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Abstract— We present a featureless pose estimation method
that, in contrast to current Perspective-n-Point (PnP) ap-
proaches, it does not require n point correspondences to obtain
the camera pose, allowing for pose estimation from natural
shapes that do not necessarily have distinguished features like
corners or intersecting edges. Instead of using n correspon-
dences (e.g. extracted with a feature detector) we will use the
raw polygonal representation of the observed shape and directly
estimate the pose in the pose-space of the camera. This method
compared with a general PnP method, does not require n point
correspondences neither a priori knowledge of the object model
(except the scale), which is registered with a picture taken from
a known robot pose. Moreover, we achieve higher precision
because all the information of the shape contour is used to
minimize the area between the projected and the observed shape
contours. To emphasize the non-use of n point correspondences
between the projected template and observed contour shape,
we call the method Planar P∅P. The method is shown both
in simulation and in a real application consisting on a UAV
localization where comparisons with a precise ground-truth are
provided.

I. INTRODUCTION

The use of small Unmanned Aerial Vehicles (UAV), such
as multirotors, in search and rescue missions (SAR) have
gained popularity in the research community due to their
low-cost and high manipulability. Examples are those cases
where the vehicle localizes the victims [1], [2], [3] or even
gives assitance in a first instance [4], [5]. Also promising
applications are appearing using Unmanned Aerial Manip-
ulators (UAM), i.e. UAVs equipped with robotic arms, to
perform some manipulation operations [6], [7], [8].

The vehicle’s pose estimation is a very challenging prob-
lem to be solved during SAR missions, allowing for robot
navigation and control among many other important tasks.
Inmediately after a disaster it is impractical the use of
external infrastructure to localize the vehicle in both indoor
and outdoor scenarios (e.g. GPS). Moreover, not only a
robust and fast pose estimation is strictly required but also
the sensors to obtain it have to consider some constraints
in terms of weight and power consumption. UAVs, and
specifically multirotors have a limited payload and power
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supply. Considering these restrictions, a good option is to
obtain a pose estimation using visual information, thus using
cameras.

In a classical approach to camera pose estimation, we first
have to detect regions of interest in the image which must be
repetitive and easily identifiable (e.g. points, edges, corners,
convexities or ellipses), meaning that feature descriptors
[9] are strictly required. There exist a great number of
descriptors (e.g. [10], [11], [12]) and their use will be subject
to computational costs, illumination problems, image texture
or camera resolution. Once detected, these 2D features are
associated with 3D model points, known a priori, allowing
to compute n point correspondences between two images or
one image and a 3D model. Most common methods for pose
estimation [13], [14] rely on these explicit correspondences.
Although these approaches have been widely studied and
used, they require a 3D model known a priori and, specially
during SAR operations, this represents a hard constraint
because the scenario could have changed. Moreover, when
using PnP methods, some significant problems can arise
related to the repeatability of the correspondences due to,
for example, illumination changes, low camera resolution
or blurring. In those cases where image features cannot be
extracted the addition of artificial markers is necessary [15],
[16], however it may not be practical during SAR operations.

The use of contours for object pose estimation has been
recently studied in [17], which presents a solution using a
single image by learning an object model of view-dependent
shape templates. This approach, although very useful for
general pose estimation is not appropiate for UAV tasks
considering the achieved precision and computational cost. In
contrast, our approach reaches higher precision, it is simpler
since it deals only with planar natural shapes as shown in
Fig. 1, and it does not require an extensive learning process
(only an image per template and its scale), hence it requires
lower computational burden.

Other methods like [18], [19], [20] provide a homography
from contours of a planar region without correspondences
but they require complex optimization schemes and the
homography does not consider camera restrictions. In the
recent alignment approach for deformable contours [21] the
camera constraints are again not taken into account in the
key optimization step, preventing accurate pose estimation
for high precision applications.

In this paper we present a novel Planar P∅P method to
extract the pose of a UAV using only contours of natural
shapes instead of feature descriptors, and without the need
for artificial markers. This method consists of 4 steps: 1)



Fig. 1: Natural shapes (first row) and demonstration of an augmented reality application (second row). Because we are not
using correspondences we can test our method with any natural (closed) shape that we might find. The method only needs
initially a frontal view of the shapes.

initialization, to find a starting location to align the contours;
2) contour alignment, to look for the best homography
alignment in the Homography-space using the method of
the same authors explained in [21]; 3) pose extraction from
the homography, to compute a first estimation of the pose
using a novel method named Virtual Correspondences (VC);
and 4) pose refinement in the pose-space. Finally, the Planar
P∅P method is validated using synthetic views and real-life
experiments comparing the results using a precise Optitrack
motion capture system as a ground-truth.

The remainder of this article is structured as follows. In the
next section the Planar P∅P method is presented. Validation
and experiments are shown in Section III. Finally conclusions
and remarks are given in Section IV.

II. P∅P: PERSPECTIVE FROM ZERO POINTS FOR PLANAR
SHAPE CONTOURS

Let us consider a planar object, the template contour,
that has been discretized as a polygon with n nodes T =
(T1, ..., Tn), where Ti = (Tix , Tiy ), and an observed im-
age, the image contour, O = (O1, ..., Om), where Oi =
(Oix , Oiy ). The image contour O is obtained using standard
image processing functions, contour extraction and polygon
reduction.

We want to recover the pose of the image contour taken
into account that this contour comes from the projection
of the template contour in the image. The method that we
will explain in this section does not require to find any
corresponding points in the contours, instead we use the best
global alignment between the image contour and a projection
of the object template to find the pose. Because we do not
use point correspondences we call the method P∅P.

In order to find the best alignment, we define the alignment
cost as the total area discrepancy between the projected
template contour and the image contour. The error area
between two regions can be efficiently obtained by an XOR
(symmetric difference) clipping algorithm working on region
boundaries [22], and their areas can be easily computed just
from the contour nodes. For the sake of conciseness, we refer

Fig. 2: The vector field δp(x) shows the local deformation
required to improve alignment and the effects of the trans-
formation which must be combined to match δ.

the reader to [22] for XOR operation details. In [21] this
XOR cost was used in an efficient optimization algorithm
to find the best homographic transformation between two
contours. Briefly, this contour registration problem is formu-
lated as follows. Given a transformation model x′ = Wq(x)
we find the parameters q that minimize the error area for the
image contourO and template contour T , which is expressed
by

q∗ = argminqXOR(O, Wq(T )) . (1)

This is solved using Gauss-Newton’s iterative optimization
(GN): given a residual vector f with Jacobian J = ∂f/∂q,
the squared error C = 1/2fTf can be reduced by using the
update rule

∆q = −H−1∇C, (2)

where ∇C = JTf and the Hessian is approximated by H =
JTJ.

Each node in the contour produces two residuals in f ,
denoted by the vector δ. Fig 2 shows the ideal δ field in
a hypothetical alignment example. Analogously, the corre-
sponding two rows of the Jacobian will be denoted by D.
Each component Dq quantifies up to first order the effect of
parameter q. The optimization method combines the local



effects of all parameters of the transformation, trying to
match the required correction δ.

In this particular problem the required residuals and Ja-
cobian can be efficiently computed in closed form just from
the nodes of the XOR error polygons. The components of
the gradient and the Hessian needed in (eq. 2), in terms of
δ and Dq , and for a polygonal contour with segments Sk

joining nodes k and k + 1, can be expressed as:

{∇C}r =

n∑
k=1

∫
x∈Sk

Dr(x) · δ(x) dx , (3)

Hqr =

n∑
k=1

∫
x∈Sk

Dq(x) ·Dr(x) dx . (4)

The details of the computation of the above expressions
can be found in [21]. The key idea is that the general
homographic transformations form a group, and therefore
we can use the inverse compositional approach [23]. The
components Dq can be precomputed, yielding a very efficient
alignment process. It only requires the signed XOR residual
and low-order powers of the coordinates of the intersection
nodes in each optimization step.

This alignment method presented in [21] is efficient and
accurate for full projective models, but we are actually
interested in the estimation of the best camera pose [R|t], an
element of the SE3 group of rigid motions. This constraint
is essential to achieve high precision localization from noisy
images.

There are several heuristic methods to estimate a pose
from a more general homography H. One natural and simple
method proposed in this work generates “Virtual Correspon-
dences” (VC) using the estimated H and a standard PnP
algorithm to get the pose that best fits this transformation.
Another method called Infinitesimal Plane-based Pose Esti-
mation (IPPE) has been proposed in [24] and works directly
with the structure of H.

These methods obtain good estimates when the amount
of noise is small. However, in more realistic scenarios with
low quality and blurred images, the extraction of a consistent
pose (6 DOF) just from an intermediate and unconstrained
homographic model (8 DOF) is usually not accurate enough
for high precision visual localization applications. Some
distorsions produced by image noise can be captured by
homographic models that are inconsistent with rigid trans-
formations.

The correct approach is to minimize the alignment error
with respect to the true pose parameters. In this paper we
present a reasonably efficient method to achieve this goal.
The main complication is that the set of projections of rigid
3D transformations of a planar region is not a group, and
hence the inverse compositional approach cannot be applied.
Instead, a forward additive alternative must be used, which
requires recomputation of the Jacobian in each optimization
step. We will show that this problem is not as severe as it
seems. While the contributions of the error segments can be
no longer computed in closed form, an approximate numeric

integral can be still obtained for the final refinement steps,
without a significant increase in the total computing time of
the algorithm.

The P∅P method has four steps:

• Step 1: Initialization. In this process we look for
a good starting location of the first projection of the
template contour T on the image contour O. We can use
different techniques to obtain this first approximation.
In our case we start from an affine transformation that
can be computed in closed form from the “whitened”
polygons, without the need of any correspondences. The
output of this step is a coarse alignment approximation
from where we will do the refinements.
This initial step can be optionally improved with an
inverse compositional step in the homography space
using precomputed derivatives for some global contour
properties.

• Step 2: Refinement of the contour alignment in the
Homography space. We use the inverse compositional
XOR method described above to look for the best
homography alignment between the projection of T and
O. The output of this step is the homography Hk that
gets the minimum XOR error.

• Step 3: Computation of the initial pose from the
homography. In contrast to [21], we here propose a
Virtual Correspondences method to estimate a pose
from the homography Hk obtained in Step 2, which
consists on the following

– Take m discretized points of the template T =
(T1, ..., Tm). These points of interest are obtained
from standard image processing functions [25].

– Project these m points using the homography Hk,
obtaining the projected points T I = (T I

1 , ..., T
I
m).

– Use the correspondences between the pairs T1 with
T I
1 , T2 with T I

2 , ..., Tn with T I
n .

– Apply a classical PnP method with the m corre-
spondences.

The output of this step is the pose pinit.
• Step 4: Refinement of the pose in the pose-space. In

this novel step we use again the XOR method to find
the best alignment, but now in the pose-space expressed
as

argminpδXOR(O, Wp(T )) . (5)

The initialization starts with the pose pinit. The warping
function is

Wp(T ) = f(PT
′
) , (6)

with P = [R|t] the pose, T
′

the discretized points of
the template contour in homogeneous coordinates, and
f the transformation to inhomogeneous coordinates.
The derivatives required by GN for the 6 parameters of



Fig. 3: Discretized contributions to ∇C and H.

P = [R|t] can be compactly expressed as

Dp =

[
−y′ −x′2 − 1 −x′y′ z′ 0 −x′z′

x′ −x′y′ −y′2 − 1 0 z′ −y′z′

]
(7)

where
[
x y z

]T
is the predicted 3D location of each

contour node using the current pose, and x′ = x/z, y′ =
y/z, and z′ = 1/z. The first three columns correspond
to the orientation angles and the last ones correspond to
the displacement. The above expression can be easily
obtained from the incremental local parameterization of
the pose at the current estimate. For example, for the
first angle we havexhyh

zh

 =

 cos(a) 0 sin(a)
0 1 0

− sin(a) 0 cos(a)

 [I|0]

x
y
z
1

 . (8)

Unfortunately, the contributions to the integrals in eqs.
(3) and (4) can no longer be expressed in terms of sim-
ple moments. Furthermore, the planar warping function
arising from the 3D projection is not invertible. For
this reason, we must resort to the more general forward
additive optimization scheme. In each step the currently
estimated pose is improved with an incremental cor-
rection that minimizes the XOR error area in image
space. To accomplish this, the integrals in (3) and (4)
are computed as a sum over a set of discrete points
along each segment (Fig. 3).
The output of this step is the pose pfinal.

This last discretization is quite different from the usage of
Virtual Correspondences method (VC) in step 3. The aux-
iliary nodes are used just to compute approximate numeric
integrals required by the minimization of the XOR regions.
Correspondences are never used between points.

This final refinement requires very few iterations as it
usually starts from an accurate initialization. An additional
advantage of a final forward additive optimization step is
that it minimizes the global geometric error in the image
space, theoretically producing optimal estimates (the inverse
compositional method is more efficient but it minimizes the
error in the template space).

III. VALIDATION AND EXPERIMENTS

To validate the proposed method, we created a database
of different shapes (e.g. see Fig. 1). These shapes are
designed in a way that either is very difficult to find image
points corresponding to the template, or these points are

Fig. 4: Left: ASCETEC Pelican robot flight. Right: shape
detection and camera pose provided by Planar P∅P.

0.7

Fig. 5: Alignment and resulting pose of a noisy synthetic
example. Green: Observed contour. Blue: Projected template
with estimated pose. The number inside the alignment rep-
resents the normalized XOR area discrepancy between the
projected template and the observed contour.

bad conditioned (e.g., they can be close to a straight line).
Traditional methods for pose estimation are unable to extract
pose in such shapes. In contrast, the proposed method only
needs initially a frontal view picture for every shape (selected
automatically or, as in our case, by a user selection done in
the image plane), its scale and it is general enough to work
with any closed contour.

We propose two different arrangements to evaluate the
method. On the one hand, we generate synthetic views of the
shapes contained in the database. Secondly, we present real
pose estimation experiments with an ASCTEC PELICAN
quadrotor (see Fig. 4) with a camera endowed below and
pointing downwards. Finally we present some results in
outdoor sequence of images.

A. Error evaluation with synthetic views

We generate synthetic shapes under plausible camera
perspective views and add noise artificially as shown in
Fig. 5. More specifically, we generate n arbitrary rotations
and translations resulting in n camera poses P true

i . Given
ε ∼ N(0, σ), the contours generated for the template Tj are:

Onoisy
i,j = WP true

i
(T true

j ) + [ε1, ε2, ...]
T

Note that this process must be done carefully to avoid
self intersections in the resulting contour. For comparison
purposes, once the observed contours are obtained we launch
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Fig. 6: Comparison of different methods using synthetic views: VC (Virtual Correspondences), IPPE [24] (Infinitesimal
Plane-based Pose Estimation), and both of these methods refined with the proposed P∅P method

different methods considering the frontal views Tj and the
noisy contours Onoisy

i,j resulting in an estimation of the camera
pose P̂i. The resulting errors are computed as the difference
in rotation angles and normalized translation coordinates.

The following methods are compared:
1) Virtual Correspondences (VC) from homography (pinit

from Step 3).
2) Infinitesimal Plane-based Pose (IPPE) [24] from ho-

mography.
3) P∅P initialized with Virtual Correspondences (VC)

method.
4) P∅P initialized with Infinitesimal Plane-based Pose

(IPPE) method.
The resulting comparison can be seen in Fig. 6 and

we can draw several conclusions. On the one hand, it is
interesting to note that the P∅P method works well with both
initializations and improves considerably the pose estimation.
Also note that the IPPE method [24] needs to refine the initial
translation estimation and for that purpose they propose
a point correspondence based approach to minimize the
reprojection error. In contrast, our P∅P method is able to
obtain a good pose without corresponding points even when
the initialization is not good (note the difference between
IPPE and IPPE+P∅P in both graphs).

B. Natural shape detections applied to UAVs localization

For the real robot experiments, we used an ASCTEC
PELICAN quadrotor with a MATRIX mvBlueFOX camera
(752x480 pixels of resolution) attached below. We calibrated
the camera, thus we know the camera intrinsic parameters K
and the radial distortion is corrected. An Optitrack motion
capture system is used as a ground-truth by attaching several
infrared markers to the quadrotor and the shapes to obtain
an accurate pose measurement. These shapes are the same
(resized) used in the synthetic validation section (see Fig. 4).

In each experiment the robot orbits above the shape
autonomously thanks to the motion capture system. This is
particularly important because human-driven trajectories are
more abrupt than autonomous ones.

Table I shows the comparison between the different meth-
ods using Optitrack as a ground-truth. Notice how the align-

Abs err (m) Rel err (%) normalized XOR
VC 0.0167 1.2194 0.1539

VC+P∅P 0.0185 1.3448 0.1332
IPPE 0.0226 1.6213 0.2719

IPPE+P∅P 0.0217 1.5656 0.1393

TABLE I: Comparison of different methods using Optitrack
as a ground-truth: VC (Virtual Correspondences), IPPE [24],
and both of these methods refined with the proposed P∅P
method

ment (XOR) error is always reduced. However, in the case
of the pose error, the Virtual Correspondence method (VC)
provides better estimate than the refinement, even though the
XOR error was reduced.

The reason is that due to the use of low camera resolution
in the robot, the edges in the observed contour are not in
the correct place and the error is not gaussian (which is
also bad for traditional PnP methods). In those cases, trying
to improve the alignment of the observed contour (green)
would reduce the XOR error, but the pose could be overfitted.
In contrast, when using IPPE method as initialization the
improvement is more evident, where both the XOR and the
real pose errors are reduced.

C. Camera pose in outdoor sequence of images

We have tested our method in an outdoor scenario. Be-
cause there is not the ground truth, the purpose has been to
see that the error in object detection for a particular single
shape was smaller that in the other objects in a sequence
of outdoor images. Fig. 7 shows snapshots of two different
experiments where the camera is moved around a simulated
stones path. During these experiments a single shape is
configured (top left corner of gray images) and, when the
expected stone appears in the camera field of view, the
method extracts the camera pose. Then, in case we set up all
possible shapes, the method can allow a precise localization
of the aerial vehicle while following the stones path.

IV. CONCLUSIONS

This paper presents a camera pose estimation method,
planar P∅P, which does not require neither feature corre-



Fig. 7: Template detection and camera pose estimation using Planar P∅P over a sequence of outdoor images consisting on
a simulated stones path.

spondences nor corresponding points or artificial markers in
the scene. Hence, we can precisely obtain the camera pose
from natural shapes lacking of those attributes. The learning
process of a new natural marker is done by capturing its
shape from a vertical position and noting down the scale of
the image shape. The method achieves higher precision on
pose estimation than other methods (e.g. VC or IPPE), which
is very important for UAV localization and specifically for
aerial manipulation operations, although is sensible to con-
tour extraction. The method uses an alignment cost defined
as the total area discrepancy between the projected template
and the image contours. The error area between them is
obtained using an XOR (symmetric difference) clipping
algorithm working on region boundaries. The minimization
of the alignment cost is done in the XOR using a Gauss-
Newton’s iterative optimization process. Shape datasets have
been used to compare and validate the proposed Planar P∅P
approach with different literature methods. First, a validation
with synthetic camera views shows how the refinement of
methods using Planar P∅P increases the alignment and the
pose accuracy. On the other hand, we provided comparisons
of the pose estimation error between different methods and
ground-truth measurements, obtained with a precise Opti-
track motion capture system, in real robot experiments using
a quadrotor with a camera endowed below.
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