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Abstract—Three advanced natural interaction modalities for 

mobile robot guidance in an indoor environment were developed 

and compared using two tasks and quantitative metrics to 

measure performance and workload. The first interaction 

modality is based on direct physical interaction requiring the 

human user to push the robot in order to displace it. The second 

and third interaction modalities exploit a 3D vision-based 

human-skeleton tracking allowing the user to guide the robot by 

either walking in front of it or by pointing towards a desired 

location. In the first task, the participants were asked to guide the 

robot between different rooms in a simulated physical apartment 

requiring rough movement of the robot through designated 

areas. The second task evaluated robot guidance in the same 

environment through a set of waypoints, which required accurate 

movements. The three interaction modalities were implemented 

on a generic differential drive mobile platform equipped with a 

pan-tilt system and a Kinect camera. Task completion time and 

accuracy were used as metrics to assess the users’ performance, 

while the NASA-TLX questionnaire was used to evaluate the 

users’ workload. A study with 24 participants indicated that 

choice of interaction modality had significant effect on 

completion time (F(2,61)=84.874, p<0.001), accuracy 

(F(2,29)=4.937, p=0.016), and workload (F(2,68)=11.948, 

p<0.001). The direct physical interaction required less time, 

provided more accuracy and less workload than the two 

contactless interaction modalities. Between the two contactless 

interaction modalities, the person-following interaction modality 

was systematically better than the pointing-control one: the 

participants completed the tasks faster with less workload.  
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I. INTRODUCTION 

LTHOUGH mobile indoor robots perform meaningful 

tasks in several application domains, very few can be 

found in real commercial settings. One of the reasons for this 

limited use is the complexity of the human-robot interaction 

(HRI) for non-expert users [1]. A mobile home-assistant robot, 

such as the one used in this work, is required to move inside 

the user‟s living space and often the user must guide the robot 

to a desired location. Several modalities are commonly applied 

to motion control of mobile robots [2] ranging from traditional 

methods such as using personal digital assistants and joysticks 

to more advanced methods such as using haptic drivers, 

speech and hand gestures [3], [4], [5], [6], [7], [8], [9], [10], 

[11]. While some of the modalities such as speech recognition 

have matured enough for commercial use, others have not, 

often due to the novelty of the underlying technologies they 

use. In several cases multi-modal interactions were developed 

combining the advantages of each modality and switching 

between them [12]. Natural interfaces aim to create a seamless 

interaction between the human and the machine [13]. Several 

advanced natural interfaces for control of robot‟s motions 

along a designated path using physical interaction [14], 

person-following [15] and pointing [16], which represent 

different interaction modalities have never been evaluated and 

compared in user studies in the context of robot guidance. It is 

important to evaluate each interaction modality within the 

context of its uses and provide quantitative results in the 

comparison [2]. 

In this paper, three interaction modalities that allow users to 

intuitively guide the robot inside a test apartment are 

evaluated, namely direct physical interaction (DPI), person-

following and pointing-control. They were chosen and 

designed with the goal to make personal robots simple to use 

in a home environment for untrained users. Extensions of [14], 

[15], [16] include new developments. While DPI modality 

investigated a tactile human-robot interaction without the use 

of additional sensors, person-following and pointing-control 
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modalities exploited a powerful human tracking ability of a 

recently released depth camera.  

A. Direct Physical Interaction 

Direct physical interaction (DPI), also known as physical 

human-robot interaction (pHRI), allows the user to influence 

the robot behavior through physical contact with it [17]. The 

primary application of physical human-robot interaction was 

safety, in order for a robot and a human to share the same 

workspace without the risk of traumatic injury. For example, 

comparison of the force generated by the robot‟s actuators 

with the values predicted by a dynamic model of the robot 

allows detection of the force created from physical contact 

(i.e. a disturbance in the model), as shown by a case of 

interaction with a robotic arm in [18], [19]. Also, in [20], [21] 

a robotic arm is capable of detecting a collision and stopping 

its motion in order to prevent an injury to the human operator 

or a damage to the robot. This method can be applied on the 

same hardware to prevent soft tissue injuries such as human 

skin cuts caused by a knife or a similar sharp tool, which is 

manipulated by the robotic arm [22]. Furthermore, DPI has 

also been used in manipulation of robotic arms, generally 

through impedance control [23], which enabled the 

exploration of new natural techniques for human-robot contact 

[24], human-robot cooperation [25], [26], object transfer [27], 

teleoperation [28], or kinesthetic learning by imitation [29]. 

The use of DPI is not limited to robotics arms and its 

benefits have been explored in manipulation and guidance 

tasks of mobile robots proving it to be more intuitive than 

classical gamepad interfaces [30]. State-of-the-art methods 

propose the use of external force sensors or torque sensors 

mounted on the robot [31], or compliant joints located on the 

robot upper part in order to measure the contact forces, as with 

the robots like Cody [17], [30], [32], PR2 [33], Justin [34] and 

IRL-1 [35]. However, these methods limit the surface on the 

robot body where physical interaction can take place. Doisy 

[14] has presented a proof of concept that an indoor mobile 

robot can be controlled by applying force to any part of the 

robot body without the need of external sensors. Based on this 

concept, in this paper we developed a new DPI interaction 

modality that does not rely on external sensors. This was 

achieved by implementing a friction compensation method, 

which is explained in Section II.A. 

B. Person Following 

The idea of a person-following robot is not new and it has 

been applied in areas including robot companions, smart 

shopping carts, transporters, and walking assistants. Two 

challenging tasks constitute the person-following behavior, 

namely robot navigation and person tracking. While the robot 

navigation has been investigated [24], the lack of affordable 

and powerful sensors and efficient person-tracking techniques 

limited its application to person-following.  

While some rely on smart environments [36], most object 

and person detection and tracking methods use vision-based 

techniques [37], [38]; however, they are sensitive to 

illumination changes that can degrade segmentation results 

[39]. Laser rangefinders (LRFs) provide accurate distance 

measurements and they are generally used to detect the legs of 

the person [40], [41]. Legs can easily be confused with tables 

and chairs, so they must be filtered out by mapping the 

environment. Some authors propose filtering [42], [43] or 

sensor fusion techniques [44], [45], [46], [47], [48] in order to 

improve tracking performance. The use of stereo vision 

cameras for person tracking has also been reported [49], in 

combination with LRF [50], or LRF and color-image 

segmentation [51], [52]. 

Affordable depth sensors for indoor applications such as 

Microsoft Kinect has led to development of new algorithms 

for human body segmentation [53], [54]. The Kinect can 

provide depth images at the rate of 30 fps allowing real-time 

object segmentation, which is based on distance gradient and 

insensitive to variable lighting conditions. This technology has 

influenced a wide range of application domains such as object 

detection [55], person tracking [56], [57], [58], SLAM [59], 

3D surface reconstruction [60], and human gesture and action 

recognition [61], [62]. 

The depth sensors simplify the problem of indoor person 

tracking and allow development of more efficient person-

following robots [15], [63], [64]. Various person-following 

strategies using a Kinect sensor and a pan-tilt mechanism 

mounted on an indoor mobile robot were compared [15]. 

Although we proved that uninterrupted person tracking and 

following can be performed with the proposed combination of 

hardware and algorithms [15], this was not evaluated. In the 

current paper, the proposed person-following interaction 

modality which combines a Kinect sensor mounted on a pan 

tilt mechanism and a unique algorithm is implemented and 

evaluated in a comparative user study with two other 

interaction modalities. 

C. Pointing Control 

Pointing is recognized as one of the most intuitive gestures 

for indicating a location or an object of interest [65]. The idea 

of using this gesture for robot control appeared early [66], and 

also proved to be an accepted way of interaction for a specific 

category of lay users such as the older adults [67]. Various 

combinations of sensors and algorithms can be used to track 

the pointing motion. Smart devices that are manipulated by the 

user proved to provide accurate tracking results, as shown in 

the case of laser pointers [67], [68], [69], [70], a mobile phone 

[71] or other devices that were specifically developed for this 

application such as the XWand [72], the WorldCursor [73], or 

the Google Glass [74]. However, the need to hold or wear a 

device to perform pointing is neither practical nor intuitive.   

Research in image and video processing for pointing 

gesture recognition has been conducted with systems 

comprising of one or more cameras [75], [76], [77], [78], [79], 

[80], [81]. The proposed techniques lack accuracy and fixed-

camera systems spatial constraints limit the application in a 

mobile-robot scenario. To improve the accuracy some authors 

proposed to limit the number of “points of interest” and 

providing a prior knowledge about their location [82]. As for 

the person-following interaction modality, the pointing 
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interaction modality can benefit from the skeleton-tracking 

ability of the depth sensors. The novel algorithms for human-

body segmentation [53], [54] provide improved speed and 

accuracy and have shown benefits for hand tracking, arm 

tracking, posture recognition [83] and pointing recognition 

[84]. 

The pointing target is derived from the position of the arm 

and hand joints using their 3D location obtained from a depth 

sensor input. Various combinations of joints provide good 

results in pointing target recognition such as the hand and the 

elbow, the hand and the shoulder, or the hand and the head 

[85]. Alternatively, in [86] we proposed to allow the robot to 

learn the relation between pointing gestures and control 

commands. In the current work, the pointing-control 

interaction modality uses the location of the hand and the 

elbow joints to calculate the pointing target, as in [16]. Here, 

the concept is implemented on a different platform and 

evaluated in a comparative user study with two other 

interaction modalities. 

II. ROBOT INTERACTION MODALITIES 

This work focuses on the evaluation of advanced interaction 

modalities for guiding a mobile robot. The aim was to evaluate 

the interaction modalities in a study with untrained users. The 

study was performed for two guidance tasks that differed in 

the required accuracy of movement. The three interaction 

modalities developed and evaluated in this paper were based 

on [14], [15], [16] implementing necessary insights and 

modifications to further advance these interaction modalities. 

The interaction modalities described in this section were 

compared in a study in an apartment facility with a total of 24 

users from different backgrounds. Quantitative metrics were 

used for the comparison of performance and workload. The 

user study is described in section III.  

A. Direct Physical Interaction 

The DPI interaction modality allows users to guide the robot 

by pushing it around the apartment. One of the advantages of 

this interaction modality is that it allowed users to push the 

robot at any point of its body; however, the mobile base 

generally allowed the easiest transfer of user-generated force. 

When the users push the robot, they experience only the 

resistance caused by the robot's inertia. As a result of the 

proposed friction compensation the robot manipulation 

requires very little effort. The controller compensates the 

friction forces induced by the motors, the wheels and the 

ground; little friction remains uncompensated to ensure 

stability, e.g. prevent the robot from constantly accelerating. 

The overall experience when manipulating the robot is as if it 

is on ice and pushing it with a tip of one's finger is enough to 

make it move. Although this interaction modality was shown 

in [16] it has not been formally described. It differs from the 

concept previously described in [14] in the sense that a whole 

range of speeds from 0 to 1m/s are directly accessible to the 

user, whereas in [14] the user could only initiate or stop one of 

the four predefined robot movement: moving forward or 

backward at 0.5 m/s, and rotating in place clockwise and 

counter-clockwise at 120 deg/s. 

In designing the friction-compensation controller, the total 

friction torque generated by the friction forces on each motor 

was measured as a function of speed. In a set of experiments 

the robot was driven at constant wheel speeds from 0 to 13.3 

rad/s (corresponding to ground speeds from 0 to 1m/s) with 

0.5 rad/s increment and the corresponding measured torques 

were noted. For absolute angular speeds from 0 to  ́  = 2.4 

rad/s (corresponding to a ground speed of 0.18 m/s), the 

friction is approximately proportional to the wheel angular 

speed. From  ́  it does not increase with speed anymore and 

stays approximately constant. 

The obtained friction torque measurements that were 

measured from the current drawn from the electrical motors 

were approximated by the following formulas: 
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where    is the friction torque in Nm,    is the friction 

coefficient determined experimentally of 0.85 Nm, and  ́ is 

the wheel angular speed in rad/s. 

Then, having an approximation of the friction torque for 

each motor, the friction was compensated with the following 

control law: 
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where   ,   ,    , and    are right and left wheels command 

torques and friction torques. The control law loop runs at 200 

Hz. The 0.8 factor is present to ensure stability and to keep the 

virtual friction non-zero. 

B. Person Following 

In the person-following robot interaction modality, the user 

walks in front of the robot and the robot follows it; the user 

leads it to the desired location in the apartment. The robot 

smoothly follows the user at a safe distance so any physical 

contact between the robot and the user is prevented. The user 

could stop the robot at any time by raising his or her left hand 

above the level of the left elbow, and could restart the robot 

motion by putting the left hand back to the position below the 

level of the left elbow. 

Person-following in this paper is achieved through 

uninterrupted user tracking. The integration of the pan-tilt 

mechanism on top of which the Kinect sensor is mounted 

enables decoupled motion of the sensor and the robot and 

extends the Kinect‟s horizontal detection range. The position 

of the user obtained from the Kinect is fed to the visual control 

module of the pan-tilt mechanism, which then ensures that the 

sensor always faces the user. The position of the pan-tilt 

mechanism and the position of the robot on the map are used 
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to compute the position of the user on the map. This position 

is fed back to the robot navigation module that executes the 

person-following behavior. Detailed description of the 

tracking, control and adaptive person-following algorithms is 

given in [15] and was modified in this paper for a new 

platform to enable evaluation. 

C. Pointing Control  

In the pointing interaction modality employed in this paper, 

the user guides the robot by pointing with the right hand at a 

desired location on the floor. The robot is stopped by raising 

the left hand above the level of the left elbow. By lowering the 

left hand back to the position below the left elbow the robot is 

restarted and continues to move. During the demo, the 

participants were instructed to either point to the desired target 

location or farther from it, but then stop the robot by raising 

their left hand at the moment the robot crosses over the target 

location. The participants were told that pointing-control has 

an inherent limited accuracy which could introduce an error as 

a result of imperfect tracking. This measure was taken in order 

to minimize the influence of human-tracking inaccuracy on 

users‟ performance. 

The desired destination is computed from the intersection of 

the ground floor plane with a line passing through the right 

hand and the right elbow joints, whose locations are obtained 

from the Kinect sensor. The joints locations are transformed 

beforehand from the Kinect frame of reference to the map 

frame of reference, using the same method as in the previous 

section. Similarly, the user-tracking algorithm is identical as 

for the person-following.  

The elbow-hand pair of joints was chosen for calculation of 

the pointing target as the result of a set of preliminary tests 

performed on the following combination of joints: wrist-hand, 

elbow-hand, shoulder-hand, head-hand, and the mean value of 

all four joint-pairs. Although some studies suggest that direct 

calculation of the pointing target from the joints locations is 

not the most accurate approach, these findings were limited to 

a specific setting in which the interaction took place such as a 

table top [87]. In [85] the authors suggest that the pointing 

target derived from a combination of the joints‟ locations 

provides a sufficiently good approximation if it is applied to a 

limited range where the interaction takes place. Our 

preliminary tests performed during the design of the 

interaction modality showed that the wrist-hand combination 

was less precise than the other combinations of joints due to 

the proximity of these two joints; i.e. even a small movement 

of one of the joints would cause large, hard-to-control, 

displacement of the pointing target. The pointing-control using 

the shoulder-hand and the head-hand combinations of joints 

was often inaccurate as result of the bending of the user‟s 

elbow, which is commonly done when pointing in close 

interaction. Similar inaccuracy was experienced when the 

pointing target was calculated as the mean value of the 

pointing targets from all four pairs of joints. These preliminary 

experiments provided empirical evidence that the elbow-hand 

combination of joints was the best choice for the pointing-

control in the proposed robot guidance. 

III. METHODS 

A. Apparatus 

The three interaction modalities were implemented on a 

customized Robosoft‟s Kompai robot shown in Fig. 1. The 

robot‟s base is a robuLAB10, a generic differential drive 

mobile platform with two propulsive wheels and two castor 

wheels that comes with basic navigation functions. A rigid 

structure was added on top of the platform, including three 

tubes and a tray for a laptop PC. On the top of this structure a 

TRAC Labs Biclops pan-tilt mechanism and a Kinect sensor 

were added, making a total height of 1.3 m from the ground to 

the top of the Kinect sensor. For navigation purposes, the base 

is equipped with a SICK S300 lase-range finder (LRF), which 

is positioned at the height of 0.24m and provides distance 

measurements of up to 30m with an angular field of view of 

270°. 

 
 

Fig. 1.  Robot platform used in the user study. 
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The pan-tilt mechanism has a tilt range of 120° and a pan 

range of 360° with a maximum angular velocity of 170°/s and 

a maximum angular acceleration of 3000°/s2. The precision of 

the angular position measurements is 0.01°. The mechanism 

can support a maximum payload of 4kg which is more than 

the weight of the Kinect sensor. In this work, the tilt value was 

set to 0° and person tracking was performed in the horizontal 

plane, using only the pan axis. The communication between 

the laptop PC and the pan-tilt mechanism is maintained via a 

USB port with a data transfer rate of up to 416kbps. 

The Kinect sensor provides depth measurement from 0.8m 

to 4m with a vertical viewing angle of 43° and the horizontal 

viewing angle of 57°. It provides depth images at the 

resolution of 640x480 pixels and at the maximal frame rate of 

30 fps. The Microsoft Kinect SDK provides person detection 

and skeleton joints tracking features. 

The laptop PC used in this work is powered by an Intel 

quad-core i7 Q740 CPU with 4 GB of RAM. 

B. Testing Environment 

The user study was performed in a simulated physical 

apartment at Robosoft premises, in Bidart, France in June 

2013. The apartment was fully furnished to have the 

functionality of a common home environment, as shown in 

Fig. 2. The apartment consists of a foyer with a bathroom, one 

large room and a kitchen which is separated from the room by 

a bar table. The floor is uniformly covered with a carpet 

allowing the robot to smoothly displace itself around the 

apartment. 

C. Robot Guidance Tasks 

In both tasks the robot starting location was the same. In the 

first task, the area-guidance task, the participants were 

instructed to guide the robot through three different areas that 

were clearly marked on the apartment floor: the square in the 

center of the living room, the foyer, and the kitchen. The aim 

was to evaluate the general ability to guide the robot inside the 

apartment with no need for fine accuracy of the robot‟s 

motions. In the second task, the waypoint-guidance task, the 

goal was to guide the robot through a set of three waypoints, 

marked as exact locations on the apartment floor, in order to 

evaluate the users‟ accuracy in guiding the robot. The two 

tasks differed in the level of accuracy required from the user in 

the control of the robot‟s movements: for the area-guidance 

task the robot could be sent anywhere within a few squared 

meters area, whereas for the waypoint-guidance task it should 

be sent as close as possible to a single point.  

The Kompai robot is capable of performing very accurate 

maneuvers, such as driving along the wall or through a narrow 

passage between two obstacles. This allows creating tasks of 

various levels of difficulty. The waypoints were chosen to 

provide a reasonable level of difficulty while minimizing the 

occurrence of loss-of-tracking events.  

A robot-generated map of the apartment with the resolution 

of 1.67cm/pixel is shown in Fig. 3. The size of the apartment 

was 6.55m x 5.20m. The Karto library that implements the 

Monte Carlo Localization algorithm [88] was used to generate 

the map from the LRF readings, but also to provide robot 

localization and path planning with both static and dynamic 

obstacle avoidance. The algorithm generates the optimal path 

between the robot's current location and the target location on 

the map taking into account the preset minimal distance 

between the obstacles and the path points. If the robot 

encounters a non-mapped obstacle on the generated path, the 

  
 

Fig. 2. Test environment: the apartment at Robosoft premises. 

  

 
 

Fig. 3.  Karto-generated map of the apartment with marked target areas and 

waypoints. 
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algorithm recalculates a new path taking into account the 

obstacle's dimensions, which are estimated from the LRF 

readings. If a solution for the new path cannot be found, the 

robot will stop and wait for a new target location from the 

user. On the map (see Fig. 3), the placement of the furniture is 

displayed in gray, the starting robot location is displayed as 

the blue cross with the label "0", and the target areas and 

waypoints are shown as red lines and crosses, respectively, 

with labels "A", "B" and "C" representing the square in the 

center of the living room, the foyer and the kitchen, 

respectively. The waypoints‟ coordinates are given in 

centimeters assuming “0”-waypoint as the origin of the 

coordinate system: A (31, 0), B (385, -110), C (420, 90). The 

Euclidean distances between the subsequent waypoints are: 

0A = 155cm, AB = 252.83cm, BC = 203.5cm, and CA = 

279.85cm. 

1) Area guidance task 

The area guidance task was used to evaluate the difficulty in 

using each of the three interaction modalities for robot 

guidance in the apartment. In each trial, the robot was placed 

at the starting point “0” and guided by the participant through 

a set of areas in the following order: 0-A-B-C-A. The robot 

was considered to be inside an area once its central axis 

crossed the area‟s border line (red lines on the map in Fig. 3). 

2) Waypoint-guidance task 

The waypoint-guidance task was used to evaluate the 

difficulty in using each of the three interaction modalities for 

accurate robot guidance in the apartment. As in the Task 1, in 

each trial, the robot was placed at the starting point “0” where 

it was further guided by the participants, but this time the 

users had to direct the robot through a set of waypoints in the 

following order: 0-A-B-C-A. The participants could stop the 

robot at any distance from a waypoint, and this distance was 

later used to evaluate the guidance accuracy. 

D. Performance and Workload Measures 

The following metrics were used to assess the performance 

and the workload of the users. 

1) Completion time 

The completion time is the total time used by the participant 

to guide the robot through the set of waypoints or areas. 

Lower completion times were indicators of a better 

performance. 

2) Accuracy 

Accuracy was measured as a function of distance between 

the waypoint and the location where the participant stopped 

the robot, which was obtained from the robot localization data. 

This metric was used to evaluate the users' performance in 

accurately controlling the robot and it was applied only to the 

waypoint-guidance task. Lower distances were indicators of 

better performance. 

3) Raw NASA-TLX questionnaire 

Participants completed a computerized version of the 

questionnaire after each trial. The raw NASA-TLX enables the 

collection of six dimensions of workload ranging from 0 to 

100 [89], and was used to assess the participant workload 

when guiding the robot, similarly as in [90]. 

E. Participants 

A mixed between- and within-subject design was used in 

the user study. 24 participants, 9 females and 15 males, aged 

from 22 to 58 years (average 37.2, SD=11.3) were divided in 

two groups. The users had a variety of backgrounds (5 

administrative personnel, 2 teachers, 2 students, 6 technical 

personnel, 5 unemployed, 5 miscellaneous: physical worker, 

salesman, environmentalist, salesman, pharmacist). None had 

previous experience with the developed interaction modalities. 

F. Procedure 

The researcher conducting the study was present in the 

apartment, but did not interfere during the task execution. 

Before each trial, the participants were given a short 

presentation about the robot features and abilities. They were 

told that the robot can be guided using three modalities, 

namely pushing, following and pointing (as shown in Fig. 4), 

and that they will perform three trials, one with each 

interaction modality. They were also assured that the robot 

speed is limited and that no harm will happen either to them or 

to the robot in case of collision.   

The order of the interaction modalities was permuted 

between the participants to avoid any learning bias. Before 

each trial, the participant was informed about the procedure 

that consisted of: 1) a demo of the interaction modality by the 

researcher, 2) a test trial by the participant, 3) the trials 

performed by the participant, and 4) a questionnaire about the 

performed trials. The goal of the study in terms of the speed 

and accuracy, depending on the task at hand, was described to 

     
 

Fig. 4.  Screenshots of three interaction modalities: person following (left); pointing control (center); direct physical interaction (right). 
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the participant and presented as a competition with other 

participants in order to motivate them to perform at their best 

abilities. The test trial was limited to only one room and lasted 

up to several minutes. Participants did not receive any 

feedback on their performance before starting the trials. 

However, after all the trials were finished, they were informed 

about their ranking relative to the others. 

At the beginning of each trial, the robot was placed at its 

starting position (point 0 at Fig. 3). For the person-following 

and the pointing-control modalities the robot was started by 

the operator from the GUI on the robot-mounted laptop PC. 

With the DPI interaction modality the participants had access 

to the GUI on the laptop PC and they started the robot 

themselves. During the task execution, the participants were 

instructed to stop the robot at the target areas (task 1) or 

waypoints (task 2). For the pointing and the following 

interaction modalities, the participants could stop the robot by 

raising their left hand above the level of their left elbow; this 

action was detected by the Kinect sensor and it would store the 

robot location in the apartment. Lowering the hand back to the 

position below the level of the elbow would restart the robot 

and the trial could continue. For the DPI interaction modality, 

the participants would physically stop the robot and then click 

on the GUI to store its location. An occasional loss of tracking 

would activate the recovery procedure that displaces the robot 

to the starting point and position. The participants could 

interrupt this procedure at any time by standing in front of the 

robot within the detection range of the Kinect sensor; this 

would restore tracking and allow the participants to continue 

with the trial. 

G. User Study Design 

The guidance task type was the between-subject variable: 

waypoint-guidance task (group A) and area guidance task 

(group B). The interaction modality was the within-subject 

variable: each participant completed the guidance task using 

each of the three interaction modalities once. The possible 

order effect was counter-balanced by permuting the order of 

the interaction modalities used between the participants. 

The specific technical features of the Kompai robot may 

influence the overall user experience. Only the DPI modality 

required physical contact with the robot. Two procedures were 

included in the user study to minimize the undesirable effect 

of influence of the specific system. First, the researcher 

conducting the study described the robot features to each 

participant before starting the trials. Second, the researcher 

performed a demo and allowed each participant to test the 

robot and become familiar with its navigating abilities by 

using all three interaction modalities. 

H. Data Analysis 

Since task completion times and accuracy (distance between 

the waypoints and the locations where the participant stopped 

the robot) have a skewed distribution they were log-

transformed to achieve model assumptions of normality and 

homoscedasticity. Therefore, on the original scale we do not 

assume homoscedasticity but a positive relationship between 

the mean and the variance, for both accuracy and completion 

time data. Then, a Linear Mixed Model (LMM) analysis [91] 

was conducted on all the metrics with the interaction modality 

(pointing-control, person-following and DPI) as the within-

group fixed effect and the task type (waypoint and area 

guidance task) as the between-group fixed effect. Accuracy 

was analyzed using a LMM with only one factor: the 

interaction modality. Participants were included as a random 

effect to account for individual differences among participants 

and the correlations among repeated measures within 

participants. LMM analysis was employed rather than 

ordinary ANOVA with repeated measures due to the fact that 

there were missing values and in order to utilize the 

information of those observations without the need for 

supplementary data. 

When necessary, post-hoc pairwise comparisons were 

conducted using the Least Significant Difference method. We 

considered the results as significant below an alpha of 0.05. 

IV. RESULTS 

Out of the 72 trials conducted by the 24 participants, 6 were 

not completed by 5 different participants. These failures 

occurred in 3 pointing-control trials, 1 person-following trial 

and 2 direct physical interaction trials. 

A. Completion Time 

The analysis conducted on the log of the completion times 

reveals that there is no significant effect of the task type on the 

completion time. However, the effect of the interaction 

modality on completion time was significant, F(2,61)=84.874, 

p<0.001. Participants completed the tasks faster when using 

the DPI interaction modality (37 seconds, SD=11.8), slower 

when using the pointing interaction modality (160 seconds, 

SD=68), and had intermediate completion times when using 

the person-following interaction modality (103 seconds, 

SD=52). Post-hoc pairwise comparisons confirm that the 

difference between each interaction modality is significant, 

with p<0.001 for the three comparisons. Completion times are 

 
 

Fig. 5.  Effect of the interaction modality and task type on the task 
completion time. Significant effects are marked with stars: *, ** and *** 

respectively represent the significance level of 0.05, 0.01 and 0.001. Error 

bars represent the standard error of the mean. 
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shown in Fig. 5. 

B. Accuracy 

Analysis shows, as seen in Fig. 6, that when using the DPI 

interaction modality participants were significantly more 

accurate than when using the pointing-control interaction 

modality (p=0.016). No significant difference was found with 

the person-following interaction modality. 

C. Raw NASA-TLX Questionnaire 

1) Overall Workload  

The overall workload is the average of the six dimensions 

of workload measured with the NASA-TLX questionnaire. 

Analysis reveals, as shown in Fig. 7 that the interaction 

modality had significant influence on the overall workload, 

F(2,68)=11.948, p<0.001. However, there is no significant 

effect of the task type on the overall workload.  

These overall workload results are coherent with the 

completion time results. The DPI interaction modality appears 

to be the easiest to use, the pointing interaction modality the 

hardest, and the person-following interaction modality induced 

an intermediate workload compared to the two other 

interaction modalities. Post-hoc pairwise confirms that the 

difference between each interaction modality is significant.  

2) Detailed workload dimensions 

The interaction modality had significant effect on the four 

workload dimensions, as shown in Fig. 8: Mental Demand 

(F(2,68)=18.642, p<0.001), Performance (F(2,68)=8.324, 

p<0.001), Effort (F(2,68)=7.274, p<0.001), and Frustration 

(F(2,68)=13.117, p<0.001). The effect of the interaction 

modality was the same on these four dimensions: the DPI 

interaction modality appears to be the least demanding, 

whereas the pointing interaction modality is the most 

demanding and the person-following interaction modality 

workload dimensions score in between. Pairwise comparisons 

differences were checked and they are significant on all pairs 

apart between DPI and person-following for Effort and 

Frustration. 

 

 

Two workload dimensions (Physical Demand and Temporal 

Demand), were not affected by the choice of the interaction 

modality. Out of the six workload dimensions, none were 

significantly impacted by the task type. 

V. DISCUSSION  

Three advanced interaction modalities for guiding an indoor 

mobile robot in two different guidance tasks were compared. 

The effect of the interaction modality was statistically 

significant for almost all the variables measured, and 

remarkably consistent. The DPI is systematically better than 

the two indirect interaction modalities. Participants completed 

the tasks faster, with more accuracy, less mental demand, less 

effort, less frustration and had the feeling they performed 

better. This result highlights the advantage of robot physical 

control in terms of performance and workload compared to 

contactless interaction modalities. 

In this study, between the two contactless interaction 

modalities tested, the person-following interaction modality 

appears to be systematically better: participants completed the 

task faster and more accurately, with less mental demand, less 

effort, less frustration and had the feeling they performed 

better. The variance in the accuracy results is higher for the 

person-following and the pointing-control interaction 

modalities than in the case of the DPI interaction modality. 

This may be explained by the fact that, unlike pushing, person 

following and pointing do not give direct control over the 

robot in real time; the user commands are introduced with a 

delay which adds some noise in the movements of the robot. It 

also confirms the log-normal assumption that a higher mean 

value produces a higher variance. Moreover, the person-

following interaction modality uses the head-joint location as 

input, and while walking the head performs lateral movement 

perpendicular to the walking direction, which is an additional 

source of noise. The advantage of the person-following over 

 
Fig. 6.  Effect of the interaction modality and task type on the waypoint 

accuracy. Significant effects are marked with stars: *, ** and *** 

respectively represent the significance level of 0.05, 0.01 and 0.001. Error 

bars represent the standard error of the mean. 

 
 

Fig. 7.  Effect of the interaction modality and task type on the overall 
workload. Significant effects are marked with stars: *, ** and *** 

respectively represent the significance level of 0.05, 0.01 and 0.001. Error 

bars represent the standard error of the mean. 
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pointing-control is in the fact that once started, the participants 

do not need to actively guide the robot, it is a “start and 

forget” technique, they just have to walk, knowing that the 

robot is following their steps. Whereas, with the pointing-

control, the participants had to constantly take care of the 

robot guidance requiring more effort. Additionally, pointing-

control sometimes required the user to walk while maintaining 

a pointing direction with their arm. This may have disturbed 

the gait, which would explain the longer completion time of 

this modality.  

Our results of workload are consistent with our objective 

measures, suggesting that the most efficient ones are also the 

ones the users felt more comfortable with to some extent. 

Direct physical interaction was the best interaction modality in 

the performed study. If contactless guidance is needed, for 

instance when the hands of the operator are busy, the person-

following interaction modality is the best. Yet one could argue 

that this result could vary depending on the robustness of the 

person-following algorithm and the environmental situation. 

For instance, in a complex and dynamic environment, it is 

more likely that the robot will lose track of the followed 

operator and therefore active pointing-control would be 

preferred. Still, person-following algorithm robustness is a 

technological issue, and when properly working like in this 

study, it presents definitive advantages over other interaction 

modalities. We believe that in terms of workload and in the 

context of service robots, it is better than conventional robot 

interaction modalities. 

For all control interaction modalities, surprisingly, no 

significant effect of the task type was found on any of the 

metrics measured, for both objective and subjective metrics. 

One can argue that the two guidance tasks tested, waypoint 

guidance and area guidance, were similar, but the waypoint 

guidance required more accurate control of the robot. When 

completing the guidance task with the added constraint of 

passing through a waypoint, it was expected that the 

participants‟ workload would increase. But this was not the 

case, and for none of the six measured dimensions significant 

difference was noted. This result shows that accurate control 

of the robot is not more costly for the three interaction 

modalities tested here.  

The study compared the performance and the workload of 

the three interaction modalities on a group of untrained users 

for two different guidance tasks. Further research may show 

that the performance and workload of these interaction 

modalities could vary for example, when the users after 

training become more familiar with the robot. Hence, the 

margin of progression of theses interaction modalities in terms 

of performance and workload is certainly a subject to 

investigate in the future. Moreover, the performance and the 

workload associated with each interaction modality may not 

characterize their usability in a strict sense; however, they can 

be considered as a good first approximation and base of 

comparison. The choice of the interaction modality to use may 

also be affected by the target user groups that can have 

different requirements and abilities, e.g. disabled people, older 

adults, young children, and so forth. Future applications 

should take into account both user and task requirements. 

Additionally, the different characteristics of the robot platform 

such as its power, size, form factor and sensors can also have 

an effect and these conclusions need to be tested on different 

hardware to be generalized. The specific combination of 

 
Fig. 8.  Effect of the interaction modality and task type on the 6 dimensions of workload. Significant effects are marked with stars: *, ** and *** respectively 

represent the significance level of 0.05, 0.01 and 0.001. Error bars represent the standard error of the mean. 
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hardware and software and the unique testing environment 

used in the study make the comparison with other research 

results difficult; nevertheless, the results that we obtained 

could be used by other researchers who are interested in 

setting up their experiments in a similar fashion. Despite the 

noted limitations, this research sheds light on the different 

interaction modalities for robot guidance along paths or 

between areas making it easier to cope with the challenges of 

developing and operating such modalities. 
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