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Abstract. In order to optimize the trade-off between components life and energy consumption, the
integration of a system health management and control modules is required. This paper proposes the
integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the
damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow
counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the
system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra
criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding
this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for
regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator
of a utility-scale pasteurization plant.

1. Introduction
Pasteurization is a quite common procedure in the food industry. The pasteurization process implies
applying heat to some products such as milk, cream, beer and others. Mainly, pasteurization implies
that a food product is exposed to some temperature profile during a predetermined period of time,
in order to reduce the proportion of microorganisms. This process is distributed into three sections
that are heating, cooling and regeneration sections. The most important section is heating, which
involves heat exchanger equipment to heat up the temperature of the product at requested setpoint,
and then maintaining this temperature during a constant time. An important key in pasteurization
plant is controlling and maintaining the temperature of the process. Particularly, in the case of milk
pasteurization the heating temperature is in general 72− 74 ◦C during 15− 20 seconds followed by
cooling [9]. Therefore, a suitable control system needs to be designed to control the product temperature
for keeping the desired product quality. The necessity of a significant control of the process arises from
the saving in energy, product and time if an accurate tracking of the setpoint is performed. Because of the
high number of load cycles that occur during the life of the pasteurization’s pump, fatigue measurement
is of particular importance in pasteurization control. For this reason, interest in the integration of control
with a fatigue-based prognosis of components has increased in recent years. Fatigue can be taken as a
breakdown of the material subject to stress, especially when repeated series of stresses are applied. It
has been widely and exhaustively studied from different perspectives [15]. In this paper, the damage rule
used to perform fatigue analysis is the Palmgren-Miner linear damage rule [14]. This rule commonly
called the Miners rule is being currently used throughout the industry and in academia [12].

Along the last decades, model-based predictive control (MPC) gained its relevant position in the
process industry, because of its ability to deal with multivariable control, delays and constraints on system



variables and actuators. Also, MPC has started to attract the attention of academia and industry due to the
possibility of dealing with the conflicting power optimization and fatigue load reduction. A data-based
MPC strategy that incorporates fatigue estimation was presented in [2]. In the work of [18], an approach
including dynamic inflow into the MPC controller is proposed to decrease fatigue load.

This paper propose a health-aware control (HAC) that considers the information about the system
health to adapt the objectives of the control law to extend the system remaining useful life (RUL) [5].
Thus, the control actions are generated to fulfill the control objectives/constraints but at the same time
to extend the life of the system components. In case that the controller is implemented using MPC, the
trade-off is based on modifying the control objective including new terms that take care of the system
health. This leads to solving a multi-objective optimization problem where a trade-off between system
health and performance should be established [23].

The main contribution of this paper is the integration of MPC with fatigue-based prognosis to
minimize the damage of pasteurization components while still, the pasteurization temperature tracks
the suitable references related to the products. The integration of a system health management module
with MPC control is done by including a fatigue-based model using the rain-flow counting approach
and adding an extra criterion in the control objective function that takes into account the accumulated
damage. In practice, the extra criterion can lead to steady-state offset unless precautions are taken in the
control design. For this reason, the integral action for eliminating steady-state offset involves augmenting
the process model to include a constant step disturbance is used in MPC controller. The control scheme
is implemented using a high fidelity simulator of a utility-scale pasteurization plant.

The remainder of the paper is organized as follows. In Section 2, the pasteurization plant and process
of this system are represented. Besides, the general statement of the MPC problems is described. Section
3 presents the fatigue analysis applied to pasteurization system and show how to implement health-aware
control using MPC. In Section 4, approaches for eliminating steady-state offset in MPC controller are
presented. Section 5 describes the case study based on the pasteurization benchmark, where the proposed
approach is assessed and the results are analyzed. Finally, in Section 6, the conclusions of this work are
drawn and some research lines for future work are proposed.

2. PROBLEM STATEMENT
2.1. Pasteurization Model
The considered pasteurization process is the small-scale plant PCT-23 MKII, manufactured by Armfield
(UK) [1]. The system emulates an industrial high-temperature short-time (HTST) pasteurization process.
The goal of this process is to heat and keep the product, which is typically a liquid, at a predetermined
temperature for a minimum time. Throughout the pasteurization process, the liquid is pumped at a
predetermined flow rate from one of two storage tanks to an indirect plate heat exchanger. The water
heat is transferred to the product inside the first phase of the heat exchanger. The raw product is heated
to an intermediate temperature by using missed energy from the pasteurized product. Then, this product
is heated from that middle temperature to the full pasteurization temperature, in the second phase, while
using a hot-water flow (Fh) coming from a closed circuit with a heater. The temperature (Tpast) at the
output of the holding tube is used to monitor the product temperature after the pasteurization process.
Finally, the product is cooled in the third phase of the heat exchanger, where remaining heat is removed
to the entrance product. This last phase does not add anything new to the model, and so it was not
considered in this paper.

In order to have a model that can be used with an MPC controller, suitable models of the pasteurization
plant are needed. The control-oriented pasteurization model is represented in terms of behavior equations
of each subsystem, consisting of power, water pump, heat exchanger and hot water tank. Accordingly,
identified models obtained as transfer functions are suitably stated by their equivalent controllable
realizations in state space. The controlled inputs are the power of the electrical heater, P, and water
pump speed, N, respectively. The input temperature of the water heater, Tiw, and temperature of cold
water, Tic, are measured non-controlled inputs (disturbance). Therefore, the continuous time state-space



Figure 1. Plant scheme.

model of the pasteurization system can be expressed in the following form:
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where K is static gain and τ is the time constant of the transfer functions of the subsystems. In spite of
this, the discretized state space-model form a complete system of pasteurization plant (1) with sampling
time Ts = 120 s is used here.

2.2. Operational Control
As previously mentioned, the main goal of pasteurization process is to guarantee that the pasteurization
temperature is reached and maintained as close as possible to the set-point value. At the same time,
reduction of energy consumption and health management of the system expressed as a multi-objective
problem. Hence, MPC is suitable technique to control a pasteurization system due to its capability to
deal efficiently with dynamic constrained systems and predict the proper action to achieve the optimal
performance according to a user defined cost function. In this paper, it is assumed that the system
behavior can be described at each time instant k ∈ Z by the following discrete-time difference equation:

x(k+1) = Ax(k)+Bu(k)+Ed(k), (2a)
y(k) =Cx(k), (2b)

where x ∈ Rnx is the state of system, u ∈ Rnu is the vector of manipulated variable, d ∈ Rnd is vector
of measurable disturbances, and y ∈ Rny is vector of controlled variables. Moreover, A, B, E and C are
time-invariant matrices of adequate dimensions. It also considered that the system is subject to the hard
state and input constraints, which can be posed as

x(k) ∈ X M
={x(k) ∈ Rnx |x≤ x(k)≤ x, ∀k}, (3a)

u(k) ∈ U M
={u(k) ∈ Rnu |u≤ u(k)≤ u, ∀k}. (3b)



The control goal is to minimize a convex multi-objective cost function J(x,u) : X×U −→ R, which
might tolerate any functional relationship to the economic and safety of the system operation. To do
so, the MPC controller design is based on the solution of the following finite-time horizon optimization
problem (FHOP):

min
uk

Np−1

∑
i=0

[‖x(k+ i|k)‖p
w1

+‖u(k+ i|k)‖p
w2

+‖∆u(k+ i|k)‖p
w3
], (4a)

subject to:

x(k+ i+1|k) = Ax(k+ i|k)+Bu(k+ i|k)+Ed(k+ i|k), (4b)
∆u(k+ i|k) = u(k+ i|k)−u(k+ i−1|k), (4c)

u(k+ i|k) ∈ U, (4d)
x(k+ i|k) ∈ X, (4e)

for all i ∈ Z[0,Np−1], where uk = {uk+i|k}i∈Z[0,Np−1] is the decision variable, with uk being the sequence of
controlled inputs. Furthermore, weighting matrices w1 ∈ Rnx×nx , w2 ∈ Rnu×nu and w3 ∈ Rnu×nu are used
to establish the antecedence of the different control objectives. Also, p denotes the norm used.

Denote with u?
k the optimal solution of (4) at time step k. Then, following the MPC receding horizon

philosophy, only the first optimal control action is applied, i.e., uk = u?k|k. Then, the new measurements
are accumulated to initialize initial conditions and then the optimization problem (4) is solved again.
This procedure is repeated at each time step k.

3. Health-aware MPC Controller
In this section, the rainflow counting algorithm (RFC) is represented and later on it is formulated and
integrated by MPC controller for the pasteurization plant as a case study.

3.1. Rainflow counting algorithm (RFC)
The damage accumulation process on a component produced by cyclic loading is called as f atigue.
Exposing a material to cyclic loading of constant amplitude will cause fatigue failure after a certain
number of cycles. A usual method to quantify the fatigue impact of fluctuating loads is the combination of
a rainflow counting algorithm and a damage equivalent load approach, enabling the relative comparison
of different load samples [13]. RFC method, first introduced by [4], has a complex sequential and
nonlinear structure in order to decompose ideal sequences of loads into cycles. Usually, to compute
a lifetime estimate from a given structural stress input signal, the RFC method is applied by counting
cycles and maxima, jointly with the Palmgren-Miner rule to calculate the expected damage. The input
signal is obtained from time history of the loading parameter of interest, such as force, torque, stress,
strain, acceleration, or deflection [11].

There are several types of RFC algorithms have been proposed such as [22] and [3], with different
rules but providing the same results. The RFC algorithm applied in this paper is presented in [17]. This
algorithm computes the stress for each rainflow cycle in four steps [23]:

• the stress history is converted to an extremum sequence of alternating maxima and minima;
• for each local maximum M j, the left (m−j ) and right (m+

j ) region where all stress values are below
M j is identified;
• the minimum stress value is processed being m j = min{m−j ,m

+
j };

• the equivalent stress per rainflow cycle s j related to the M j is given by the amplitude s j = M j−m j

or the mean value s j =
M j−m j

2 .



The damage, D, at each stress cycle is calculated by using the S−N curve [7]. In fact, for many
materials there is an explicit relation between the number of cycles to failure and cycle amplitude, which
is known as S−N or Wöhler curves, given as a line in a log-log scale as

scwN = K, (5)

where cw and K are material specific parameters, being the cw Wöhler-coefficient, and N is the number
of cycles to failure at a given stress amplitude s. The damage imposed by a stress cycle with a ranges j is
computed as

D j ≡
1

N j
=

1
K

scw
j . (6)

Then, for a time history, the total damage under the linear accumulation damage (Palmgren-Miner)
rule is given as

Dac =
λ

∑
j=1

1
N j

=
λ

∑
j=1

1
K

scw
j , (7)

for damage increments Dac associated to each counted cycle, N j the number of cycles to failure associated
to stress amplitude s j , and the number of all counted cycles λ . These sequences are presented in Figure 2.
On the top the input stress is shown, and in the bottom part the instantaneous damage and the accumulated
damage are shown.

For real-time applications, applying the customary rainflow counting algorithm is quite challenging
and computationally heavy. Considerable amounts of data must be stored and processed periodically to
establish a magnitude of the data in equivalent regular cycles. Besides the algorithm must be applied to
a stored set of data. One of the objectives of this paper is to analyze the fatigue due to pump load of the
pasteurization system. Loads in the pump structure arise from several factors, being the primary cause
of failure in the pump is bearing failure. While there are two influential and important factors such as
pressure (PSI) and speed (RPM) which are related to the pump, and in this case, the speed of the pump
is used as fatigue stress.

Utilizing the RFC algorithm the accumulated damage is obtained as a function of the cycles of
the pump speed stress signal. In order to have available an accumulated damage variable that can be
integrated with a linear MPC model, a simplified approach to compute fatigue on time series signal is
proposed based on RFC theory explained before. The outcome of this approach is that the accumulated
damage is obtained as a function of time instead of the number of cycles.
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The proposed approach finds the changes of the sign which corresponds to a cycle in the stress time
signal. The obtained function at each sample step k is the following:

D(k) =

{
0 if I(k) = I(k−1),
1
K (s(k))

cw if I(k) 6= I(k−1),
(8)

where s(k) is the stress at time k

s(k) =
1
L

k

∑
q=k−L

Ns(q), (9)

and L is the number of samples per cycle, Ns is the pump speed moment, q is difference between the the
number of samples per cycle and sample step and I(k) is the signal adapted to indicate cycle (10)

I(k) = Ns(k)− s(k). (10)

Then, the accumulated damage is calculated by

Dacc(k) = Dacc(k−1)+D(k). (11)

Notice that, at the end of the scenario, the accumulated damage is practically the same. The difference,
as explained before, depends on the fact that the damage obtained by RFC technique is represented as a
function of the cycles count while the other is a function of time.

3.2. MPC with health-aware objective
As shown in Section 3.1, the degradation process of the heat pump of pasteurization plant can be assessed
using the water pump speed sensor information. In order to decrease the accumulated damage, a new
objective is considered in the MPC controller that the rainflow counting model is approximated by means
of a linear model in this objective.

As first approximation, later on observing that the proposed approach gives a quite close
approximation of the accumulated damage obtained by the RFC algorithm (see Figure 3), the slope
m of the accumulated damage curve in function of time is calculated and then employed as one of
the parameters in the linear fatigue-damage model proposed in this paper. According to the [21], an
experimental model that relates the values of the pump speed and flow signals in steady state was
proposed. Therefore, it can be shown the relation between the pump speed moment as a function of
the flow. The proposed model for pump speed dynamics is a first order pump speed model with an slope
of α1 plus a constant value α0, i.e.,

Ns(k) = α1F(k)+α0. (12)

Briefly, a linear fatigue damage model is suggested as a function of the flow value signal while there
is a relation between the accumulated damage of the pump and the control signal expressed as:

z(k+1) = z(k)+
m
L
(α1F(k)+α0), (13)

where z(k+ 1) is the accumulated damage of the pump. This damage model (13) can be included into
the MPC as a new state of model and additional objective is increased in the MPC cost function (4) to
minimize the accumulated damage. Taking into account (13), the MPC problem (4) can be represented
as follows:

min
uk

Np−1

∑
i=0

[‖x(k+ i|k)‖p
w1

+‖u(k+ i|k)‖p
w2

+‖∆u(k+ i|k)‖p
w3

+ z(k+ i|k)‖p
w4
], (14a)



subject to:

x(k+ i+1|k) = Ax(k+ i|k)+Bu(k+ i|k)+Ed(k+ i|k), (14b)
∆u(k+ i|k) = u(k+ i|k)−u(k+ i−1|k), (14c)

z(k+1) = z(k)+
m
L
(α1F(k)+α0), (14d)

u(k+ i|k) ∈ U, (14e)
x(k+ i|k) ∈ X, (14f)

where the new objective with the corresponding matrix weight w4 is is appended in the MPC cost
function to minimize the accumulated damage. The degree of fitting between the RFC approximation as
a function of time presented in Section 3.1 and the linear z state damage model are described in (13) can
be compared in Figure 4.
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4. Condition for Offset Elimination in MPC Controller
As it described before, the new objective in cost function of MPC controller can be lead to steady-state
offset unless precautions are taken into control design. Elimination of steady-state offset is carried out in
two basic manners. The first method involves modifying the controller objective to include integration of
the tracking error [16]. The tracking error state and process model are augmented and incorporated as an
integral term into the MPC structure. But, this augmentation can significantly increase the computational
cost of the dynamic optimization which grows in proportion to the cube of the state dimension for
some complex system. Also, this method is needed an anti-windup algorithm for the integral term,
and sometimes costly, performance penalty [20]. A second general method, by augmenting the process
model that is included a constant step disturbance can be eliminated the steady-state offset, whereas this
disturbance, which is estimated from the measured process variables, is generally assumed to remain
constant in the future and its effect on the controlled variables is eliminated by shifting the steady-state
target for the controller. In this paper, by using the disturbance model remove the steady-state offset
which is created with the new state in the model.

Now, it is considered the general type in which the particular recent MPC controllers eliminate the
offset by means of disturbance models [19], [16], [6]. Hence, a general way to include disturbance
sub-model given from the state-space model is as follows [16]:x(k+1)

d(k+1)
g(k+1)

=

A Gd 0
0 I 0
0 0 I

x(k)
d(k)
g(k)

+
B

0
0

u(k), y(k) =
[
C 0 Gg

]x(k)
d(k)
g(k)

 , (15)



where the output and state disturbance are g(k) ∈ Rsg and d(k) ∈ Rsd , respectively; and sg and sd are
the numbers of augmented output and state disturbance. In addition, Gg and Gd are matrices that
determine the effect of the disturbance on the output and the states. In the general form of considering the
disturbance, if Gd = 0 and Gg = I model (15) have an output disturbance, on the other hand, if Gd = B
and Gg = 0 model (15) have an input disturbance. According to the complete model of pasteurization
system (1), the matrix E is utilized as disturbance states in this paper. The states of the process model
and the unmeasured disturbance model must be estimated simultaneously using the augmented system
model. The state estimation can be performed within a stochastic framework using a Kalman filter or
a deterministic framework using a Luenberger observer. In both cases, a stable filter gains L can be
determined using standard methods provided the augmented system is detectable [10]. Thus, the steady-
state observer equation is given by

x̂(k) = Ax̂k̄ +Buk̄ +Gd d̂k̄ +Lx[y(k)−C(Ax̂k̄ +Buk̄ +Gd d̂k̄)], (16)[
d̂k̄
ĝk̄

]
=

[
d̂k̄
ĝk̄

]
+

[
Ld
Lg

][
y(k)−C(Ax̂k̄ +Buk̄ +Gd d̂k̄)−Ggĝk̄

]
, (17)

where Lx, Ld and Lg are the observer gains that corresponds to the states estimation x̂k̄, and the disturbance
estimation d̂k̄ and ĝk̄, respectively.

The states from the augmented system (15) which corresponding to the disturbances, that cannot be
controlled by means of the input u. In that case, the MPC regulator makes use of the original model and
shifts the steady-state targets in order to remove the estimated disturbance effect. Moreover, the dynamic
control is separated from the stationary computation: the target calculus block is completely devoted to
obtain the stationary values, while the MPC regulator block is dedicated to guiding the states x̂(k) to
its corresponding targets. Then, the optimization problem that must be solved in the regulator block is
represented by

min
ūk

Np−1

∑
i=0

[‖Cx̃(k+ i|k)‖p
w1

+‖ũ(k+ i|k)‖p
w2

+‖∆ũ(k+ i|k)‖p
w3

+ z(k+ i|k)‖p
w4
], (18a)

subject to:

x̃(k+ i+1|k) = Ax̃(k+ i|k)+Bũ(k+ i|k)+Ed(k+ i|k), (18b)
∆ũ(k+ i|k) = ũ(k+ i|k)− ũ(k+ i−1|k), (18c)

z(k+1) = z(k)+
m
L
(α1F(k)+α0), (18d)

ũ(k−1) = u(k−1)−us (18e)
ũ(k+ i) = 0 (18f)
x̃(k) = x̂(k)− xs (18g)
umin ≤ ũ(k+ i)+us ≤ umax u(k+ i|k) ∈ U, (18h)
∆umin ≤ ∆ũ(k+ i)≤ ∆umax x(k+ i|k) ∈ X, (18i)

where it can be seen that the state and input are led to the targets xs and us. The role of this part is to
steer the shifted states and input to zero, which means that the ability of this strategy to eliminate the
offset depends on the computation of the targets xs and us. For obtaining this operation, the following
optimization problem is solved:

min
us,xs

Vt(k)
∆
= {(ysp− ya

t )
T Q(ysp− ya

t )+(us−usp)
T R(us−usp)}, (19a)

subject to:

xs = Axs +Bus +Gd d̂(k), (19b)

ya
t

∆
=Cxs +Ggĝ(k), (19c)

umin ≤ us ≤ umax, (19d)



where ysp stands for the output set points, and ya
t is the achievable stationary output. Also, Q and R are

positive definite weighting matrices.
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Figure 5. Representative block diagram of the predictive control system with linear regulator.

Following the strategy describe in Figure 5, two optimization problems must be solved at each sample
time k. Assume that constraints (19b) and (19c) hold true for the stationary disturbances d̂ and d̂
presented by the observer and in that case, for a time k̄ large enough, the states and input target satisfies,

xs = Axs +Bus +Gd d̂k̄, (20a)

ysp
∆
=Cxs +Ggĝk̄. (20b)

On the contrary, from (17), the states and disturbances provided by the observer satisfy

x̂k̄ = Ax̂k̄ +Bûk̄ +Gd d̂k̄, (21a)
yk̄ =Cx̂k̄ +Ggĝk̄. (21b)

Afterward, by subtracting (20a) from (21a) can be driven as

(x̂k̄− xs) = A(x̂k̄− xs)+B(ûk̄−us), (22)

which relates to the original system considered by the target tracking optimization. If the original model
given by A, B and C can be stabilized, then the regulator will lead the states x̃(k) to zero, that is,

(x̂k̄− xs) = 0. (23)

Now, subtracting (20b) from (21b) can be written as

(yk̄− ysp) =C(x̂k̄− xs), (24)

and, from (23) and (24), implies
yk̄ = ysp. (25)

To sum up, that the use of an augmented model requires the simultaneous solution of both
optimization problems. This method can increase the computational cost of the algorithm, especially
if the system has a large number of inputs and outputs.



5. Case Study
5.1. Benchmark description
As discussed in Section 2, the pasteurization system is used as a case study which the considered
pasteurization process is the benchmark PCT-23 MKII, manufactured by Armfield (UK). This laboratory
plant is the small version (1.2 m, 0.6 m, 0.6 m) of several real-time industrial pasteurization processes.
Moreover, the model of the pasteurization plant are obtained from experimental data according to [8]
also the identified models obtained as transfer functions are suitably formulated by their equivalent
controllable realizations in state-space model.
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Figure 6. Block diagram of the control loop.

Besides, the size of handle tube of pasteurization pumps is 1.6 mm with wall thickness from 0.5 mm
to 8.0 mm bore. The rotor speed is 400 rpm while the flow rate is 2000 ml/min. Figure 6 introduce
a block diagram of the pasteurization simulation model, provided with the benchmark, including the
feedback loops corresponding to the flow and power. Also, the MPC controller, fatigue monitoring and
integral action block that will be designed in an integrated manner are presented in this Figure 7.
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Figure 7. Representative block diagram of the predictive control system with linear regulator and fatigue
model.

5.2. Implementation of MPC with health-aware objective and integral action
The health-aware MPC, designed as described in Section 3, is obtained adding the accumulated damage
model presented before, as a new state introduced in (13). In addition, for removing steady-state offset
that is obtained with the new objective in the health-aware MPC cost function is used disturbance model.



In brief then, the MPC with the new augmented model uses the following model:

x(k+1) = Anx(k)+Bnu(k)+End(k), (26a)
y(k) =Cnx(k), (26b)

where An, Bn, Cn, and En are state matrices of proper dimensions with included accumulated damage and
disturbance model given by (13) and (15), respectively. The MPC controller has been implemented in
simulation where the weight matrices are Q = 1, R = 0.01. The prediction horizon is chosen Np = 400.

The control objective of the MPC controller for the pasteurization system is pasteurization
temperature, Tpast , tracking the setpoint, where their references change from 70 ◦C to 40 ◦C and in
the same time, the accumulated damaged evaluated as (13) is minimized and the power of the electrical
heater, P, and water pump speed, N, are minimized. Therefore, it can be said the cost and degradations
are decreased while the temperature is achieved the references without steady-state offset.
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5.3. Results
In order to test the behavior of the proposed health-aware MPC control scheme regarding tracking,
several simulations were carried out and the results obtained are presented in this part. The operating
point for the flow is chosen as 200 ml/min.

The behavior of controlled temperature Tpast from the pasteurization plant under the health-aware
MPC controller with and without integral action for elimination steady-state offset is presented in Figure
8 with its corresponding references, while the controlled variables track the references. As it can be seen
from the Figure 8, the temperature of the pasteurization process Tpast (green line) wants to follow the
references but, due to the adding the accumulated damage state as new states in the model generated
same steady state error between the reference and output . However, by including an integral action In
the MPC controller, the steady-state is eliminated (red line).

In Figure 9, it is provided the evolution of the accumulated damages obtained with (yellow) and
without a (red) health-aware objective in the MPC controller. From Figure 9, it can be seen that the
inclusion of the fatigue objective relieves 0.11 of the accumulated damage. At the same time, the
pasteurization temperature, Tpast , tracking the setpoint, where their references change from 70 ◦C to
40 ◦C is shown in Figure 8.

6. Conclusion
This paper has presented the integration of MPC with fatigue-based prognosis to minimize the damage
of the components of a pasteurization plant. The integration of a system health management module with
MPC control has provided the pasteurization plant with a mechanism to operate safely and optimize the



trade-off between components life and savings energy, product if an accurate following of the setpoint is
performed. The MPC controller objective has been modified by adding an extra criterion that takes into
account the accumulated damage. Finlay, by including an integral action into the MPC controller design,
the steady-state offset has been eliminated. The control scheme has been satisfactorily implemented
using simulator of a utility-scale pasteurization plant. The results obtained show that there exists a trade-
off between the minimization of the accumulated damage and tracking setpoint that is for saving energy.
As future research, the proposed MPC control scheme to reduce the accumulated damage more than this
approach and designing the health-aware nonlinear MPC based on the real model of the pasteurization
system .
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