
system reconfiguration is the strategy associated with case 3.

IV. FAULT TOLERANCE EVALUATION USING
VIABILITY THEORY
A. Preliminary definitions
Definition 4.1 (Feasible solution set): The feasible solu-
tion set of the MPC problem (3)-(4) is given by

Q= {xu| (x(k+1) = f(x(k) M(k)))]ovfl}

The subset Q gives the input and state sets compatible with
system constraints which originate the set of predictive states.



Definition 4.2 (Feasible control objective set): The fea-
sible control objective set is given by

Lo = {J (%) € R| (%,4) € Q}

and corresponds to the set of all values of J obtained from
feasible solutions.
Consider the system with fault as:

x(k+1):f(x(k),u(k),9f) 13)

In this case, feasible solution set Q converts to Q and
feasible control objective set I'qg converts to I'q /-

Definition 4.3 (Admissible solution set): Given the follo-
wing subsets

o Qp, defined as the feasible solution set
e I'y, defined as the admissible control objective set,

the admissible solution set is given by
Y= {xiecQsJ(¥q) ely}

and corresponds to the feasible solution subset that produces
control objectives in I'p. If ¥ = 0, then the system (13) is
not fault tolerant.

B. Admissibility evaluation using constraint satisfaction

A constraint satisfaction problem (CSP) on sets can be
formulated as a 3-tuple H = (V,D,C) [11], where

o V={vy,---,v,} is a finite set of variables,

e D={d,, - ,dy,} is the set of their domains represented
by closed sets and

e C={cy, - ,cy} is a finite set of constraints relating
variables of V.

A point solution of H is a n-tuple {Dy,---,D,} € D such that
all constrains C are satisfied. The set of all point solutions of
H is denoted by S(H). This set is called the global solution
set. The variable v; € V is consistent in H if and only if

Vo€V (D Edy, -, Dy €dy)| (D1, , By) € S(H)

withi=1,--- ,n. The solution of a CSP is said to be globally
consistent, if and only if every variable is consistent. A
variable is locally consistent if and only if it is consistent
with respect to all directly connected constraints. Thus, the
solution of a CSP is said to be locally consistent if all
variables are locally consistent.

The admissibility evaluation requires the computation of
the admissible solution set introduced in Definition 4.3. It
can be noticed that this corresponds naturally to a CSP on
sets. The associated CSP is defined by system dynamics, the
operative limits on inputs and states over N and the initial
state using the Algorithm 1.

It is well known that the solution of this kind of problems
has a high complexity [11]. In practice, the sets that define
the variable domains in Algorithm 1 are approximated by
intervals. This leads to the algorithm of Interval Constraint
Satisfaction Problem (ICSP) [12]. A possible alternative to
extend the applicability of ICSP to non-isotone systems, the
feasible solution set could be approximated through more

Algorithm 1 Admissibility evaluation using sets

X u
V:{xla"' ,XN,M],"',MN,J}
D:{le"'vaaulv.“7UNar‘P} N
C={{x(k+1)=f(x(k),uk),F (k) }o,
N

J(&d) =0 (xn)+ Y P (x;,ui)}

Hy=(V,D,C) =
A = solve(Hy)
if A= ¢ then

system is not fault tolerant
else

system is fault tolerant
end if

complex domain forms than interval hull. In [6], zonotopes
are used for set computation operations associated with this
algorithm.

C. Admissibility evaluation using viability theory

Based on the viability concepts recalled in Section II, it
can be readily deduced that there are some similarities that
allow us to use viability theory in fault tolerance evaluation.
Actually, an equivalency between feasible solution set and
viability kernel can be considered

Viabs (K) = Q

Note that for finding both of them, constraints of the system
is considered. But in the viability kernel definition, there is
an extra limitation that the system must have at least one
evolution that remains in the set. This is close to the concept
of Lyapanov theory for stability. Therefore, viability kernel
is more reliable to provide safe areas of work for the system.
It can be deduced that if reference of the system is inside
viability kernel, it is achievable. Actually, there is a control
signal that can bring the system to reference. This can be
done by finding regulation map introduced in Definition 2.3.

The equivalence between viability kernel and feasible
solution set leads us to relate the capture basin with the set
of admissible performance

Capts (K,C)=Tq

In the definition of capture basin, the target C can be regarded
as objective J that must be reached. It means that if there is
a limited time to achieve the target after fault occurs while
the states of the system must be in the capture basin.

Note that in definition of viability kernel and capture basin,
despite feasible solution set and feasible control objective
set, there is no direct mention regarding the control signal.
Therefore, regulation map can be used as complementary
concept to deal with the control signal.

D. Algorithm

Now, after finding those equivalency, admissibility eval-
uation that is proposed in [6], can be extended by viability
theory concepts. The admissibility evaluation starts obtaining



the vaibility kernel viabg (K) given a set of initial states Ko
and the system dynamics. This procedure is described in the
Appendix.

After finding viability kernel based on constraints of states
and inputs, the capture basin can be obtained. In this manner,
it is possible to consider viability kernel or a part of the set
(based on steady state or a predefined objective trajectory) as
target to find capture basin. This procedure is also described
in Appendix.

Given a fault in the system, the admissible solution set can
be obtained from the above algorithms using revised system
dynamics and constraints. In this manner, the new viability
kernel can define the set of admissible states of the system
after fault occurs. Therefore, it is possible to investigate if
the reference is achievable or not.

On the other hand, finding capture basin with new dy-
namics allows to determine in at least how many steps the
system can reach the target. The target can be considered as
small set near steady state inside viability kernel or a small
set around a predefined trajectory. Algorithm 2 shows the
procedure for admissibility evaluation using viability theory
concepts.

Algorithm 2 Admissibility evaluation using viability theory
find Viabs(K)
if the reference x,. is inside Viabs(K) then
Xref 1s achievable
else
Xref s not achievable
end if
find Capts(K,C) of a target C inside Viabs(K)
if the target C is achievable in finite time 7 then
system is fault tolerant
else
system is not fault tolerant
end if

V. APPLICATION EXAMPLE

The proposed method for fault tolerance evaluation has
been tested in simulation using the water heater part of a
pasteurization plant presented in Figure 3. The reservoir is
an electrically heated, which is covered in order to minimize
heat losses [13]. The water is heated by means of the power
(P) given to the resistance. A peristaltic pump with an upper
limit of 700ml /min moves the heated water. This flow,
described as hot flow (F},), transfers heat to the pasteurization
product in a heat exchanger, before returning to the heat
water. If the flow is maintained at a constant value, the
water heater behaves as a linear process. However, in the
pasteurization process, F;, changes frequently to provide the
adequate amount of energy to maintain the heat exchanger
input temperature. A block diagram of the water heater
model developed by [13] is shown in the Fig. 4.

The water heater can be model as a linear parameter
varying model that considers the flow Fj as the scheduling
variable. The state space model of the plant G, is A, =

Fig. 3. Pasteurization Plant

Fig. 4. Block diagram of the water heater

—1/zp, By = kp/zp, C, =1, D, = 0 while the state space
model of the disturbance transfer function G, is Ay = —1/z4,
By =ky/z4, C4 =1, Dy =0 where
kg=—-13035x 107" x F;,*+2.1189 x 107® x F,?
—1.3487 x 107> x F;,> +0.0044 x F, +0.2127
ky, =1.3426 x 10712 x F{,* —2.3729 x 10~° x F;,}
+1.6624 x 107 x F,2 —0.0006 x Fj, +0.1189
20 =3.8483 x 108 x F,* —6.7677 x 107> x F,>
+0.0471 x F,> — 16.8007 x F, 4+ 3303.7905
7, =3.8483x 1078 x F,* — 6.7677 x 107 x F;?
+0.0471 x F,> — 16.8007 x F, +3303.7905
The flow Fj, is considered to vary in [100,600]. The model

of the plant and the disturbance are integrated in a single
state space model as follows

A 0 B 0 P
c(r)=1]"7F n+| 7
e [ 0 Ad]x” [ 0 BdHTiw} (14)
y@)=[1 1]x()
The system (14) is discretized by Euler method considering a
sampling time T = 60 s. In healthy state, the controlled input

P is considered to be in [0,2000] and disturbance T;,, = 20.
Initial set for viability kernel estimation is considered to be

o 100 0 0 0]
XO_[O]@[O 100 0 0P

The viability kernel for system in healthy mode is nearly all
the areas of interest is presented in Fig. 5. Hence, the system



in healthy mode could track nearly all possible references.
Now, two actuator fault scenarios are considered

P € [0,400]
P=0

Fault scenario 1:

Fault scenario 2:

The first fault scenario corresponds with the degradation of
actuator while the second scenario is a complete actuator
outage. Viability kernels for these two faults are drawn in
Fig. 6. It can be observed that faults change viability kernel.
For the first fault scenario, it is clear that all positive values
of x; is achievable. But, the second fault changes viability
kernel in the way that if reference is more that 40, the system
could not track it. Therefore, depending on the reference
value, the system will be fault tolerant or not.

150

100 T —
sol Initial Zonotope B
S or |
Viability Kernel
50

-100 —

150 ‘ ‘ ‘ ‘

-100 -50 0 50 100 150
XI
Fig. 5. Viability kernel for the healthy mode
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Fig. 6. Viability kernel for the first and second fault scenarios

For finding capture basin, because all the states are
achievable in healthy and first fault scenarios, the capture
basin after two steps corresponds to the whole state space.
Therefore, the capture basin only for the second fault is
depicted. The target is considered to be constant.

| 20 50 0 0],
XC‘{zo]@[o 5 0 O}B
The capture basin considering three time steps is presented in
Fig. 7. Hence, if the considered specification for the system is

to achieve the target in three steps, the fault can be tolerated
since the intersection of the capture basin with the target is

not empty according to Fig. 7. This means that the predictive
controller will be able to find an admissible trajectory to
reach the target in the desired time specification in spite of
the fault.

34

32t —
30+ q
Capture Basin
28 q

261 1

e2f \Targel 1

20 T

Fig. 7. Capture basin for the second fault scenario

VI. CONCLUSION

In this paper, the idea of using viability theory in fault
tolerance evaluation has been proposed and developed. Con-
cepts of viability kernel and capture basin have been re-
vised. Then, fault tolerance evaluation scheme using these
concepts is proposed providing a computational algorithm.
The detailed analysis of the viability concepts applied to the
fault tolerance evaluation of a MPC strategy show that they
are more general than the ones used when considering set
theory as e.g. the case of feasible solution set. Finally, fault
scenarios simulated using a part of a pasteurization process
has been used in order to show the effectiveness of the
proposed approach.
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