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Abstract. The deployment of robots at home must involve robots with
pre-defined skills and the capability of personalizing their behavior by
non-expert users. A framework to tackle this personalization is presented
and applied to an automatic feeding task. The personalization involves
the caregiver providing several examples of feeding using Learning-by-
Demostration, and a ProMP formalism to compute an overall trajectory
and the variance along the path. Experiments show the validity of the
approach in generating different feeding motions to adapt to user’s pref-
erences, automatically extracting the relevant task parameters. The im-
portance of the nature of the demonstrations is also assessed, and two
training strategies are compared.

Keywords: Assistive Robotics, Personalized Human-Robot Interaction,
Feeding, Trajectory Adaptation

1 Introduction

People with reduced mobility tend to find themselves needing the help of another
in order to do the most basic tasks. Hence, performing Activities of the Daily
Living (ADLs) such as eating, dressing, grooming or cleaning up can become
very difficult. Intelligent robotic systems have proven useful in these situations
by performing the helping task and, so, removing the constraint of constant
attention from another person.

However, in order to effectively assist a human user the helping robot should
be able to adapt to the specific user needs and preferences. Rather than per-
forming a generic action suitable for anyone and forcing the user to adapt to the
robot, it is the robot who should adapt its behavior taking into account the user
and the situation, just as a human carer would do. The empowering of disabled
people is crucial [3], and can be attained by providing more autonomy, intimacy
and better quality of life. This does not imply the substitution of the caregiver,
as personal contact is also very important. Contrarily, our approach relies on the
caregiver to personalize the robot to the disabled person preferences.

In this paper, we first propose a novel Robot Personalization framework
named FUTE (detailed in Section 3), that takes into account the user and allows
concrete adaptation of generic pre-trained skills. In our framework, the robot is
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(a) Caregiver personalizing a
spoon feeding skill.

(b) A user eating from a fork.

y

x

z

(c) End effector’s
trajectory Cartesian
coordinate axes.

Fig. 1. Assistive personalized feeding application example.

pre-trained at the factory with a set of skills. Afterwards, when it arrives at the
user’s home, a non-expert teacher (the user itself or a caregiver) must have the
freedom to adapt such skills to his/her preferences, or even teach new ones.

Second, we explore how to perform this training by using Learning-by-Demon-
stration techniques combined with a compliant robot control [7]. We propose two
different interaction strategies: the teacher intervening in the robot motion, and
the demonstration of a completely new trajectory.

In the third place, we test the applicability of the proposed FUTE framework
in an assistive task consisting in feeding a person. As feeding can be very complex,
we concentrate in a specific aspect: the way in which the robot approaches the
cutlery to feed the person (see Fig. 1). We will show how our system is able to
automatically extract the relevant aspects along the feeding task. Observe that,
depending on the mobility and preferences of the user, the robot must wait with
the food at some distance or introduce the food inside the mouth. Moreover, the
feeding motion has to be adapted to the kind of food, for example yogurt or fries
as seen in Fig. 1(b).

2 Related Work

Personalized Human-Robot Interaction has been studied in different works and
fields. In education, it has been applied to Socially Assistive Robot (SAR) tutors
that support the teaching task [5,10,12]. Baraka and Veloso [2] define three user
models to adapt the luminous interactions between a robot and the user over
time, learning the model parameters from user feedback. Personalized collabora-
tion is shown in Fiore et al. [8], where an object manipulation task is performed
jointly by the robot and the user whose preferences are taken into account. Abdo
et al. [1] predict user preferences to tidy up objects in containers using collab-
orative filtering based on crowdsourced data and the observations of current
dispositions or by querying the user. Although this strategy seems good for the
tidying up task, it would not suit to capture the user preferences in an interac-
tion context such as ours. Chernova and Veloso [4] present the Confidence-Based
Autonomy (CBA) algorithm, which enables the agent to request demonstrations



Personalization Framework for Adaptive Robotic Feeding Assistance 3

from a human teacher, and allows him to correct further mistakes with addi-
tional demonstrations. The idea is similar to the User Tailoring one, though
they apply it to improve the policy rather than to adapt a well-learned task to a
specific user. A framework to learn and generalize complex tasks from unstruc-
tured demonstrations is proposed in Niekum et al. [14]. The method is able to
recognize repeated instances of skills and generalize them to new settings.

In addition, more in the scope of this paper, personalized dressing assistance
is performed by Gao et al. [9], where a user’s movement space is modelled and
used to put on a sleeveless jacket. Similarly, Klee et al. [11] assist a user to place
a hat in a collaborative way by means of asking the user to reposition itself
when some user specific constraints do not hold. However, the personalization
they propose consists in adapting to the user state or pose, but do not allow the
user to modify the way in which the assistance will be carried out.

Moreover, we will apply the personalized interaction to the feeding scenario.
Assistive feeding devices have been around for a while, mainly due to the evident
need that some individuals have. Devices such as SECOM’s MySpoon [16,18] or
the Handy 1 [17], among others, can provide significant help to allow people with
upper limb disabilities to eat in a more autonomous manner.

Nonetheless, these systems lack the ability to adapt to the needs of each
specific user. And, in cases of people with disabilities, this is a key factor for
the system to be actually helpful in different kinds of environment, in which
there is a handful of ways of assisting in the eating task, as often pointed out by
long-term care nurses.

3 The FUTE Personalization Framework

We present a three-phase framework, the “FUTE framework”, to design and
develop such kind of adaptive assistive applications. The three phases are called
“Factory setting”, “User Tailoring” and “Execution tuning”, and are described as:

1. Factory setting: the robot is provided with the skills needed to perform
the assistive task in a generic way. This would suit either the design of a new
robot or the enhancement of an existing platform to carry out a new task.

2. User Tailoring (the focus of the paper): This second phase takes place in
the user’s home. The robot performs a nominal skill, but personalization is
encouraged in order to adapt its behavior to the user needs. In this phase,
the robot should acquire, as automatically as possible, information about
how the task has to be done for the user at hand while it performs the task
in the generic way. This personalization may be done by the user or by an
external agent (such as a carer), and it could be either explicit or implicit.
In the feeding example, this will consist in the selection of the feeding point,
it being either inside or outside the mouth. The data in our implementation
include the proprioceptive robot perception as well as 3D images from a
camera located at the hand of the robot (Fig. 1).

3. Execution tuning: In this last phase, the robot performs the task designed
in the first phase but taking into account the personalization introduced in
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Algorithm 1 Feeding execution
1: graspFeedingUtensil() . Grasp a spoon or a fork.
2: repeat
3: pickUpFoodFromPlate()
4: userPose ← getHumanPoseFromPerception()
5: moveToInitialPosition(userPose, initialPose)
6: moveUtensilToFeedingPose(userPose, feedingPoint) . Approach the food
7: waitForFoodConsumption()
8: moveAwayFromUser(userPose)
9: until feedingIsComplete() . User has had enough food or plate is empty

the second one. In the feeding example, the 6D pose of the user is computed
using an RGBD camera and a face detection algorithm, and the robot trajec-
tories are adapted to the current pose of the user. If the user is not satisfied
with the robot behavior, the User Tailoring phase can be triggered again.

4 Experimental assessment: User-Centered Feeding
Assistance

To build intuition, we will illustrate the different aspects of our proposal using
the robot feeding application. Eating is one of the most basic physiological needs
all human beings have, appearing at the base of Maslow’s hierarchy of needs [13].
However, some people with disabilities may not be able to do it by themselves,
requiring the help of an external agent (usually a human carer), who will feed
them taking into account their needs and capacities. To illustrate this, in the
following experiments we tackle two example use-cases in which different person-
alizations can be applied: (U1) a person with very limited upper body mobility
will require the caregiver to do all the feeding action, while (U2) another patient
with upper limb disabilities may be able to move and eat the food by himself
when it is close enough.

4.1 The Robot Feeding Process

Five steps can be identified for the adaptive feeding application (see Alg. 1).
In the context of the proposed framework, steps between lines 1 and 3 would
be provided to the robot during the factory training phase, while steps between
lines 6 and 8 would be personalized at home. Thus, the complete execution is
the outcome of joining the already known steps (at the factory phase) with the
personalized ones, resulting in a successful feeding action for a specific person.
The “initialPose” (line 5) and “feedingPoint” (feeding moment of the tra-
jectory, line 6) parameters are obtained during the User Tailoring phase, as seen
in Alg. 2. Note that in execution, the user can move freely. A vision system
comprised of a low range RGBD sensor is used to compute their pose, and the
robot motion is updated accordingly to obtain the desired feeding movement.
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The vision system is also used to detect the moment in which the user bites the
food in the “waitForFoodConsumption” step (line 7).

For the scope of this paper, we will just focus on the steps involving the user
(lines 6, 7 and 8 from Alg. 1), and how they can be personalized to different
users1.

The feeding setup used in the experiments can be seen in Fig. 1(a) and
Fig.1(b), and the coordinate axes at the robot’s end-effector are shown in Fig. 1(c).
In it, the y Cartesian axis represents the frontal distance to the user, the x axis
corresponds to the horizontal displacement and the z to the vertical one (the
feeding height).

4.2 Feeding personalization

The User Tailoring strategy for feeding is shown in Alg. 2. It comprises the
recording of N sample trajectories (line 4) including the approaching motion,
waiting for the user to start the consumption, and a receding motion. The N
trajectories are then used to learn a Probabilistic Movement Primitive (ProMP)
[15,6] of the feeding movement (line 23). ProMPs are movement primitives that
encode the time-varying variance of a set of trajectories. The state vector yt is
defined as

yt =

[
qt
q̇t

]
= ΦT

t w + εy, (1)

where Φt = [φt, φ̇t] is the time-dependent basis matrix, w is the weight vector
and εy ∼ N(0, Σy) is Gaussian noise. The trajectories can then be represented
as a mean trajectory and its variance, each time point being represented as
µt ± σt. New trajectories can be sampled from the distribution, and via points
are defined using the conditioning operator. We have used the ProMP formalism
because, apart from the trajectory itself, as will be seen in Section 4.4, it also
provides insights of the particularities of the task by means of the variance along
the trajectory.

We would like to assess the impact of variations in the demonstrated tra-
jectories, to provide hints to the caregiver demonstrating the task about how
similar the N demonstrations should be. The next experiment tackles use-case
U1: introducing the food inside the mouth of the user. It involves demonstra-
tions using two different feeding paths with a mannequin as user: the first one
in which the carer tried to perform the same trajectory 5 times, and the second
set in which the 5 trajectories had different approaching movements (but with
the same feeding point). The results are shown in Fig. 2.

Comparing Figs. 2(a) and 2(b) it can be seen that the shape of both mean
trajectories is quite alike, both reaching the same feeding position (shaded area).
As a consequence, apparently there is no need to have several similar trajectories
in order to have a good average feeding movement. However, we observe different
variances. In Fig 2(a) variance is almost constant during the whole trajectory,
1 A video showing the process of the personalized feeding task can be found at www.
iri.upc.edu/groups/perception/frameworkFUTE.

www.iri.upc.edu/groups/perception/frameworkFUTE
www.iri.upc.edu/groups/perception/frameworkFUTE
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Algorithm 2 User tailoring strategy
1: demonstrations ← ∅ . Will store the new recorded trajectories
2: feedingPoints ← ∅ . Time points of each trajectory in which person was fed
3: initialPoses ← ∅ . Face pose at the start of each trajectory
4: for N do
5: if unassistedTraining then . Set one of the two personalization modes
6: SetRobot(gravityCompensationMode)
7: else
8: SetRobot(ReproduceFactoryTrajectory, stiffness)
9: end if
10: initialPoses ← append(getUserFacialPose())
11: newTrajectory ← ∅
12: while robotMoving do . Store approaching trajectory
13: addPoints(newTrajectory)
14: end while
15: waitForFoodConsumption() . Wait until user starts eating
16: feedingPoints ← append(currentTrajectoryPoint)
17: while robotMoving do . Store receding trajectory
18: addPoints(newTrajectory)
19: end while
20: demonstrations ← append(newTrajectory)
21: end for
22: referenceFeedingPoint ← alignToFeedingPoint(demonstrations, feedingPoints)
23: personalizedTrajectory ← RecomputeProMP(demonstrations)
24: return <personalizedTrajectory, referenceFeedingPoint, avg(initialPoses)>

while in Fig. 2(b) variances in the approaching and receding movements are
larger, but smaller in the feeding point. Observe that obtaining this information
is crucial, as the robot should act carefully while feeding the user (lower variance)
whereas approaching and receding can exhibit a more careless behavior (larger
variance). Thus, we conclude that showing some variability in the demonstrated
trajectories is important.

4.3 Teaching Modes: Unassisted vs. Compliant Reproduction

Two teaching modes have been defined (Alg. 2 lines 5–9). The first one is unas-
sisted, the robot only compensates gravity and the caregiver has to start from
scratch each demonstration handling the robot and freely performing a feed-
ing trajectory. This allows the user to discard the factory settings and re-teach
the whole movement. In the second one, the robot executes a generic feeding
trajectory –which was recorded in the factory setting phase– using a compliant
controller [7] that uses a stiffness factor to determine the arm’s stiffness degree.

The next experiment is designed to assess the effect of the stiffness factor.
Hence, we repeated the executions with different stiffness values for the same
trajectory where the caregiver personalized the motion so that the feeding oc-
curred further away from the person (a mannequin was used in this experiment
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(a) Similar trajectories.
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Fig. 2. Comparison between similar and different example trajectories. The thicker line
is the mean trajectory, and the surrounding lines are the mean ± standard deviation.
The shaded regions denote the part of the trajectory in which the food is consumed.
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Fig. 3. Mean trajectories generated from a default trajectory with different stiffness
values. The lower the stiffness, the most docile the robot behaviour is. Observe the
oscillations introduced when the trajectory is perturbed.

to avoid noise induced by involuntary movements and ease the comparison). Here
we tackle use-case U2: the trajectory is modified to end outside of the mouth,
for instance for patients some mobility. The results are shown in Fig. 3.

The intuition says that starting from scratch at every demonstration is harder,
whereas if the robot reproduces the movement in a docile manner the user only
has to physically perturb the execution in some parts and teaching becomes easy.
However, as it can be seen in Fig. 3, this second approach introduces oscillations
of about half a centimeter in the resulting trajectory, not only in the y axis (the
approaching direction) but also in x and z. With low stiffness values the oscilla-
tions tend to be higher as the robot reacts to slighter perturbations as when it
tries to go on with the trajectory and return to the original path and the user
holds it again. In contrast, higher stiffness makes it harder for the user to modify
the trajectory, resulting in less oscillations but more physical effort for the user.
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4.4 Automatic parameter extraction

In the next experiment, the modifications that the caregiver can introduce to
personalize the feeding process are (see Alg. 2, lines 10, 20 and 22): the initial
pose, the motion shape, and the feeding point (inside the mouth for use-case U1
or just approaching the food for use-case U2).

We show how these parameters can be extracted automatically during the
User Tailoring phase. First, the feeding point is computed by recording the
distance to the face in which the movement is stopped to feed the person. Second,
the motion learning process captures the particularities of the task. We exemplify
this fact by observing variances of the ProMP trajectory related to two different
utensils: when a spoon is used the orientation is more restricted, while a fork
allows for more flexibility.

In this experiment, the re-teaching has been carried out with the robot hold-
ing a spoon with yogurt and also with a fork pinching a french fry. Five tra-
jectories were recorded in order to generate the ProMP for each case. A human
user was used here as test subject (not a mannequin) because the insertion ori-
entation was relevant (see Fig. 1). With this experiment, we can observe how
the particularities of the task are integrated into the ProMP. Figs. 4(a) and 4(b)
show the trained trajectories for each Cartesian coordinate and the rotations
around each axis, displaying the mean trajectory and its variance.
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(a) Spoon re-teached ProMP.
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Fig. 4. Learned trajectories for the spoon and fork experiments, where the gravity
compensation mode was used for re-teaching the trajectories.

The figures clearly show the moment in which the utensil is near the mouth
(as seen in the shaded regions), because the variance of the movement narrows
at that stage. This is, in fact, a representation of the flexibility of the movement,
since the critical parts that need more precision are less flexible.

In addition, this variance effect can also be seen in the orientation plots, in
which the spoon’s sample orientation variances are narrower at the beginning
of the trajectory to avoid spilling the content, while the move away part has
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wider variances as the food has already been taken. The fork trajectory has less
restrictive orientations because there is less danger of dropping food, as clearly
seen in the orientation around the y axis.

Moreover, this gives us insights on how the variance in the trajectory points
provided by the ProMP could also be used to control the compliance (stiffness
degree) of the robot during the trajectory execution phase. This way, the robot
would be more docile to external forces in moments of high variance, corre-
sponding to points of the path that have been taught in non precise ways, and
more rigid in low variance points. Thus, the robot would not react to external
forces while introducing the spoon in the mouth, avoiding any possible harm to
the user due to accidental robot perturbations. Note this should not be applied
in the joints interacting with the user, allowing for docile movement with the
mouth but being stiff in external joints such as the elbow.

5 Conclusions

In this paper, we presented the FUTE robot personalization framework consist-
ing of three phases: Factory setting, User Tailoring and Execution tuning. This
framework has been devised to help the implementation of assistive applications
by allowing easy adaptation of the assistive robot performance to specific users,
given the fact that all of them are different and have their own special needs.
Furthermore, it allows non-expert users to conduct the robot adaptation just by
guiding the robot behavior.

Then, we tested this framework in a feeding application where a human care-
giver can re-teach the feeding movement the robot has to perform, by physically
modifying an already learnt trajectory or by teaching it from scratch. This al-
lows the person to teach the feeding point and distance so it can be either inside
or near the mouth. Moreover, we demonstrate how the use of the Probabilistic
Movement Primitives (ProMPs) is an appropriate choice for these kind of assis-
tive applications, as they are able to learn the particularities of the task, such
as the feeding moment and the flexibility of each part of the trajectory.

Nevertheless, the feeding application has still room for improvement, includ-
ing, but no limited to, the integration of voice commands with the physical
interactions, the adaptation of the best stiffness factor for the carer that is per-
forming the re-teaching or the use of the ProMP trajectory variance to control
the stiffness factor while feeding the user.
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