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Abstract We present a novel approach for learning
a finite mixture model on a Riemannian manifold in
which Euclidean metrics are not applicable and one
needs to resort to geodesic distances consistent with
the manifold geometry. For this purpose, we draw in-
spiration on a variant of the expectation-maximization
algorithm, that uses a minimum message length cri-
terion to automatically estimate the optimal number
of components from multivariate data lying on an Eu-
clidean space. In order to use this approach on Rieman-
nian manifolds, we propose a formulation in which each
component is defined on a different tangent space, thus
avoiding the problems associated with the loss of ac-
curacy produced when linearizing the manifold with a
single tangent space. Our approach can be applied to
any type of manifold for which it is possible to esti-
mate its tangent space. Additionally, we consider using
shrinkage covariance estimation to improve the robust-
ness of the method, especially when dealing with very
sparsely distributed samples. We evaluate the approach
on a number of situations, going from data clustering
on manifolds to combining pose and kinematics of artic-
ulated bodies for 3D human pose tracking. In all cases,
we demonstrate remarkable improvement compared to
several chosen baselines.
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1 Introduction

The use of Riemannian manifolds and their statistics
has recently gained popularity in a wide range of ap-
plications involving non-linear data modeling. For in-
stance, they have been used to model shape changes
in the brain [13], diffusion tensor imaging [44], defor-
mations of anatomical parts [18] and human motion
[6,60]. In this work we tackle the problem of approx-
imating the Probability Density Function (PDF) of a
potentially large dataset that lies on a known Rieman-
nian manifold. We address this by creating a completely
data-driven algorithm consistent with the manifold, i.e.,
an algorithm that yields a PDF defined on the manifold.
This PDF can then be used as a prior in higher-order
models, by combining it with image evidence in hybrid
discriminative-generative models [53], or by exploiting
it to constrain the search space in a tracking frame-
work [1]. We will show particular applications of the
proposed prior in the case of 3D human pose estimation,
demonstrating a remarkable improvement compared to
other widely used models.

A standard procedure to operate on a manifold is to
use the logarithmic map to project the data points onto
the tangent space of the mean point on the manifold [18,
24,60]. After this linearization, Euclidean statistics are
computed and projected back to the manifold using the
exponential map. This process is iteratively repeated
until convergence of the computed statistics. Unfortu-
nately, while this approximation is effective to model
data with a reduced extent, it is prone to fail when
dealing with data that covers wide regions of the man-
ifold.

In the proposed finite mixture model, we overcome
this limitation by simultaneously considering multiple
tangent spaces, distributed along the whole manifold
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Fig. 1: Illustration of the proposed mixture
model approach. Each mixture component has its
own tangent space, ensuring the consistency of the
model while minimizing accuracy loss.

as seen in Fig. 1. We draw inspiration on the unsuper-
vised algorithm from [17], which given data lying in an
Euclidean space, automatically computes the number
of model components that minimizes a message length
cost. By representing each component as a distribu-
tion on the tangent space at its corresponding mean
on the manifold, we are then able to generalize the
algorithm to Riemannian manifolds and at the same
time mitigate the accuracy loss produced when using
a single tangent space. Furthermore, since our model
is semi-parametric, we can handle an arbitrarily large
number of samples. This is in contrast to existing non-
parametric approaches [41] whose complexity grows with
the training set size.

As an example of practical application of our mix-
ture model, we will consider the 3D human pose track-
ing problem, which has been traditionally addressed
with kinematic priors based on Gaussian diffusion [16,
20,23,52,58]. This consists in simply searching in a small
area defined by a Gaussian distribution centered on the
previous pose, i.e., xt = xt−1+ε, where xt would be the
pose at time t and ε would be a Gaussian perturbation
with 0 mean and diagonal covariance. However, this
simple model does not constrain the pose to lie on its
underlying manifold, and does indeed explore a much
higher dimensional space than it should be strictly nec-
essary. We will show that using our model as a kine-
matic prior we can effectively focus our solution on the
actual manifold, greatly outperforming standard Gaus-
sian diffusion models.

A preliminary version of this work appeared in [55]
with an application to introducing kinematic priors later
presented in [56]. We extend this work by considering
improvements for the covariance estimation. In particu-
lar, we consider shrinkage estimators that are shown to
outperform empirical covariance estimation when the

samples are sparsely distributed on the manifold (be-
cause the manifold has a very large dimensionality or
because the number of samples is small, or a combi-
nation of both effects). This makes our approach both
appropriate to handle situations with either large or
small amounts of data, while our previous versions were
mostly effective when dealing with large datasets. We
finally unify and extend the evaluation in [55,56] to con-
sider more manifolds and the improvements proposed
in this paper. Results will show that our manifold-based
finite mixture model can be used to exploit the known
structure of the data, outperforming approaches that
do not. We provide the source code1 of our approach.

2 Related Work

Manifolds have always been very important in com-
puter vision [47]. The two more widely used manifolds
have been the one of symmetric semi-definite matri-
ces [21,22,28,29,43,57], and the Grassman manifolds [27,
50,67]. However, most of these approaches focus on ex-
ploiting very specific manifolds and do not generalize to
other manifolds. In contrast, our approach is applicable
to all Riemannian manifolds with explicit exponential
and logarithmic maps.

Recently, there has been an influx of theoretical re-
sults in statistics on Riemannian manifolds [42] that
have allowed for their widespread usage in modeling.
For example, there exists several PCA generalizations
to non-linear data such as the Principal Geodesic Anal-
ysis [18,60] and the Geodesic PCA [24]. Yet, these meth-
ods only use one single tangent space located at the
geodesic mean, which can lead them to have significant
accuracy error when input data is spread out widely on
the manifold. Other algorithms based on kernels [13]
and Markov Chain Monte Carlo sampling [6] have been
specifically used in regression tasks on manifolds, but
they have not been applied to stochastic modeling prob-
lems. There have been recent attempts at removing the
tangent space linearization [59,75], which, however, can
not yet scale to the large amounts of data we consider
in this work.

Other approaches address classification models on
Riemannian manifolds [47,64,65,68]. For binary cases,
the classifier is usually built in a “flattened” version of
the manifold, obtained via the tangent space [68]. Mul-
tiple category classification problems have been tackled
by replacing the tangent space mapping with rolling
maps [9], and by using extensions of the Kernel methods
to Riemannian manifolds [28,29]. In any event, these
approaches have been exclusively used for classification

1 http://hi.cs.waseda.ac.jp/~esimo/code/gfmm/

http://hi.cs.waseda.ac.jp/~esimo/code/gfmm/
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Model Complexity Scales? Consistent? PDF?

Gaussian diff. Low Yes No Yes
GMM [51] Low Yes No Yes
PGA [18] Low Yes Yes No

GPLVM [31] Low No No Yes
GPDM [73] Medium No No Yes

hGPLVM [32] Medium No No Yes
CRBM [63] High Yes No Yes

GCMFA [36] High No No Yes

GFMM (Ours) Low Yes Yes Yes

Table 1: Comparison of several commonly used
human pose models. Models are considered to scale
if they can handle well large amounts of data (∼100K
samples) and to be consistent if they use geodesic dis-
tances instead of other metrics. The last column reflects
whether or not a model is actually modeling the Prob-
ability Density Function (PDF) of the data.

problems, which are out of the scope of the current pa-
per, focused on PDF modeling for use as priors.

With regards to density estimation on Riemannian
manifolds, various non-parametric approaches [40,41]
have been proven to be appropriate. However, as their
complexity is dependent on the number of training sam-
ples, they scale poorly for large datasets. In contrast,
semi-parametric models such as the mixture model we
propose here can handle large amounts of data effi-
ciently. Dirichlet Processes have been used for fitting
mixture models [10], and recently modified to handle
the case of the sphere manifold [62], although, com-
pared to our approach, they have not been extended to
arbitrary Riemannian manifolds. Another widely stud-
ied manifold is that of tensor fields [35], for which a non-
parametric Kernel Density Estimation approach was re-
cently proposed [8]. In [39], individuals on the tangent
bundle are modeled and populations are compared with
generalized statistical hypothesis tests, but no paramet-
ric model is learned. The interesting approach in [2]
is similar to ours in spirit, as it proposes a technique
to perform Expectation Maximization (EM) on man-
ifolds. However, this work considers data-driven man-
ifolds, resulting in a high computational overhead for
large training sets. In addition, it neither estimates the
number of clusters, nor makes use of the tangent space,
which allows our model to be defined “on the manifold”.

As for human pose, it has been traditionally mod-
eled as a tree of connected joints [26,37,38]. There have
been many different ways of modeling this. One of the
most straightforward approaches is to make use of a
Gaussian Mixture Model (GMM) [51]. Another popu-
lar trend is to use Gaussian Processes (GP)-based ap-

proaches, such as GP-Latent Variable Models [31] and
the constrained GP [71]. These have been extended to
consider dynamics in the Gaussian Process Dynamic
Model (GPDM) [69,73,74], and also to consider topo-
logical constraints [70]. Hierarchical variants [32] (hG-
PLVM) have also been used in tracking-by-detection [1].
However, Gaussian Processes do not scale well to large
datasets due to their O(n3) complexity for prediction.
Sparse approximations do exist [45], but in general do
not perform as well. In contrast, once our model has
been estimated it has O(1) complexity for sampling.

There have been other approaches for modeling hu-
man pose such as learning Conditional Restricted Boltz-
mann Machines (CRBM) [63]. However, these methods
hold on a complex learning procedure that uses several
approximations, and make the training of good models
harder. Li et al. [36] proposed the Globally Coordinated
Mixture of Factor Analyzers (GCMFA) model which is
similar to the GPLVM ones in the sense it is perform-
ing a strong non-linear dimensionality reduction. Yet,
as GPLVM, it does not scale well to large datasets such
as the ones we consider in this work.

We would like to point out that none of the afore-
mentioned approaches is consistent with the manifold
of human motion. Some of them use directly the 3D po-
sition of the joints while others use angles. In the case of
considering 3D points the limb length may vary during
the tracking, which is neither realistic nor desirable. In
the case of angle representations, they have an inherent
periodicity and thus are not a vector space even though
they are usually treated as such. Two nearby angles may
have very different values, e.g., 0 and 2π. In this case the
distance using the angular value would be 2π while the
true geodesic distance is 0. Our model can handle both
these limitations. Another model that can handle this
is the Principal Geodesic Analysis (PGA) [18]. How-
ever, this model uses a single tangent space and does
not model the Probability Density Function (PDF).

Table 1 summarizes the properties of the models we
have commented in terms of their complexity, ability
to scale, manifold consistence and if they provide or
not a PDF. In particular, our approach scales well, is
consistent with the manifold, has low complexity (i.e.,
it just considers a single hyperparameter), and can be
easily learned using an Expectation-Maximization al-
gorithm. It is worth noting here that our model is also
the fastest of them for sampling (it is O(1)). For in-
stance, our Matlab implementation yields over 100,000
samples per second. An example of our model can be
seen in Fig. 2.
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Fig. 2: Example of our motion prior. Top: For a
particular pose, 100 motion samples of the predicted
distribution are shown. For visualization purposes the
magnitude of the samples is multiplied by 3. Bottom:
Visualization of some of the joint samples with their
associated log-likelihood. The ground truth is shown
with a black diamond.

3 Geodesic Finite Mixture Model

We next describe our approach, starting with some ba-
sic notions on Riemannian geometry and statistics on
manifolds. We then integrate these ingredients in a mix-
ture modeling algorithm to build manifold-based gen-
erative models.

3.1 Manifolds, Geodesics and Tangent Spaces

Manifolds arise naturally in many real-world problems.
One of the most well-known is the manifold represent-
ing spatial rotations. For example, when studying hu-
man motion, it is a common practice to use the spatial
rotations of the different body parts to obtain a subject-
agnostic representation of the whole body pose. This is
usually done with angle representations that have an
inherent periodicity and thus are not a vector space.
By considering the Riemannian manifold of spatial ro-
tations it is possible to use tangent spaces as a local
vector space representation, and use powerful statisti-
cal tools based on Euclidean metrics. For an in depth
description of Riemannian manifolds we refer the reader
to [4,7].

A Riemannian manifold (M, g) is a differentiable
manifold M equipped with a metric g, that provides
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Fig. 3: Representation of geodesics on the
S2 manifold. The tangent space ensures that
‖ logp(x)‖ is the true geodesic distance of −→px. However,
‖ logp(a)− logp(b)‖ is not the geodesic distance of

−→
ab.

a smooth inner product on the tangent space TpM at
each point p on the manifold. Consider a parametrized
curve γ : [0, 1] → M with velocity γ̇(t) = ∂

∂tγ(t). A
geodesic is a curve that minimizes the distance between
the two points p = γ(0) and x = γ(1). More formally,
a geodesic is a curve with null acceleration along M ,
i.e., the covariant derivative D

∂t γ̇(t) is 0 for all t ∈ [0, 1].
We will denote the length of the geodesic or geodesic
distance as

d(p, x) =

∫ 1

0

√
gγ(t) (γ̇(t), γ̇(t)) dt . (1)

We can now define the exponential map expp at p =
γ(0) and its inverse, the logarithmic map logp as

expp :
TpM −→M
v 7−→ expp (v) = γ(1) = x

,

logp :
M −→ TpM
x 7−→ logp (x) = v

. (2)

The exponential map is locally diffeomorphic onto a
neighborhood of p. Let V (p) be the largest such neigh-
borhood, then logp(x) is defined for any point x ∈ V (p).
Geodesics γ(x,v)(t) = expx(tv) from t = 0 to infinity
can either be minimizing all the way or only up to a
time t0 < ∞ and not any further. In this latter case,
the point z = γ(x,v)(t0) is called a cut point. The set
of all cut points forms the cut locus, and the corre-
sponding vectors the tangential cut locus. The maximal
domain of V (p) will be the domain containing 0 and
delimited by the tangential cut locus. The geodesic dis-
tance can also be written using the logarithmic map as
d(p, x) = ‖ logp(x)‖ (see Fig. 3).

In general there is no closed-form of the expp and
logp maps for an arbitrary manifold. There are, though,
approximations for computing them in Riemannian man-
ifolds [14,61]. Additionally, efficient closed-form solu-
tions exist for certain manifolds [46]. We will discuss
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some of these manifolds and their associated expp and
logp maps in the next section.

3.2 Statistics on Tangent Spaces

While it is possible to define distributions on mani-
folds [42], we will focus on approximating Gaussian
PDFs of data on a manifold using the tangent space.
For instance, the mean of N points xi on a manifold
can be calculated as [30]:

µ = argmin
p

N∑
i=1

d (xi, p)
2
. (3)

This is iteratively optimized using the expp and logp
maps,

µ(t+ 1) = expµ(t)

(
δ

N

N∑
i=1

logµ(t) (xi)

)
, (4)

until ‖µ(t+ 1)− µ(t)‖ < ε for some threshold ε, with δ
being the step size parameter.

Knowing the mean value µ and the concentration
matrix Γ we can write the distribution that maximizes
entropy on the tangent space as a normal distribution
centered on the point µ ∈ M, corresponding to the
origin (ν = 0) in the tangent space:

Nµ(ν, Γ ) = a exp

(
−
logµ(x)

>Γ logµ(x)

2

)
, (5)

where the normalization constant a and covariance ma-
trix Σ are related to the concentration matrix by:

a−1 =

∫
M

exp

(
−
logµ(x)

>Γ logµ(x)

2

)
dM(x) , (6)

and

Σ = a

∫
M

logµ(x)
> logµ(x)

exp

(
−
logµ(x)

>Γ logµ(x)

2

)
dM(x) . (7)

Note that this integral is over the manifoldM and that
not all points of the tangent space TµM correspond to
one single point on the manifold, i.e., the tangential cut
locus. In particular, for the S2 sphere, the tangent space
is defined inside a circle and not the whole R2 plane.
The circle and the area outside of it forms the tangential
cut locus, and for any point on the tangential cut locus
there exists more than one minimizing geodesic to the
origin. As a simplification, in our formulation we will
not consider the tangential cut locus, and will directly

approximate normal distributions on the tangent space
TµM at the mean µ with covariance matrix:

Σ =
1

N

N∑
i=1

logµ(xi) logµ(xi)
> , (8)

and

a−1 =
√

(2π)D det(Σ) , (9)

By not taking into account the tangential cut locus we
are underestimating the true normalization parameter.

We next perform a simple analysis of the error in-
curred by obviating the tangential cut locus for the S2

sphere, which is at a distance π from the origin. We can
compute the exact normalization term by calculating
the integral of the 2D Gaussian on the tangent space
using Eq. (6). We consider the scenario of a normal
distribution centered at the origin and with diagonal
covariance matrix Σ = diag(σ, σ). Using polar coordi-
nates we can write:

(a∗)
−1

=

∫ 2π

0

∫ π

0

exp

(
−r2

2σ

)
r dr dθ

= 2πσ

(
1− exp

(
−π2

2σ

))
. (10)

If we do not take into account the tangential cut locus,
the normalization term of Eq. (9) becomes a = 2πσ. As
expected, we are underestimating the true constant by a
factor of a∗/a = 1−exp(−π2/(2σ)). To make an estima-
tion error over a 1%, σ ≥ −π2

2 log(0.01) ≈ 1.072. Therefore,
unless the distribution has an extremely large covari-
ance, for the S2 manifold, the estimation error will be
less than 1%. In the case of human articulations mod-
eled with S2 joints, most of them do not even have a
movement range of 1.072 radians, and their covariance
is much smaller, making this error negligible. Further-
more, since we model the data as a mixture of Gaus-
sians, each of the components of the mixture will have
a much smaller covariance than the total covariance of
the data. Experimentally, we found no difference be-
tween considering or not the tangential cut locus.

For an alternate approach to estimate a normal dis-
tribution on a Riemannian manifold where the Taylor
expansion of the Riemannian metric is used, please refer
to [42].

3.3 Improving Covariance Estimations

We next discuss alternative approximations to estimate
covariance matrices. These new estimates will later be
used in the place of the empirical covariance matrix Σ.
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The standard approach to compute a covariance ma-
trix S = [sjk], defines its entries as:

sjk =
1

N

N∑
i=1

(xij − µj)(xik − µk)> , (11)

with µj and µk being the j-th and k-th element of the
mean of the N samples x with dimensionality D. Note
that this is what was used in Eq. (8).

This empirical covariance matrix is known to be
a poor estimation of the true covariance matrix when
the number of samples is small compared to their di-
mensionality, yielding samples which are very sparsely
distributed. Several approaches have been proposed for
improving this approximation [34,49]. In this paper, we
will focus on Ledoit-Wolf (LW) [33] and Oracle Approx-
imating Shrinkage (OAS) [11] techniques, as besides be-
ing accurate for small datasets, they are also efficient
to compute for large training sets. They both belong to
the so-called family of “shrinkage estimators”.

In linear shrinkage problems, the estimation of the
covariance matrix is formulated as a constrained MSE
minimization w.r.t. a true covariance Σ:

min
ρ

E [‖Σ∗ −Σ‖F/D]

s.t. Σ∗ = ρ
tr(S)
D

I + (1− ρ)S , (12)

where ‖A‖F =
√

tr(AA>) is the Frobenius norm, ρ is
the shrinking coefficient, and I is the identity matrix.

Ledoit-Wolf [33] proposed using the following shrink-
ing coefficient:

ρLW = min

( ∑N
i=1 ‖xix>i − S‖F/D

N2(tr(S2)− tr2(S)/D)
, 1

)
, (13)

which is proven to converge to the optimal solution
when N,D →∞ and D/N → c, 0 < c <∞.

On the other hand, Chen et al. [11] propose to use
the Oracle Approximating Shrinkage (OAS):

ρOAS = min

(
(1− 2/D)tr(S2) + tr2(S)

(N + 1− 2/D)
(
tr(S2)− tr2(S)/D

) , 1) ,

(14)

which is the limiting form of the optimal oracle estima-
tor or ideal value of ρ.

Both the LW and OAS shrinkage estimators have
the desirable property that the estimated covariance Σ
is in general invertible, unlike the empiric covariance
estimation. In the experimental section we will show
that they also provide a better covariance estimation
for a wide variety of problems.

Another interesting case is when input samples are
subject to noise, e.g. due to measurement uncertainty.
In this situation we can introduce a prior on the struc-
ture of the input data and, for instance, parameterize
every sample xi by a specific Gaussian distribution with
covariance Σxi :

xi = yi +N (0, Σ−1xi ) , (15)

where yi is the mean value of xi.
For the sake of completion we will consider each

sample xi to be weighted by wi (we will use this in the
following subsection, for the EM computation). With-
out loss of generality we assume

∑N
i=1 wi = N . The

mean of the N samples can then be written as:

µ = E[x] = E [E[x|y]] = E[wy] =
1

N

N∑
i=1

wiyi . (16)

By using the law of total covariance we can then write
the biased weighted sample covariance as

Σ = cov(x) = E[cov(x|y)] + cov(E[x|y])
= E[cov

(
wN (x, Σ−1x )

)
] + cov(wy)

= E[w2Σx] + cov(wy)

=
1

N

N∑
i=1

wi
(
Σxiwi + (yi − µ)(yi − µ)>

)
. (17)

In the results section we will show how it is possible to
treat the sample noise Σxi as a hyperparameter when
estimating mixtures from few samples, and that it be-
haves as a regularization parameter that helps to im-
prove performance.

3.4 Unsupervised Finite Mixture Modeling

Recall that our ultimate goal is to fit a mixture model
on Riemannian manifolds. For this, we will draw inspi-
ration on [17], a variant of the EM algorithm [15] that
uses the MinimumMessage Length criterion (MML) [72]
to estimate the number of clusters and their parameters
in an unsupervised manner.

Given an input dataset, this algorithm starts by ran-
domly initializing a large number of mixtures. During
the Maximization (M) step, a MML criterion is used to
annihilate components that are not well supported by
the data. In addition, upon EM convergence, the least
probable mixture component is also forcibly annihilated
and the algorithm continues until a minimum number
of components is reached. The approach in [17] is de-
signed to work with data in an Euclidean space. To use
it in Riemannian manifolds, we modify the M-step as
follows.
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We define each mixture component with a mean µk
and a concentration matrix Γk = Σ−1k as a normal dis-
tribution on its own tangent space TµkM:

p(x|θk) ≈ Nµk
(
0, Σ−1k

)
, (18)

with θk = (µk, Σ
−1
k ). Remember that the mean µk

is defined on the manifold M, while the concentra-
tion matrix Γk is defined on the tangent space TµkM
at the mean νk = 0. Also note that the dimension-
ality of the space embedding the manifold is larger
than the actual dimension of the manifold, which in
turn is equal to the dimension of the tangent space.
That is, for an arbitrary embedding of the manifold,
dim(Embedding(M)) > dim(TpM) = dim(M) = D.
This dimensionality determines the total number of pa-
rameters Dθ specifying each component, and, as we will
explain below, plays an important role during the com-
ponent annihilation process. For full covariance matri-
ces it can be easily found that Dθ = D +D(D + 1)/2.

We next describe how the EM algorithm is extended
from Euclidean to Riemmanian manifolds. For a full
derivation of the algorithm please see Appendix A. Specif-
ically, let us assume that K components survived after
iteration t − 1. Then, in the E-step we compute the
responsibility that each component k takes for every
sample xi:

w
(i)
k =

αk(t− 1)p(xi|θk(t− 1))∑K
k=1 αk(t− 1)p(xi|θk(t− 1))

, (19)

for k = 1, . . . ,K and i = 1, . . . , N , and where αk(t− 1)

are the relative weights of each component k.
In the M-step we update the weight αk, the mean

µk and covariance Σk for each of the components as
follows:

αk(t) =
1

N

N∑
i

w
(i)
k =

wk
N

,

µk(t) = argmin
p

N∑
i=1

d

(
N

wk
w

(i)
k x(i), p

)2

,

Σk(t) =
1

wk

N∑
i=1

(
logµk(t)(x

(i))
)(

logµk(t)(x
(i))
)>

w
(i)
k ,

(20)

If we wish to augment the data with noise covariance
associated to each sample, it is as simple as adding the
weighted average of the noise covariance to Σk(t) as per
Eq. (17).

After each M-step, we follow the same annihilation
criterion as in [17], and eliminate those components
whose accumulated responsibility wk is below a Dθ/2

threshold. A score for the remaining components based

Fig. 4: Representation of a conditioned distribu-
tion. In the left we show a joint Gaussian distribution
over two variables xA and xB . We then on the right
illustrate the resulting distribution p(xA|xB) for a par-
ticular point xB = b. We can see that this is also a
Gaussian distribution, albeit one-dimensional.

on the Minimum Message Length is then computed.
This EM process is repeated until the convergence of
the score or until reaching a minimum number of com-
ponents Kmin. If this number is not reached, the com-
ponent with the least responsibility is eliminated (even
if it is larger than Dθ/2) and the EM process is re-
peated. Finally, the configuration with minimum score
is retained (see [17] for details), yielding a resulting dis-
tribution with the form

p(x|θ) =
K∑
k=1

αkp(x|θk) . (21)

3.5 Conditional Distribution

It is possible to use the generative model just described
in prediction tasks by estimating the distribution of a
subset of variables given another subset of variables.
Essentially, given a joint distribution, the distribution
of a subset of variables conditioned on another subset of
variables is computed as illustrated in Fig. 4. To do this
we need to split the dimensions of the manifold into two
subsets, x = (xA, xB). Each of these components can be
expressed in terms of the mixture as:

θk = (µk, Σ
−1
k ) =

(
(µk,A, µk,B),

[
Σk,A Σk,AB
Σk,BA Σk,B

]−1)
.

(22)
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The conditional distribution of one subset given the
other (i.e., the regression function), can be written as:

p(xA|xB , θ) =
p(xA, xB |θ)
p(xB |θB)

=

∑K
k=1 αkp(xB |θk,B)p(xA|xB , θk,A)∑K

k=1 αkp(xB |θk,B)
.

(23)

Observe that this is a new mixture model:

p(xA|xB , θ) =
K∑
k=1

πkp(xA|xB , θk) , (24)

with weights:

πk =
αkp(xB |θk,B)∑K
j=1 αjp(xB |θj,B)

, (25)

In the case of the Euclidean space, p(xA|xB , θk,A)
can be written as:

p(xA|xB , θk,A) = N (µk,A|B , Σ
−1
k,A|B) ,

µk,A|B = µk,A +Σk,ABΣ
−1
k,B (xB − µk,B) ,

Σk,A|B = Σk,A −Σk,ABΣ−1k,BΣk,BA . (26)

In our case we assume that the tangent spaces are not
being moved and that they are centered on the mean.
This allows us to write the conditional probabilities as:

p(xA|xB , θk,A) = Nµk,A|B (νk,A|B , Σ
−1
k,A|B) ,

νk,A|B = Σk,ABΣ
−1
k,B logµk,B (xB) ,

Σk,A|B = Σk,A −Σk,ABΣ−1k,BΣk,BA , (27)

where logµk,B is the subspace of the tangent space logµk
at the subset of the mean µk,B for the mixture k. Note
that the tangent spaces are not being moved, i.e., they
still remain centered on µ, although we are only looking
at a subspace of the tangent space.

In the results section we will show how we can use
this to predict the kinematics of a person given her/his
pose.

3.6 Implementation Considerations

While using the tangent spaces allows representing PDFs
of data on manifolds, this comes at a price of higher
computational cost as the data must be repeatedly pro-
jected back and forth from the tangent space to the
manifold. There are, though, several implementation
considerations that can be taken into account to im-
prove the efficiency.

For instance, as mentioned in [17], we might consider
using less expressive covariance matrices (e.g. diagonal

ones). However, when using tangent spaces, there is not
necessarily a global coordinate frame representation, as
the orthonormal basis of the tangent space depends on
the logp map, and thus, depends on the point p at which
it is calculated. When running the EM algorithm, the
tangent spaces at step t+1 may have a completely dif-
ferent basis than those at step t, and thus, the data
likelihood can change drastically, making the optimiza-
tion much more non-linear. Since (in contrast to full
covariance matrices) diagonal matrices can not adapt
to arbitrary rotations of the coordinate system, their
performance is in general quite poor. This limitation
can only be bypassed when there exist a global coor-
dinate frame that can be defined for all tangent spaces
independent of the point they are centered on, e.g., the
Euclidean spaces Rn.

Nevertheless, when working with a manifold which
is the Cartesian product of other manifolds such as
SAB = SA × SB , it is possible to use a block-diagonal
matrix of the form:

ΣSAB =

(
ΣSA 0

0 ΣSB

)
=

(
Γ−1SA 0

0 Γ−1SB

)
= Γ−1SAB , (28)

which by construction is a valid covariance matrix and
avoids the issue of dealing with arbitrary orthonormal
basis. The null row and column elements highly simplify
the computational cost. By using less expressive covari-
ance matrices, the model has fewer degrees of freedom
and generally converges in fewer iterations, besides re-
quiring less training data.

Furthermore, while in the Euclidean case the mean
of a set of points can be computed in closed form, when
working with manifolds we need to do this iteratively.
In our implementation this is required in the M-step,
where the parameters θk are estimated as a weighted
combination of terms. By considering only a subset of
samples S such that

∑
i∈S w

(i)
k > εs for a certain thresh-

old εs, it is possible to improve the computational effi-
ciency without sacrificing accuracy.

In order to improve the initialization, we consider
using the k-means algorithm in the embedding space as
a coarse initialization for the algorithm. This ensures a
fair spread of the initial clusters over the data in con-
trast to a random sampling that may fail when the data
is unevenly distributed. In the results section we will
show that manifolds with large dimension lead to fewer
clusters being annihilated in the initial iteration and
more stable convergence properties.

4 Manifolds

We will now describe several manifolds that we will use
in the experimental section. For each manifold we will
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briefly discuss their structure and the expp and logp
map implementations.

4.1 Quadratic surfaces

In general, there is no closed-form of the expp and logp
maps for an arbitrary Riemannian manifold. There are,
though, approximations for computing them [14,61]. In
particular we will consider implicitly defined surfaces.

Computing the expp map corresponds to solving an
initial value ordinary differential equation problem. Re-
fer to [14] for a neat numerical algorithm to obtain so-
lutions to the map.

The computation of the logp map is harder and is
based on a shooting algorithm. This relies on the expp
map to iteratively refine an initial guess, and is a natu-
ral generalization of error correction from the Euclidean
space to manifolds. We use the implementation pro-
posed in [61].

4.2 S2 Manifold

There is an explicit mapping between the unit sphere S2

and its tangent space TpS2 [46]. Let x = (x1, x2, x3)
>,

y = (y1, y2, y3)
> be two unit spoke directions in S2 and

v = (v1, v2)
> a point in TpS2. The expp and logp maps

are in this case:

expp(v) = R−1p

(
v1

sin ‖v‖
‖v‖

, v2
sin ‖v‖
‖v‖

, cos ‖v‖
)
,

logp(x) =

(
y1

θ

sin θ
, y2

θ

sin θ

)
, (29)

where Rp is the rotation of p to the north pole, ‖v‖=
(v21 + v22)

1
2 , y = Rpx and θ = arccos(y3).

4.3 Human Pose Manifold

The human pose is commonly represented using a dis-
crete set of points in 3D space that correspond to dif-
ferent articulations [25,53,54]. For a specific individual,
the distance between two consecutive joints, e.g., elbow
and hand, is fixed. It is therefore common to separate
the specific characteristics of the individual given by the
distances between two consecutive joints, from his/her
pose, i.e., the relative rotation between two consecutive
joints [26]. We will therefore consider the human pose
as the set of relative rotations between all pairs of con-
secutive joints which forms a tree structure [60,66]. We
will further represent this relative motion as points on
a sphere. That is, given a specific joint, the next con-
secutive joint will lay on the S2 sphere centered on the

previous one. The whole pose will thus be represented
as the Cartesian product of all the relative rotations be-
tween consecutive joints. We will write the human pose
manifold H as

H = S2 × S2 × · · · × S2 . (30)

In this case the expp and the logp maps for the human
pose manifold will consist of the Cartesian product of
the expp and logp maps for all consecutive joints, which
is one less than the total number of joints. Note that
while there exist other manifolds for 3D human pose,
such as one defined by using forward kinematics [23],
they do not have closed form solutions for the expp and
logp operators.

4.4 Joint Pose and Kinematic Manifold

We can obtain a joint human pose and kinematics man-
ifold with the tangent bundle of the human pose man-
ifold, which we equip with a Riemannian metric called
the Sasaki metric [48]. The tangent bundle is defined
as:

TM = {(x, v) | x ∈M, v ∈ TxM} . (31)

Let (u,w) be a vector tangent to TM at a point
(x, v). Both u and w must be lifted from the tangent
space TxM to T(x,v)TM. The lift of the u component
is called the horizontal lift of u and denoted uh. Like-
wise, the lift of the w component is called the vertical
lift of w and denoted wv. Geodesics along uh move x
while parallelly translating u, whereas geodesics along
wv move v linearly while keeping x fixed. Given two
elements a = (x1, v1), b = (x2, v2) ∈ TM, the Sasaki
metric ĝ(a, b) is given as

ĝ(xh1 , x
h
2 ) = g(x1, x2) ,

ĝ(xh1 , v
h
2 ) = ĝ(xh2 , v

h
1 ) = 0 ,

ĝ(vh1 , v
h
2 ) = g(v1, v2) , (32)

where g is the metric on M. Notice that there are no
cross-terms between x and v.

For two consecutive poses x1 and x2 acquired at a
constant framerate, we can compute the velocity v12 be-
tween x2 and x1 directly on the tangent space through
the logarithmic map at x1 and thus define the joint pose
and kinematic manifold as:

TH =
{
(x1, v12) =

(
x1, logx1

(x2)
)
| x1, x2 ∈M

}
,

(33)

where ‖v12‖ is the geodesic distance between both points
as shown in Fig. 5.
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Fig. 5: Visualization of the velocity. Velocities cor-
respond to points on the tangent space at x1. Given a
point x2 (corresponding to the pose acquired right after
x1), the velocity is the curve going from x1 to x2 which
is equivalent to a straight line in the tangent space. The
Euclidean norm of v12 on the tangent space corresponds
to the geodesic distance from x1 to x2.

We next define the exponential and logarithmic maps
for the elements (x, v) ∈ TH. For a local neighbourhood
of x, the elements v ∈ TxH form a vector space and thus
the operators can be simply defined as in the Euclidean
case with

logv1(v2) = v2 − v1 and expv1(v2) = v2 + v1 . (34)

This ensures that the mean of the data on the tangent
space at the geodesic mean will be 0, i.e, the mean of
{logp(xi)}xi will be 0 if p is the geodesic mean.

We can also further extend this manifold by in-
cluding more poses acquired sequentially at a constant
frame rate. For example, given three consecutive poses
x1, x2 and x3 it is possible to map these points to a
manifold in which one pose is the reference and the
other two poses are considered offsets from that refer-
ence or tangent vectors. That is (x1, x2, x3) is mapped
to (logx2

(x1), x2, logx2
(x3)) where x2 would be the local

reference.

5 Results

In this section we will extensively evaluate our model
on both synthetic and real data. We consider a num-
ber of manifolds and evaluation procedures to show the
flexibility and diversity of our model. The section is
structured as follows:

1. Evaluation on the recovery of synthetic distributions
on quadratic surfaces.

2. In depth results on modeling synthetic distributions
on the S2 sphere.

3. Modeling human pose and kinematics on the large-
scale Human3.6M dataset [26].

6 Clusters 8 Clusters
Clusters Correct Clusters Correct

Ours 6.09 (0.32) 0.92 8.00 (0.00) 1.00
1-TM 7.05 (1.38) 0.46 15.25 (2.17) 0.00
vMF 16.59 (1.71) 0.00 19.86 (2.35) 0.00

DP-GMM [10] 7.83 (1.27) 0.08 3.43 (3.26) 0.26
DP-TGMM [62] 4.49 (1.98) 0.55 8.34 (1.02) 0.51

Table 2: Recovering distributions on the Sphere
manifold. We show results on recovering an origi-
nal distribution on the Sphere manifold with 6 and
8 clusters. Results obtained from 100 different evalu-
ations and 1000 samples per cluster. We compare our
method with using a single tangent space (1-TM), von
Mises-Fisher distributions (vMF), and two variants of
Dirichlet Process Mixture Models (DP-GMM and DP-
TGMM).

4. Tracking prior by extending the manifold with its
tangent bundle.

5.1 Recovering Distributions on Quadratic Surfaces

We first present experiments on two 2D manifolds de-
fined by

M =
{
(x, y, z) | cx2 + y2 + z2 = 1

}
. (35)

For the first example we generate 1800 points on the
sphere S2 (i.e. c = 1) using 6 clusters with parameters
µi = [cos(iπ/3), 0, sin(iπ)/3] and Σi = diag(0.2, 0.3)
for i = 1, . . . , 6. The algorithm is initialized with 30
clusters. This manifold has the closed-form solution for
the expp and logp operators given by Eq. (29), allowing
the method to execute in under a minute. Fig. 6 shows
how the final solution retrieves the 6 clusters used to
generate the data.

For the second example we generate 1500 points
from a mixture of 5 Gaussians on the manifold of Eq. (35)
with c = −2, as shown in Fig. 7a. The Gaussian param-
eters used in this case are:

µ1 = [0.83,−1.09, 1.09] Σ1 = diag(0.20, 0.30)
µ2 = [0, 0, 1] Σ2 = diag(0.25, 0.10)
µ3 = [0.30,−0.77, 0.77] Σ3 = diag(0.20, 0.10)
µ4 = [0, 0, 1] Σ4 = diag(0.10, 0.25)
µ5 = [0,−0.89, 0.44] Σ5 = diag(0.25, 0.10)

It is worth to highlight two important details about this
mixture. First, the covariances depend on the local or-
thonormal basis of the tangent plane, thus even if they
are diagonal, in practice they are not when projected
back onto the manifold, as shown in Fig. 7a. Second,
clusters 2 and 4 share the same mean. In this example,
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Fig. 6: Sphere Example. (a) Input data on the manifold. It consists of 1800 points sampled from a mixture
of 6 Gaussians. Note that they are colored only for visualization purposes; our algorithm does not know a priori
these clusters. (b) Evolution of the cost function, based on the Minimum Message Length of all components of
the mixture. Vertical lines represent iterations in which a cluster is annihilated. The optimal mixture (with 6
components) is highlighted with a green dot. (c) Evolution of the number of clusters. (d) The points projected
onto the tangent space of one specific cluster from the solution mixture. Each point is colored by the value of
Eq. (18). The cluster on the opposite side of the point the tangent space is centered on is seen to be spread around
the cut locus, which is a circle of radius π. Best viewed in color.
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Fig. 7: Quadratic Surface Example. (a) Section of the manifold with input data generated from 1500 points
sampled from a mixture of 5 Gaussian distributions. (b), (c) refer to Fig. 6. All retrieved clusters are shown in (d)
to (h). Best viewed in color.

the algorithm is initialized with 15 clusters and uses
the generic forms of the expp and logp operators that
rely on the derivative of the implicit manifold equation
as detailed in [14,61]. Additionally, the threshold εs de-
scribed in Sect. 3.6 is set to 0.999 to speed up the com-
putations. In this scenario the underlying distribution
is recovered as shown in Fig. 7.

In these synthetic experiments, we also analyze the
effects of the non-linearities of the expp and logp oper-
ators by evaluating the method on a sphere (Eq. (35)

with c = 1) using 6 clusters with mean and covari-
ance parameters µi = [cos(iπ/3), 0, sin(iπ)/3] and Σi =
diag(σ, σ) for i = 1, . . . , 6, and for increasing values
of σ. Several examples of input distributions with dif-
ferent covariances are shown in Fig. 8a. The effect of
the number of input samples is seen by testing with
N = {600, 1800, 6000}. The algorithm parameters used
are the same as in the aforementioned sphere example.

The results are shown in Fig. 8b-d. With less spread
Gaussians and little overlap, having more data can be
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Fig. 8: Effect of cluster size and number of samples. Evaluation of the proposed algorithm for increasing
covariance sizes diag(σ, σ) and three amounts of samples points N on the sphere S2. For each combination of these
parameters we run 100 different experiments and we report the average results. (a) Examples of the different input
data distributions we consider. (b) Mean number of solution clusters found. (c), (d) Ratio of estimated solutions
with a number of clusters subject to different constraints. Best viewed in color.

seen to be beneficial. However, with more overlap and
samples, generally the data gets partitioned into more
clusters. These results seem to indicate that the algo-
rithm tends to implicitly favor smaller Gaussians over
larger ones, suggesting that there shouldn’t be prob-
lems with approximating distributions. It is also worth
mentioning that these results are for clustering. When
estimating a probability density function, the number
of clusters is not particularly important as long as the
underlying density is properly approximated.

Finally, in order to evaluate the benefit of using mul-
tiple tangent spaces over a single one, we perform a
comparison on the sphere manifold, in two situations:
the same 6 clusters as in Fig. 8 with Σi = diag(0.2, 0.3),
and when fully covering the sphere with two additional
clusters centered at (0, 1, 0) and (0,−1, 0). We also com-
pare against an approach that uses von Mises-Fisher
(vMF) distributions [3], which is specifically designed to
cluster data on a sphere, and two approaches based on
Dirichlet Processes (DP-GMM and DP-TGMM). DP-
GMM uses split/merge proposals with parallel sam-
pling in order to estimate a mixture model. This was
then extended to sphere manifolds to use multiple tan-
gent spaces (DP-TGMM). For the vMF distributions
we use our own improved implementation based on [17]
(see Appendix B), while we use the authors implemen-
tation of DP-GMM and DP-TGMM from [62]. We use
the default parameters for all approaches except DP-
GMM and DP-TGMM in which we augment the num-
ber of allowed iterations to improve their results.

The results are summarized in Table 2. In the 6-
cluster case our algorithm retrieves the correct number
of clusters in a 92% of the experiments, while one single
tangent plane only provides a 46% of success. Note that
we evaluate the performance of the methods based only

on the number of clusters, and not comparing the en-
tire density probability. In the following subsection we
will show that the distributions obtained with one single
tangent plane are also much less representative as those
obtained with the proposed approach. In the 8-cluster
case our algorithm’s performance improves and it al-
ways finds the correct clusters, while a single tangent
space always fails, with an average of 15 clusters found.
This is likely caused by the fact that the 8-clusters are
evenly distributed around the sphere causing a single
tangent space to suffer from extreme deformation. This
amount of deformation on the contrary helps our op-
timization process to place mixtures, and thus tangent
spaces around the sphere exploring more of the solu-
tion space and finding the near optimal solution. On
the other hand, the 6-clusters do not have such a large
amount of deformation and our approach is sometimes
unable to properly locate the cluster means. Using vMF
distributions results in an oversegmentation of the data
in both experiments. This is due to the fact that the
vMF distributions use a single parameter κ for the con-
centration of the data, while our model allows for much
more expressive covariances in the form of matrices.
The Dirichlet process-based approaches show promis-
ing results, especially the sphere-specific approach DP-
TGMM, which is able to find the correct distribution
roughly half of the times. However, in all cases this ap-
proach is outperformed by our approach. These results
clearly show the advantage of using multiple tangent
planes to better approximate manifold distributions. In
the next subsection we will evaluate more into detail
our method on this manifold.
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5.2 Estimating Distributions on the S2 sphere

In order to evaluate the different hyperparameters of
our model, we perform much more in depth analysis of
clustering on the S2 sphere manifold. In particular, we
focus on the influence of the number of samples used
to learn the distribution, the specific covariance estima-
tion algorithm, k-means initialization, and the sample
noise. We consider a S2 sphere with a synthetic dis-
tribution formed by 6 clusters as shown in Fig. 6a. As
a metric we will consider the log-likelihood of 60,000
test samples, randomly generated from the distribution
(10,000 samples per cluster). That is, for each test sam-
ple x we first compute l(x) = log(

∑
k αkp(x|Θk)), and

then we report the average log-likelihood for all sam-
ples. The larger this value, the better the samples fit
the estimated distribution.

Additionally, unless otherwise specified, for the rest
of parameters we use the same values as in the previ-
ous subsection. For all experiments, we randomly sam-
ple from the distributions 100 times to obtain different
training sets and report the mean and standard devi-
ation of the results for all 100 learned models, each
evaluated on the 60,000 test samples.

In our first experiment we simultaneously consid-
ered the effect of the number of training samples, type
of covariance estimator and whether or not k-means is
used for initialization. We report the results in Table 3.
We can see that the shrinkage-based estimators out-
perform the empirical-based ones, especially when the
number of training samples is small compared to the
dimensionality of the manifold. Also note that our ap-
proach consistently outperforms methods relying on a
single tangent space and the approach using von Mises-
Fisher distributions. Regarding the use of k-means for
initialization, we did not observe that much difference,
likely due by the low-dimensionality of the manifold.
Finally, no matter the approach used, performance de-
grades with decreased amounts of training data.

We also looked into the effect of sample noise when
clustering. Even though the true sample noise is not
known, there are applications in which it may be possi-
ble to obtain it, such as when clustering data obtained
from sensors with known properties. In particular we
look at the extreme case of small amounts of training
data given the manifold dimensionality. We summarize
the results of this analysis in Table 4. Note that all ap-
proaches in this case benefit from this added sample
noise until it becomes too large. The best result is ob-
tained with Ledoit-Wolf covariance shrinkage approach
and Σxi = 10−2 sample noise (the units of this noise
could be interpreted as an angle in radians).

5.3 Human Pose Prior

To illustrate a practical utility of our approach, we used
it to model human pose on the Human3.6M Dataset [25,
26] which has different subjects performing a variety of
activities. We consider a simplified model of the human
body with 15 joints, represented in a 24-dimensional
pose manifold. The corresponding block-diagonal co-
variance (as in [55]) has 46 non-zero elements, and the
full covariance matrix has 576 non-zero elements.

We split the dataset by using all the 15 categories of
actions, each comprising two subcategories, for actors
5, 6, 7, 8, 9, and 11 for the training set, and use actor 1
as the test set. We perform an in-depth analysis of our
model using this split, and finally show results on gener-
alization using other actors. The diversity of the actions
makes the dataset very challenging to learn. This gives
us 465,325 frames for training and 62,064 frames for
testing. Since the frames are highly correlated because
motions are smooth, we perform a random subsampling
before training our model. To assess its influence, we
will consider four different subsampling levels.

We consider three baselines: standard Gaussian mix-
ture model directly on 3D joint positions, using a sin-
gle tangent space for clustering (1-TM), and cluster-
ing with von Mises-Fisher distributions (vMF). We also
compare five different variants of our model. The block-
diagonal covariance matrix approach of [55], without
covariance shrinkage estimators and with them. Fur-
thermore, we observed that when not using block matri-
ces, the empirical covariance estimation run into numer-
ical issues, while shrinkage estimators performed stable.
Therefore, we also report results for non-block-diagonal
covariance matrices. All these cases are summarized in
Table 5.

Results show that, as expected, the non-manifold
based approach (GMM) fails. The one tangent plane
model (1-TM) performs poorly due to the non-linearities
of the approximation, which gets worse with more train-
ing data. The von Mises-Fisher performs consistently
better. We see that our models perform best, although
with too much heavily correlated training data (larger
subsampling ratios) they tend to suffer from overfitting
and performance degrades. In particular, the best per-
formance is obtained using the Oracle Approximating
Shrinkage algorithm for covariance estimation with 5%
of the training data. This model greatly outperforms
the previous work and confirms the importance of more
robust covariance estimation algorithms.
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Ours 1-TM vMF
Cov. Est. Empirical LW [33] OAS [11] Empirical vMF
k-means No Yes No Yes No Yes No No

6000 training samples mean -0.7474 -0.7474 -0.7466 -0.7466 -0.7473 -0.7472 -10.9331 -1.7722
std 0.0044 0.0041 0.0035 0.0035 0.0041 0.0043 0.6564 0.0040

600 training samples mean -0.8092 -0.8097 -0.7773 -0.7778 -0.8012 -0.7953 -10.3445 -1.8386
std 0.0279 0.0288 0.0127 0.0128 0.0239 0.0214 0.8049 0.0145

60 training samples mean -1.4820 -1.4826 -1.1064 -1.1031 -1.1829 -1.1849 -10.0075 -2.2944
std 0.3094 0.2795 0.1121 0.1095 0.1702 0.1434 2.0754 0.1662

Table 3: Comparison of the effect of number of training samples, k-means initialization, and different
covariance estimators. Evaluation of various settings on a synthetic distribution on the S2 sphere using the log-
likelihood of 60,000 random test samples. The best result for each fixed number of training samples is highlighted
in bold.

Cov. Est. Empirical LW [33] OAS [11]
Sample noise k-means No Yes No Yes No Yes

0 mean -1.4820 -1.4826 -1.1064 -1.1031 -1.1829 -1.1849
std 0.3094 0.2795 0.1121 0.1095 0.1702 0.1434

10−3 mean -1.3673 -1.4093 -1.0890 -1.0811 -1.1473 -1.1572
std 0.2038 0.2529 0.1071 0.1050 0.1270 0.1423

10−2 mean -1.0877 -1.0916 -1.0265 -1.0157 -1.0138 -1.0057
std 0.0987 0.0979 0.0730 0.0609 0.0781 0.0772

10−1 mean -1.2261 -1.2287 -1.2374 -1.2440 -1.2595 -1.2621
std 0.0395 0.0399 0.0437 0.0440 0.0432 0.0437

Table 4: Comparison of the effect of the sample noise, k-means initialization, and different covariance
estimators. Evaluation on a synthetic distribution on the S2 sphere with 60 training samples (10 per cluster)
using the log-likelihood of 60,000 random test samples. The best result is shown in bold.
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Fig. 9: Qualitative examples. Several examples from the test set using the 15% subsampled model on the V1
manifold. We visualize the ground truth and 100 samples from our model in 3D. For visualization purposes the
velocity is scaled by a factor 10× and the samples are scaled by 3×. We also show the distribution of the samples on
the tangent space for some of the joints, scored by their log-likelihood with the ground truth as a black diamond.

5.4 Tangent bundle-based Tracking Prior

We also evaluate the proposed algorithm in a tracking
task, in which, given several consecutive frames we seek
to predict the next one. We will consider three mani-

folds:

V1 =
(
xt, logxt(xt+1)

)
= TH ,

V2 =
(
logxt(xt−1), xt, logxt(xt+1)

)
,

V3 =
(
logxt(xt−2), logxt(xt−1), xt, logxt(xt+1)

)
, (36)
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Subsampling
Model 0.01 0.05 0.15 0.30

GMM -708.4 -708.4 -708.4 -708.4
1-TM -1.653 -2.647 -3.959 -3.975
vMF 3.413 3.414 3.412 3.416

Ours

Block 4.995 4.570 3.130 1.388
LW block 5.285 5.581 3.614 1.560

OAS block 4.937 4.621 3.076 1.289
LW 7.272 8.039 5.225 2.765

OAS 7.250 8.411 7.276 4.624

Table 5: Modeling 3D Human Pose. Log-
likelihood of test data for various models. Eval-
uating models learned with different subsamplings of
the training data. We consider Gaussian Mixture Mod-
els (GMM), using a single tangent plane (1-TM), von
Mises-Fisher distributions (vMF), and five different
variants of our model (using block covariance matrices
or not, and what type of covariance estimation algo-
rithm is used). The best result is highlighted in bold.

where xt is the pose at frame t.
For each manifold we will estimate a mixture that

learns p(V). Once this is learned it is then possible to
predict the next pose by using the conditional distribu-
tion p(logxt(xt+1)|V∗) where V∗ is the manifold result-
ing from removing logxt(xt+1) from V. Recall that this
marginal is indeed another mixture model.

We first perform a quantitative evaluation by look-
ing at the log-likelihood of p(V) for the test and train
sets. As we did in the previous subsection, we subsample
the training data to gain in efficiency. This is possible
with no performance loss, due to the large degree of
redundancy in the training data. A subsampling per-
centage of 15% corresponds to 69,799 training samples,
roughly the same number as the test set. The param-
eters are set to the same values as in the pose-only
case. Table 6 summarizes the results, in which for each
method and experimental setup, we display the num-
ber of components of the estimated mixture and the log-
likelihood of the train and test sets. Note that the num-
ber of estimated components increases with the amount
of data. As the dimension of the manifold is increased,
it is harder to learn the models due to the additional
degrees of freedom of each covariance matrix. It is im-
portant to note that we are unable to use full covariance
matrices on the V2 and V3 manifolds due to the large
number of degrees of freedom (5,184 and 9,216 respec-
tively), while it is possible to use them with 0.15 and
0.30 subsampling on the V1 manifold (2,304 degrees of
freedom). Furthermore, it is only possible to estimate
the covariance of such large matrices with shrinkage
covariance estimators. Using a full covariance matrix
provides a large increase in performance over the block-

diagonal when applicable. Additionally, adding more
temporal information increases performance, although,
more data is needed to learn these models.

We next evaluate the model to predict future posi-
tions, that is, the log-likelihood of p(logxt(xt+1)|V∗), in-
stead of the global likelihood p(V). We compare against
a Gaussian Diffusion (GD) approach both trained on a
global level (a single Gaussian is averaged for all joints)
and on a local level (a single Gaussian is averaged for
each joint independently)2. Recall that both these ap-
proaches consists of simply defining the motion as a
Gaussian distribution centered on the previous frame,
and they operate directly on the Euclidean space, and
not on the manifold. We train several kinematic mod-
els with different degrees of subsampling of the training
data, and report the results in Table 7. We can see that
the Local Gaussian Diffusion (LGD) model outperforms
the standard Gaussian Diffusion (GD) model. Yet, our
model outperforms both of them by a considerable mar-
gin. These results largely agree with Table 6.

In order to assess the generalization capability of
the algorithm, we evaluate our approach with different
subject splits and summarize the results in Table 8. We
use the leave-one-out strategy: using all the subjects
except one for training, which is used for testing. We
evaluate as many times as there are subjects, chang-
ing the subject which is being left out for testing each
time. For fairness with the Gaussian Diffusion (GD) ap-
proaches that only account for pose (and not velocity)
information, we just consider the V1 manifold. For all
approaches a 0.15 subsampling ratio is used. Regarding
our approach, we use it both with block diagonal matri-
ces, as in [56], and with the improved version based on
the Oracle Approximating Shrinkage (OAS). Observe
that the latter yields a large performance gain. On av-
erage, both alternatives outperform the Gaussian Dif-
fusion baselines, except for subject 7. In this dataset
in particular, the actors were given a lot of freedom to
perform the actions. It is likely that subject’s 7 motion
largely deviates from other subjects. It is also inter-
esting to note that subjects 1, 8, and 11 have better
performance on the test set rather than the train set.
This is likely due to the fact that there is correlation
across subjects.

Finally, we show some qualitative examples in Fig. 9.
For this, we directly sample from the conditional dis-
tribution for several frames. It is worth noting that we
can obtain 100,000 samples in 0.85 seconds on a Intel
Core i7 2.93GHz CPU using a Matlab implementation.

2 Since vMF-distributions are not directly applicable to pre-
dicting velocities on the hypersphere we do not include them in
this experiment.
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Subsampling 0.05 0.15 0.30

Manifold Method #Mix Train Test #Mix Train Test #Mix Train Test

V1

Block 38 18.708 16.767 173 24.232 17.281 365 28.276 17.030
LW block 25 16.347 15.197 161 22.417 16.991 335 26.486 17.251

OAS block 40 18.701 16.773 177 24.382 17.502 370 28.318 16.935
LW - - - 9 24.036 20.087 22 28.267 21.711

OAS - - - 8 25.976 22.134 22 31.842 24.105

V2
Block 19 25.874 30.249 75 32.447 34.694 180 36.545 35.277

LW block 17 24.522 28.982 72 31.348 33.812 170 35.313 34.834
OAS block 17 25.184 29.587 78 32.669 34.807 167 36.078 35.133

V3
Block 13 17.825 27.294 43 26.575 34.819 98 31.383 37.489

LW block 11 16.013 25.106 37 24.759 33.004 84 29.565 36.478
OAS block 11 16.772 25.106 47 27.075 34.959 98 31.173 37.085

Table 6: Log-likelihood of joint pose and kinematic models p(V). We evaluate on several different manifolds
for various degrees of subsampling of the training data. For each case, we plot the number of estimated mixture
components (#Mix), and the log-likelihood values for the train and test sets. Testing is performed on subject 1
while training is performed on the rest of the subjects.

Subsampling
Manifold Method 0.05 0.15 0.30

- GD 5.450 5.425 5.431
- LGD 6.428 6.412 6.410

V1

Block 11.842 11.739 11.493
LW block 10.503 11.097 10.995

OAS block 11.713 11.829 11.363
LW - 12.115 12.937

OAS - 13.474 14.100

V2
Block 14.715 16.501 16.819

LW block 14.008 15.993 16.402
OAS block 14.398 16.644 16.725

V3

Block 14.024 16.570 17.341
LW block 13.445 16.053 17.050

OAS block 13.591 16.517 17.259

Table 7: Evaluation of velocity estimation
p(logxt(xt+1)|V∗). Evaluation on different manifolds
and subsampling levels of the training data. We report
the log-likelihood of the velocity prediction of the test-
ing set. Testing is done on subject 1 while training is
done on the rest of the subjects. Gaussian Diffusion
(GD) and Local Gaussian Diffusion (LGD) are used as
baselines. Both approaches operate on the Euclidean
space and not on the manifold.

6 Conclusions

We have presented a novel data-driven approach for
modeling the probability density function of data lo-
cated on a Riemannian manifold. By using a mixture
of distributions, each with its own tangent space, we
are able to ensure the consistency of the model while
avoiding most of the linearization error caused by a
single tangent space. The approach has been experi-

mentally validated on various synthetic examples that
highlight their ability to both correctly approximate
manifold distributions and discover the underlying data
structure. Furthermore, the approach has been tested
on a large and complex dataset, where it is shown to
outperform the traditionally used Euclidean Gaussian
Mixture Model, von Mises-Fisher distributions and an
approach using a single tangent space.

As a particular example, we have deeply studied the
use of the model as a 3D pose tracking prior, and have
shown it greatly outperforms the standard Gaussian
diffusion prior. Additionally, by using shrinkage covari-
ance estimation algorithms we are able to gain both
robustness to poor data, and use more expressive co-
variance matrices.

Future works include exploiting the proposed algo-
rithm on different manifolds and datasets. We have pre-
sented results using Gaussian distributions and have
focused on the S2 manifold. However, the algorithm
presented here should work with any distribution and
on any manifold for which the exponential and loga-
rithmic map operators are provided, as shown on a
quadratic surface. For example, it could be possible
to initially estimate unknown and non-parameterizable
manifolds [5], and use approximate operators [19].
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Subject 1 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 11 Mean
Method Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

GD 5.433 5.435 5.453 5.451 5.452 5.451 5.509 5.502 5.408 5.413 5.442 5.442 5.410 5.415 5.444 5.444
LGD 6.409 6.410 6.421 6.421 6.453 6.452 6.516 6.511 6.375 6.380 6.443 6.444 6.409 6.411 6.432 6.433

Ours Block 9.360 11.925 10.170 7.449 10.503 5.039 11.319 2.129 8.943 12.188 9.854 9.597 9.495 11.793 9.949 8.589
Ours OAS 12.458 14.099 13.020 10.808 13.718 8.889 14.236 5.740 12.245 17.211 12.624 12.599 12.439 15.485 12.963 12.119

Table 8: Generalization of velocity estimation results. Log-likelihood evaluation of p(logxt(xt+1)|V∗) on a
single subject for testing and the rest for training. The subject indicated in the table is the subject used for testing.
We compare a Gaussian Diffusion (GD) strategy, a Local Gaussian Diffusion (LGD) against both our approaches.
For fairness we only consider the V1 manifold, as Gaussian Diffusion approaches do not use additional velocity
information.
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A Derivation of Mixture Models on
Riemannian Manifolds

We follow the standard expectation-maximization approach to
maximize the log-likelihood of our model adapting it to Rieman-
nian manifolds. For simplicity, we will not consider the Mini-
mum Message Length criteria for model selection. We start out
by defining the log-likelihood of the model λ(x, θ) and bounding
it by Jensen’s equality:

λ(x, θ) =

N∑
i=1

log

K∑
k=1

αkp(x
(i)|θk)

≥
N∑
i=1

K∑
k=1

w
(i)
k log

αkp(x
(i)|θk)

w
(i)
k

= B(x, θ) . (37)

with w(i)
k as auxiliary variables that represent membership prob-

abilities. We can maximize over the lower bound B(x, θ) instead
of the untractable full likelihood.

A.1 E-step

The E-step consists of maximizing the auxiliary terms w(i)
k which

are the membership probabilities of the samples. This is done by
solving:

argmax
w

B(x, θ)

subject to
N∑
i=1

w
(i)
k = 1, k = 1, . . . ,K

w
(i)
k ≥ 0, i = 1, . . . , N, k = 1, . . . ,K .

(38)

This is straight forward to do by computing the derivative and
equating it to 0 to obtain the update rule for step t:

w
(i)
k (t) =

αk(t− 1)p(xi|θk(t− 1))∑K
k=1 αk(t− 1)p(xi|θk(t− 1))

. (39)

A.2 M-step

In this step, we have fixed w and are updating the other param-
eters θ = (µ,Σ) and α by solving:

argmax
θ,α

B(x, θ)

subject to
K∑
i=1

αk = 1

αk ≥ 0, k = 1, . . . ,K .

(40)

We shall follow the same approach as in the E-step and compute
the partial derivatives to obtain the update rules. In particular,
both α and Σ are straight forward to compute, and do not sig-
nificantly deviate from the standard formulation. Thus for α we
obtain:

αk(t) =
1

N

N∑
i

w
(i)
k =

wk

N
, (41)

and for Σ:

∂B(x, θ)

∂Σk
=

1

2

N∑
i=1

w
(i)
k

(
logµk (x

(i)) logµk (x
(i))> −Σk

)
, (42)

and thus,

Σk(t) =

∑N
i=1 w

(i)
k logµk (x

(i)) logµk (x
(i))>∑N

i=1 w
(i)
k

. (43)

For the mean µk we can follow the same approach, however, due
to the logarithmic map, it is slightly different to resolve. We start
out by computing the partial derivative:

∂B(x, θ)

∂µk
=

N∑
i=1

w
(i)
k Σ−1

k logµk (x
(i))

∂ logµk (x
(i))

∂µk
. (44)

In general, there is no analytic solution to
∂ logµk

(x(i))

∂µk
. How-

ever, under the assumption that
∂ logµk

(x(i))

∂µk
= c where c 6= 0

is a constant, and equating the partial derivative to 0, we can
obtain:

N∑
i=1

w
(i)
k logµk (x

(i)) = 0 . (45)

For simply connected and complete manifolds whose curvature is
non-positive (i.e., Hadamard manifolds) and bounded from be-
low, there exists one and only one Riemannian center of mass
which is characterized by E[logµ(x)] = 0 [12]. Note that a com-
pact and simply connected manifold with a non-positive and
bounded from below curvature has no cut locus. In this case,
as Eq. (45) is the discrete expectation of the weighted sum, we
can establish the update rule for the mean by:

µk(t) = argmin
p

N∑
i=1

d

(
N

wk
w

(i)
k x(i), p

)2

. (46)

Note that this does not hold for the case in which there is a
cut locus, in which case there may not be only one Riemannian
center of mass. However, in practice, this approach will generally
converge to the center of mass. We will use Eq. (46) in all cases.

Finally, we perform a numerical analysis of the error for the

S2 sphere by numerically computing
∂ logµk

(x(i))

∂µk
and visualiz-

ing the results. In particular we visualize the change of Frobenius
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Fig. 10: Plot of the change Frobenius norm of
∂ logµk

(x(i))

∂µk
. We compute the derivative numerically us-

ing a first order approximation as there is no analytic
form. We can see for points near the center there is
small change in the derivative and thus little error in
the approximation we make by considering the deriva-
tive to be constant. For visualization purposes we only
display points with a change of under 10 units.

norm of the Jacobian in Fig. 10. We can see that points near the
origin have very little change in the derivative. Again, the use of
multiple tangent planes favors configurations in which the points
are close to the center, and thus, keeps the error produced by ap-
proximating the partial derivative to a constant within reasonable
bounds.

B Clustering with von Mises-Fisher
distributions

Given a random vector x on the unit hypersphere of dimension
q−1, the probability density function of a von Mises-Fisher distri-
bution with mean direction µ and concentration κ can be written
as:

fq(x|µ, κ) =cq(κ)eκµ
Tx ,

cq(κ) =
κq/2−1

(2π)q/2Iq/2−1(κ)
, (47)

where ‖µ‖ = 1, and Iq/2−1 is the modified Bessel function of first
kind and order q/2 − 1. Note that the concentration parameter
κ is a single scalar that represents a uniform distribution on the
sphere for κ = 0 and is unimodal for κ > 0.

The algorithm from [17] can be modified to use von Mises-
Fisher distributions by adapting the way the distributions are
recalculated in the M-step. This can be computed by:

rk =

N∑
i=1

w
(i)
k x(i) , (48)

µk(t) =
rk

‖rk‖
, (49)

κk(t) =
‖rk‖(q − ‖rk‖2)

1− ‖rk‖2
. (50)

As there exists no analytic form of Iq/2(κk(t))/Iq/2−1(κk(t)) = rk,
the computation of κk(t) is indeed an approximation [3].
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