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Abstract

In this paper, we address the problem of simultaneously
recovering the 3D shape and pose of a deformable and po-
tentially elastic object from 2D motion. This is a highly am-
biguous problem typically tackled by using low-rank shape
and trajectory constraints. We show that formulating the
problem in terms of a low-rank force space that induces the
deformation, allows for a better physical interpretation of
the resulting priors and a more accurate representation of
the actual object’s behavior. However, this comes at the
price of, besides force and pose, having to estimate the elas-
tic model of the object. For this, we use an Expectation
Maximization strategy, where each of these parameters are
successively learned within partial M-steps, while robustly
dealing with missing observations. We thoroughly validate
the approach on both mocap and real sequences, showing
more accurate 3D reconstructions than state-of-the-art, and
additionally providing an estimate of the full elastic model
with no a priori information.

1. Introduction
The goal of the Non-Rigid Structure from motion

(NRSfM) is to simultaneously recover the camera motion
and 3D shape of a deformable object from monocular
images. It is known to be a severely under-constrained
problem, typically solved by introducing prior informa-
tion through shape deformation models or camera trajectory
constraints. Along these lines, early approaches extended
the rigid factorization algorithm [37] to the non-rigid do-
main [7, 12, 39], and approximated the shape by a linear
combination of basis estimated on-the-fly. Alternatively,
other approaches have represented the evolution over time
of each point on the object through a set of pre-defined tra-
jectory basis [6, 29, 41]. Both these constraints are com-
monly referred to as statistical priors, as they do not have a
direct physical interpretation.

In this paper, we introduce a new constraint based on a
low-rank force prior. This prior has a direct physical in-
terpretation, as it models the interaction between the object

Figure 1. Low-rank force space. Non-rigid shape can be repre-
sented by means of the object elastic model and the force field
acting on it. In turn, the full force field can be approximated by a
low-rank basis. In this work, we simultaneously learn the elastic
model (compliance matrix) and estimate the low-rank force space,
while recovering shape and camera motion. In the figure we repre-
sent the full force-space and its corresponding shapes in red. The
low-rank forces and shapes are shown in blue.

and the underlying forces that deform it. Interestingly, we
also show its connection with the aforementioned shape and
trajectory models, turning these, into physical priors too.

The essence of our approach is described in Fig. 1. Let
us consider N points on the object, which is deformed un-
der the action of external forces. Following continuum me-
chanics, the relation between the acting forces and the de-
formation field can be characterized by an elastic model.
Regarding the force space, we can fully define it by 3N in-
dependent forces, whose combination allows mapping the
shape from a rest configuration to a wide variety of arbitrary
arrangements. Yet, to represent realistic deformations, only
a few of these forces, conforming a low-rank force space,
are necessary. Based on this idea, we propose a new for-
mulation of the NRSfM problem in which, given 2D point
tracks, we estimate camera trajectory and force parameters
(and consequently shape). Even though reasoning on the
force space introduces the compliance matrix as new un-
known, we are able to simultaneously solve for all parame-
ters using Expectation Maximization (EM), with partialM -
steps. By thorough testing on mocap and real sequences we
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show that our formulation yields more accurate reconstruc-
tions than state-of-the-art shape and trajectory based meth-
ods, while providing more physical insights in terms of the
elastic model of the object.

2. Related Work

The inherent ambiguity of the NRSfM problem is com-
monly tackled by constraining the shape to lie on a low-rank
space spanned by a set of deformation modes [7, 16, 17, 39].
This is further constrained by enforcing spatial [39] or
temporal [7, 17] shape smoothness, or by imposing the
3D shapes to be closely aligned [22]. A number of ap-
proaches, instead constraining the shape, introduce restric-
tions on the trajectory of every object point using predefined
bases [6, 29, 41]. There have also been recent attempts to
combine low-rank shape and trajectory spaces [19, 20, 35].
All these techniques are referred to as statistically-based
methods, since the low-rank representations used to con-
dition the problem are not physically grounded. Despite
their popularity, one inherent limitation of these methods is
that they are very sensitive to the number of shape or trajec-
tory modes, which needs to be carefully chosen to correctly
model the deformation.

A better representation of the underlying dynamics in-
volved in non-rigid deformations can be obtained through
physically-grounded models [26, 34]. Force-based kine-
matics [4, 13, 33], linear elastic models [24], and numer-
ical techniques based on Finite Element Methods (FEM)
for tracking [43] or 3D reconstruction [2], are just a few
examples of the renewed interest in physical models. Ad-
ditionally, there exist approaches in which the parameters
ruling these models are learned from input data. For in-
stance, displacement and force measurements allow recov-
ering the Young’s modulus [44] together with the Poisson’s
ratio [9]. More recently, material properties of fabrics mov-
ing under wind forces [11] or under small motions [15] are
estimated from only video sequences. And vice-versa, ap-
plied forces can be recovered from 2D displacements and an
estimate, up to scale, of the elastic parameters [2]. However,
in all these approaches only small pieces of the full physical
model (i.e., the complete stiffness matrix) are recovered.

Contribution: In this paper we propose a new low-rank
force model which we use to simultaneously recover cam-
era motion, 3D shape and the full elastic model of the object.
Note that the latter is specially challenging, as it involves es-
timating a large number of parameters, and not just the ma-
terial properties such as the Young’s modulus or Poisson’s
ratio. We do all this from the sole input of 2D input tracks,
which may even be discontinuous due to missing data. In
addition, we link our physical model to previous shape and
trajectory statistical approaches, giving them a physical in-
terpretation, too.

3. Low-rank Force Model
A standard approach to reduce the ambiguity of the

NRSfM problem involves representing the object in low di-
mensional spaces. Two spaces have been considered so far,
the shape and the trajectory ones. Before describing the new
low-rank force space we propose, we review these previous
formulations.

3.1. Low-rank Shape and Trajectory Space

The most natural way to represent time-varying shapes
is by means of a low-rank shape basis. These priors
are computed using either Principal Component Analysis
(PCA) over training data [10, 27], applying modal analysis
over a rest configuration [1, 30], or are estimated on-the-
fly [12, 17, 28, 39]. In particular, let us consider N 3D
points on an object, being observed along T frames. If we
denote by xt

i = [xti, y
t
i , z

t
i ]
> the 3D coordinates of the i-th

point at time t, and by st = [(xt
1)
>, . . . , (xt

N )>]> the 3N -
dimensional representation of the shape at time t, we can
compactly write the time-varying shape as a 3N×T matrix
S = [s1, . . . , sT ]. Every instant shape st can be approxi-
mated by a linear combination or Q basis shapes s̃q:

st =

Q∑
q=1

ψt
q s̃q = S̃ψt (1)

where ψt = [ψt
1, . . . , ψ

t
Q]
> are the coefficients for the

shape at time t, and S̃ = [s̃1, . . . , s̃Q] is a 3N×Q matrix
containing all basis shapes. By aggregating all coefficients
into a Q×T matrix Ψ = [ψ1, . . . ,ψT ], we can finally write
the factorization of the time-varying shape S as:

S = S̃Ψ. (2)

Alternatively, we could include a shape at rest s0 in the sub-
set of basis shapes [1, 39]. In that case, we would take
Ŝ = [s0, s̃1, . . . , s̃Q], and the basis vectors s̃i, i = 1, . . . , Q
would be interpreted as 3D displacements over s0.

When representing the time-varying structure in trajec-
tory space [6], predefined basis of a Discrete Cosine Trans-
form (DCT) are used to span the trajectory of each object
point (i.e., the rows of S). We can then factorize S as:

S = ΦT̃, (3)

where T̃ is a Q×T matrix made of Q predefined basis tra-
jectories, and Φ is a 3N×Qmatrix of trajectory coefficients.

3.2. Modeling Shapes in a Low-rank Force Space

We next derive the formulation of our physics-based
low-rank force model to represent the shape. We draw inspi-
ration on the Hooke’s law, which states that the force needed
to extend or compress a spring by a certain distance is pro-
portional to that distance by a factor k, known as stiffness.



This simple model can be generalized to 3D objects with
mass and volume, resulting in complex systems of partial
differential equations [8] that generally do not have an ana-
lytical solution and require from numerical approximations,
such as FEM. For instance, applying FEM over a shape at
rest, made ofN points and represented as a 3N-dimensional
vector s0, yields the following linear system:

Ku = f , (4)

where K is the 3N×3N stiffness matrix that maps the 3N
displacement vector u into a 3N -dimensional force field
f . The matrix K is usually built considering a number of
physical characteristics, such as material elastic properties,
the type of deformation (e.g., beam bending, stress plane)
and the connectivity between the nodal points, which de-
pends on the type of element discretization (e.g., triangular,
wedge, tetrahedral). Additionally, unless providing bound-
ary conditions, K is ill-conditioned, i.e., rank(K) < 3N .

Note that Eq. (4) allows computing the forces f that need
to be applied onto every point of s0 to obtain a pre-defined
displacement u. However, we will regard this relation in
the opposite direction, that is, we seek to compute the 3D
displacement when the 3D acting forces are known. In this
case, we will apply the relation u = Cf , where C is a
3N × 3N compliance matrix. When boundary conditions
are known this matrix is computed as C = K−1 [5, 40], and
C is guaranteed to be a strictly positive-definite symmetric
matrix. When boundary conditions are not available, we
make use of the pseudoinverse, i.e., C = K†, but we can
only assume C to be symmetric [2].

Once C is known, we can estimate a 3D displacement
u for any 3D applied force vector f , and therefore a new
configuration of the object shape as:

s = s0 + u = s0 + Cf = C(Ks0 + f) = C(f0 + f), (5)

where f0 = Ks0 can be interpreted as the forces applied to
keep the shape at rest. We can now expand this expression
to account for all T frames of a time-varying sequence:

S = C[f0 + f1, . . . , f0 + fT ] = CF, (6)

where F is a 3N×T matrix made of the force fields along
the sequence. At this point we can introduce our low-rank
force model. As it has been previously done for the shapes
or point trajectories, realistic distributions of acting forces
can also be approximated by a reduced number of modes.
To follow the parallelism with the previous section, we con-
sider a basis made of Q force vectors, and represent our
low-rank force field as a 3N×Qmatrix F̃. The time-varying
shape can then be written as:

S = CF̃Γ, (7)

where Γ = [γ1, . . . ,γT ] is a Q×T matrix of time-varying
force coefficients.

3.3. Shape-Trajectory-Force Duality

A direct comparison of the low-rank shape, trajectory
and force models defined in Equations (2), (3) and (7), re-
spectively, gives the equivalence between the three repre-
sentations. And most importantly, it gives a relation be-
tween two models, the shape and trajectory ones, that have
thus far been considered as statistical, and our new low-rank
force model, directly derived from physical relations.

In particular, considering the shape-force duality, we ob-
serve that S̃ = CF̃, that is, we can write the linear sub-
space of shapes in terms of force and elasticity parameters,
and therefore, the statistical shape model does inherently
encode physically-grounded properties. Similarly, we can
establish a trajectory-force duality, and write that Φ = CF̃
and T̃ = Γ. In this case, the low-rank force model is equiv-
alent to the trajectory coefficients, and the low-rank trajec-
tory bases, correspond to the force coefficients.

It is also worth to point that while the proposed approach
has equal compaction power than shape and trajectory mod-
els, factorizing the low-rank space into a force component
F̃, and a component C which encodes the elastic properties
of the object, makes it possible to model a much wider range
of object behaviors and configurations. This factorization,
though, introduces an additional complexity in the learning
process, as we need to discover all these terms from the sole
input of 2D tracks. In the next section, we describe how we
resolve this learning process, but when this is done, besides
estimating shape, we could also address the inverse prob-
lem of estimating the forces necessary to obtain a specific
shape configuration. This might be extremely useful in cer-
tain robotic applications dealing with the manipulation of
deformable objects, or in laparoscopy surgery.

4. Learning Elastic Model, Shape and Pose

In this section we describe how we introduce our low-
rank force space into the formulation of the NRSfM problem,
and how we then simultaneously solve for the elastic model
of the object, plus the shape and camera pose.

4.1. Problem Formulation

Let us consider a deformable object with N points at a
time instant t, represented by a 3N vector st. Assuming an
orthographic camera model, we can write the projection of
the 3D points onto the image plane as a 2N vector wt:

wt = Gtst + ht + nt, (8)

where Gt = IN ⊗ Rt has 2N× 3N size, IN is the N -
dimensional identity matrix, Rt are the first two rows of
a full rotation matrix, and ⊗ denotes the Kronecker prod-
uct. Similarly, ht = 1N ⊗ tt is a 2N vector resulting from
concatenating N bidimensional translation vectors tt, and



Factor Full Shape Trajectory Force
Camera 5T 5T 5T 5T
Basis - 3NQ - 3NQ
Coefficients - QT 3NQ QT
Model 3NT - - 3N(3N + 1)/2

Total number 5T 5T + 3NQ 5T 5T + 3NQ+QT
of unknowns +3NT +QT +3NQ +3N(3N + 1)/2

Table 1. Total number of unknowns that need to be estimated when
considering the Full model, or the low-rank models in Shape, Tra-
jectory or Force space, respectively. The results are represented in
terms of the number of object points N , the number of frames T
and the dimensionality Q of the low-rank space.

1N is a N -vector of ones. Finally, nt is a 2N dimensional
vector of Gaussian noise.

We can therefore define our problem as that of estimat-
ing, for t = 1, . . . , T , the shape st and camera pose pa-
rameters {Rt, tt}, given the observation of point tracks wt

corrupted by noise nt. The total number of unobserved
variables includes 3NT parameters for the shape and 5T
parameters for the pose1. Estimating all these unknowns
from the only 2NT noisy observations of the point tracks
is clearly an ill-posed problem. We make the problem
tractable by introducing our low-rank force model and en-
coding the time-varying shape as:

st = s0 + ut = s0 + CF̃γt, (9)

where C is the compliance matrix, F̃ are the low-rank force
vectors, and γt are the corresponding force coefficients at
frame t. The projection Eq. (8) becomes:

wt = Gt(s0 + CF̃γt) + ht + nt. (10)

Note that using the low-rank force model introduces a
new challenge to the problem, which is that besides hav-
ing to estimate the variables involved in a standard NRSfM
problem (i.e., pose, shape basis and shape coefficients, or
equivalently in our framework, pose, force basis and force
coefficients), we now need to learn the full elastic model C
of the object.

Since C remains constant along the sequence, it intro-
duces a fixed number of unknowns independently of the
number of frames T . Specifically, C is a 3N× 3N sym-
metric matrix, for which we only need to estimate the upper
triangular part, i.e., 3N(3N + 1)/2 elements. Addition-
ally, we still need to estimate the 5T pose parameters, 3NQ
components for the low-rank force space (assuming we con-
sider a force basis with Q components), and QT unknowns
for the force coefficients. In Table 1 we summarize the to-
tal number of unknowns as a function of the parameters N
(number of points), T (number of frames) and Q (dimen-
sionality of the low-rank space) and for the full-space prob-
lem and the three low-rank versions (shape, trajectory and

1An orthographic projection has five degrees of freedom, namely the
three parameters describing the rotation matrix, plus two of the translation.

N T Q Obs. Full Shape Traj. Force
55 260 12 28,600 44,200 6,400 3,280 20,095
40 316 11 25,280 39,500 6,376 2,900 13,636
29 450 7 26,100 41,400 6,009 2,859 9,837
41 1,102 10 90,364 141,056 17,760 6,740 25,386

Table 2. Total number of unknowns that need to be estimated when
considering the Full model, or the low-rank models in Shape, Tra-
jectory or Force space, respectively, for the combination of param-
eters N , Q and T we consider in the experimental section. The
column “Obs.” refers to the number of observed variables, 2NT ,
corresponding to the 2D tracks of all N points along the T frames.

force). In Table 2 we give the number of unknowns for the
specific combinations of N , Q and T we will use in the
experimental section. Observe that for long sequences (T
large), the number of unknowns of the Shape and Force sub-
spaces become similar, while our Force-based model yields
much richer information about the elastic object properties.

4.2. Probabilistic Low-Rank Force Model

In order to simultaneously learn shape, pose and elas-
tic models from 2D point tracks as described in Eq. (10),
we follow a Probabilistic PCA formulation [31, 36, 38].
Broadly, this consists of two main steps. We start by writing
the observations wt as a probabilistic distribution and then
we estimate the parameters that maximize its likelihood us-
ing EM. We next describe the first of these steps.

To estimate the distribution over the projected points wt

we first assume the weight coefficients γt to be modeled by
a zero-mean Gaussian distribution γt ∼ N (0; IQ). These
weights become latent variables that can be marginalized
out and are never explicitly computed, and using Eq. (9), we
can propagate their distribution to the time-varying shapes,
yielding st ∼ N

(
s0;CF̃F̃>C>

)
.

By also assuming the noise over the shape observations
nt to follow a Gaussian distribution with variance σ2, i.e.,
nt ∼ N

(
0;σ2I2N

)
, we can finally estimate that the pro-

jected points wt are also Gaussian:

wt ∼ N
(
Gts0 + ht;GtCF̃(GtCF̃)> + σ2I2N

)
(11)

We next explain how we perform Maximum Likelihood Es-
timation (MLE) on this latent variable problem using EM.

4.3. Expectation Maximization

For the purpose of estimating the MLE of the distribution
in Eq. (11), we use an EM algorithm in a similar way as
done in [3, 38]. We denote by Θt ≡ {Rt, tt} the set of
model parameters to estimate per frame, Υ ≡ {C, F̃, σ2}
the set of parameters to estimate along the sequence, γt the
latent variables and wt the observed data. Given the 2D
trajectories of all points w = {w1, . . . ,wT }, we seek to
estimate all set of parameters Θ = {Θ1, . . . ,ΘT ,Υ}. The



EM algorithm iteratively estimates the maximum likelihood
alternating between E-step and M -step.

4.3.1 E-Step
We initially estimate the posterior distribution over the la-
tent variables given the current observations and model pa-
rameters. Assuming iid samples and applying the Bayes’
rule and the Woodbury’s matrix identity, it can be shown
this distribution to be:

p(γt|wt,Θt,Υ) ∼ N (µt
γ ;Σ

t
γ), (12)

where:

µt
γ =Λ(wt −Gts0 − ht) ; Σt

γ = IQ −ΛGtCF̃

Λ =F̃>C
(
Gt
)>

(σ2I2N + GtCF̃(GtCF̃)>)−1.

4.3.2 M-Step
We then replace the latent variables by their expected values
and update the model parameters by optimizing the negative
log-likelihood functionA(Θ,w) with respect to the param-
eters Θt, for t = 1, . . . , T , and Υ where:

A(Θ,w) = E

[
−

T∑
t=1

log p(wt|Θt,Υ)

]
= NT log(2πσ2)

+
1

2σ2

T∑
t=1

E
[
‖wt −Gt(s0 −CF̃γt)− ht‖22

]
(13)

Note that this log-likelihood function is quadratic in all
parameters we seek to estimate, and in contrast to [17,
32, 33], it does not need regularization weights. To up-
date every parameter, we compute the corresponding par-
tial derivative assuming the other parameters are fixed, set
it to zero and solve it. The update rules we obtain are the
following.

Updating Elastic Model (C): To perform computations
with the matrix C we need to rewrite it in vectorized form.
Further, since C is symmetric, we only need to vectorize the
upper triangular part of it. For this, we define the function
vech(·), a generalization of the full-matrix vectorization op-
erator vec(·). The two operators can be related by means of
a so-called duplication matrix D, of size r2× r(r+1)

2 , where
r is the size of the original matrix we are vectorizing [23].
For C, we have that r = 3N and we can write:

vec(C) = Dvech(C) . (14)

The inverse mapping is computed by means of the pseu-
doinverse, that is, vech(C) = D†vec(C). If we now set
∂A/∂vech(C) = 0, it can be shown that:

vech(C)←

(
T∑

t=1

(
(F̃µt

γ)
>⊗ (D>(F̃µt

γ ⊗ Ir)(G
t)>Gt)

)
D

)−1

×
T∑

t=1

D>(F̃µt
γ ⊗ Ir)(G

t)>(wt −Gts0 − ht).

Updating Low-Rank Force Space (F̃): For computing F̃
we need to define the expectation φt

γγ = E[γt(γt)>] =

Σt
γ + µt

γ(µ
t
γ)
>. By using again the vectorized form, we

can update the force space as:

vec(F̃)←

(
T∑

t=1

(φt
γγ)
> ⊗ (GtC)>GtC

)−1

× vec

(
T∑

t=1

(GtC)>(wt −Gts0 − ht)(µt
γ)
>

)
.

Updating the Camera Pose (Rt, tt): The camera rota-
tion Rt needs to be updated enforcing orthonormality con-
straints. In order to do so we follow the iterative strategy
proposed in [3], where ∂A(Rt)/∂Rt = 0 is optimized en-
forcing Rt to lie on the smooth manifold defined by the
orthogonal group SO(3). Regarding the translation vector
tt it is easy to show that it can be updated as:

tt ← 1

N

N∑
i=1

(wt
i −Rt(s0,i + (CF̃µt

γ)i)), (15)

where wt = [(wt
1)
>, . . . , (wt

N )>]>, wi are 2D coordi-
nates, s0 = [s>0,1, . . . , s

>
0,N ]>, s0,i are 3D coordinates, and

(CF̃µt
γ)i is the i-th 3D point of the 3N vector CF̃µt

γ .

Updating Noise Variance (σ2): Setting ∂A(σ2)/∂σ2 = 0
we can finally update the noise variance as:

σ2 ← 1

2NT

T∑
t=1

(
tr
(
(GtCF̃)>GtCF̃φt

γγ

)
(16)

+‖wt−Gts0−ht‖2−2
(
wt−Gts0−ht

)>
GtCF̃µt

γ

)
.

4.4. A Comment on Scale Factor

When solving for C and F̃ we have only constrained C
to be symmetric. Therefore, we could consider any sym-
metric and invertible matrix A such that CF̃ = CAA−1F̃.
A new compliance matrix CA would still be symmetric and
would yield the same solution for the shape reconstruction
in Eq. (9) and reprojection in Eq. (10). That is, the values of
C and F̃ are retrieved up to a scale factor matrix. A similar
ambiguity is produced between F̃ and γt.

Nevertheless, the up to scale compliance matrix C, be-
sides yielding a correct solution to the NRSfM problem, it
is also sufficient to model the full physical space. We can
therefore use C to generate, up to scale, any deformation
u applying a given force vector f . And vice-versa, we can
obtain an scaled force field to produce a specific displace-
ment. This kind of physical relations, are of course, not
possible with previous low-rank shape and trajectory ap-
proaches. What is not possible with the compliance matrix
we retrieve, though, is to directly estimate the ground truth



Space: Shape Trajectory Shape-Trajectory Force
PPPPPPPPSeq.

Met.
EM-PPCA [39] EM-LDS [39] MP [28] SPM [14] EM-PND [22] PTA [6] CSF2 [20] KSTA [19] EM-PFS

Jacky [39] 1.80(5) 2.79(2) 2.74(5) 1.82(7) 1.41 2.69(3) 1.93(5) 2.12(4) 1.80(7)
Face [28] 7.30(9) 6.67(2) 3.77(7) 2.67(9) 25.79 5.79(2) 6.34(5) 6.14(8) 2.85(5)
Flag 4.22(12) 6.34(3) 10.72(3) 7.84(5) 4.11 8.12(6) 7.96(2) 7.74(2) 5.29(12)
Walking [39] 11.11(10) 27.29(2) 17.51(3) 8.02(6) 3.90 23.60(2) 6.39(5) 6.36(5) 8.54(11)
Average error: 6.11 10.77 8.69 5.09 8.80 10.05 5.66 5.59 4.62

Table 3. Quantitative comparison on Mocap videos. We report e3D[%] for shape basis methods EM-PPCA [39], EM-LDS [39], MP [28]
and SPM [14]; for EM-PND [22]; for the trajectory basis method PTA [6]; for shape-trajectory basis methods CSF2 [20] and KSTA [19];
and for our force basis approach denoted as EM-PFS. We have chosen the basis rank (in brackets) that gave the lowest e3D error.

values of the inherent physical parameters (e.g., Poisson’s
ratio or Young’s modulus) that constitute the true stiffness
matrix. For this to be possible we should perform a calibra-
tion and estimate the actual scale factor matrix, in the same
line as [21] did for very specific force sensors.

4.5. Dealing with Missing Data

Unlike other methods [12, 14], our approach can easily
incorporate an strategy to handle incomplete measurements
due to occlusions or outliers. To achieve this, during theM -
step of EM algorithm, we just need to optimize the expected
log-likelihoood of the 2D location ŵt

i of the missing points.
Since we are using a global model, we can infer their value,
despite not being available. In particular we set them to:

ŵt
i ← Rt(s0,i + (CF̃µt

γ)i) + tt. (17)

4.6. Initialization

The optimization of Eq. (13) is a highly non-linear prob-
lem involving a large number of parameters. For this,
it is important not to initialize them completely at ran-
dom. In particular, we initialize the rigid motion parame-
ters {Rt, tt} and s0 considering the scene does not deform,
and we apply rigid factorization [25] as standard practice
in NRSfM techniques. Regarding the compliance matrix C,
we do not use any physical prior, and initially set it to the
identity matrix. The force basis F̃ is initialized through a
coarse-to-fine approach, in which a noise-free version of
Eq. (10), where all parameters except F̃ are given, is first
solved for one force-mode, then for two modes, and so on
until estimating the Q initial modes. Once all these param-
eters are set, the starting value of σ2 is directly computed
from Eq. (16). Finally, when dealing with missing data we
assume that both the camera motion and 3D shape deforma-
tion are smooth over time, and obtain an initial estimation
of the missing tracks ŵt

i by imposing smooth trajectories,
as done in [20].

5. Experimental Evaluation
We now present our experimental results for different

types of sequences including articulated and non-rigid mo-
tion (see videos in the supplemental material). We provide

both qualitative and quantitative results, where we compare
our approach against state-of-the-art methods, using several
mocap datasets with 3D ground truth. For these datasets
we report the standard 3D reconstruction error, computed
as e3D = 1

T

∑T
t=1

‖st−stGT ‖F
‖stGT ‖F

, where ‖ · ‖F denotes the
Frobenius norm, st is the estimated 3D reconstruction and
stGT is the corresponding 3D ground truth. e3D is computed
after aligning the estimated 3D shape with the 3D ground
truth using Procrustes analysis over all T frames.

5.1. Motion Capture Data

The standard way to compare NRSfM approaches is
through a number of datasets with ground truth, acquired
using mocap systems. We consider the following ones: the
face deformation sequences Jacky and Face, from [39] and
[28], respectively; Walking for articulated motion from [39],
and a sparse version of Flag waving in the wind [42].

We compare our approach, denoted EM-PFS (for
Expectation-Maximization on Probabilistic Force Space)
against eight other methods, which use low-rank models on
both shape and trajectory spaces. Among the shape space
methods we consider: EM-PPCA [39], EM-LDS [39], the
Metric Projections (MP) [28], the block matrix approach
for SPM [14] and EM-PND [22]. Regarding the trajectory-
based ones, we evaluate the DCT-based 3D point trajectory
(PTA) [6]. As shape-trajectory methods we consider Col-
umn Space Fitting (CSF2) [20] and the Kernel Shape Tra-
jectory Approach (KSTA) [19]. The parameters of these
methods were set in accordance with their original pa-
pers. In our approach, the only parameter that needs to
be manually set is the number Q of modes of the low-rank
force space. There is no other parameter nor regularization
weight that needs to be tuned.

The mean 3D reconstruction errors are summarized in
Table 3. Observe that our approach consistently performs
either the best or among the best in all sequences, and in
average is the one with smaller error. In particular note that
we slightly outperform SPM [14] and KSTA [19], which are
acknowledged to be at the top of the state-of-the-art in low-
rank based models. And most importantly, we do not only
solve for the NRSfM problem, but we additionally provide
an estimation of the full elastic model of the object.



Figure 2. Actress sequence. Top: 2D tracking data (green circles)
and reprojection (red dots) of the reconstructed 3D shape. Mid-
dle: Camera and side-views of the reconstructed shapes. Bottom:
Same views using EM-PND [22].

Figure 3. Beating heart sequence. Top: See caption of Fig. 2.
Middle: Reconstructed 3D shape, color code such that reddish
areas indicate larger displacements. Bottom: Reconstructed 3D
shape, using the original texture. Best viewed in color.

5.2. Real Videos

We have also evaluated our approach on several real se-
quences, which despite not having ground truth, allow a
qualitative evaluation in different real-world scenarios and
under the presence of structured occlusions, where other ap-
proaches are prone to fail [14].

First, we process the actress sequence, with 102 frames
showing a woman talking and moving her head. The point
tracks were provided by [7]. Figure 2 shows the 3D recon-
struction, appropriately rotated according to the estimated
pose. We also show the results of the EM-PND [22], known
to be very accurate except for situations like this sequence,
in which the camera rotation is small.

For the beating heart sequence, of 79 frames and ac-
quired during bypass surgery2, we use the outlier-free point
tracks of [18], computed using optical flow. Figure 3 shows
the 3D reconstruction we obtain, where one of the main
challenges is that the movement of the camera is very small.
This especially penalizes trajectory-based methods. The
color-coded reconstructions, representing the amount of de-
formation, show that we can recover the rhythmic deforma-
tions of the heart, while learning its elastic model.

2Sequence available from: http://hamlyn.doc.ic.ac.uk/vision

Figure 4. Back sequence. Top: See caption of Fig. 2. Bottom:
Side view of the reconstructed shape.

Figure 5. ASL sequence. Top: See caption of Fig. 2. Bottom:
Camera frame and side-views of the reconstructed 3D shape. Blue
circles correspond to missing points. Best viewed in color.

Figure 4 shows the reconstruction of the back of a per-
son. Point tracks are obtained from [32]. Again, one of the
difficulties of this sequence is to deal with small camera mo-
tions, which our approach handles without much difficulty.

Finally, we have also processed an ASL sequence of an
American Sign Language (ASL), consisting of a person
moving the head while talking and hand gesturing. The goal
is to reconstruct the face which, in some frames is partially
occluded by the hand or by the own face rotation. The se-
quence, from [20], has 114 frames and 11.5% of missing
data. Fig. 5 shows two views per frame of the estimated 3D
shape. Note that even when occlusions appear, our model
provides a correct estimation for the occluded shape. While
this reconstruction is very similar to that obtained by [20],
SPM [14], our closer competitor in the mocap data experi-
ments of Table 3, is not able to handle missing data.

5.3. Elastic Model Estimation

The distinguishing contribution of our approach is that
besides estimating the shape and camera trajectory, we pro-
vide an estimation of the elastic model of the object C, and
a low-rank force space F̃ (with the corresponding force co-
efficients Γ). Additionally, as discussed in Sect. 3.3, once
we have estimated these parameters, we can directly com-
pute the equivalence between the force, shape and trajec-
tory spaces. Concretely, the low-rank shape space has been
shown to be S̃ = CF̃, and the low-rank trajectory space
T̃ = Γ. In Fig. 6 we plot these equivalences for the ex-
ample of the actress sequence introduced previously. On

http://hamlyn.doc.ic.ac.uk/vision
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Figure 6. Spaces comparison. Equivalence between the force,
shape and trajectory spaces using the actress sequence, with rank
Q = 5. Top: Modes in the force space. Middle: Modes in the
shape space. Bottom: Modes in the trajectory space.

top we plot the first five force modes, as vectors overlay-
ing the shape at rest. Observe that the larger magnitudes of
the modes concentrate around the mouth, which is the part
of the face undergoing larger deformations. On the cen-
ter, we plot the equivalent shape basis we retrieve. Again,
although it is difficult to appreciate from non-overlapping
images, note the subtle differences between the configura-
tion of each mode, and again, particularly around the area
of the mouth. The bottom-most plot, depicts the first five
trajectory modes, with size equal to the sequence length.
The theoretical modes used in the trajectory-based methods
correspond to the sinusoidal functions of a DCT. Note that
the first mode we estimate from our force-space, quite re-
sembles such a function.

In Fig. 7 we demonstrate that the compliance matrix we
estimate allows recovering the full physical space. For in-
stance the four face configurations we plot on the left are
produced by applying specific forces f and computing the
resulting deformations u via the relation u = Cf . Each
face corresponds to the product of the compliance matrix,
shown in the center of the figure, by one of the force vec-
tors f1, f2, f3, f4 depicted on the right, plus the shape at rest.
Observe that with this force model we can generate shape
configurations (e.g., winking one or two eyes, mouth wide
open) that would be hard or impossible to obtain using low-
rank shape and trajectory spaces unless similar shapes are
explicitly observed (in shape-based methods) or they use
a very large number of modes (in trajectory-based meth-
ods). In contrast, using the physical space we propose, we
can produce these shapes even when they have not been ob-
served and directly from the elastic model we have learned.
Additionally, note how the forces f1, f2, f3, f4 necessary to
produce these shape configurations are smooth (their color
coded components do not abruptly change). This would
not happen if we had used a random symmetric compli-
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Figure 7. Full physical space estimation for the actress se-
quence. Once the compliance matrix is learned, we can define
any shape in the full physical space. Left: Four shapes obtained
from the estimated C. Center: Recovered C. Right: f1, f2, f3, f4,
are the forces necessary to obtain the shape configurations on the
left from C, the estimated compliance matrix. f r
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4, are the

forces necessary to obtain the same shape configurations, but from
a random symmetric compliance matrix. Best viewed in color.

ance matrix. This matrix would also solve allow minimiz-
ing Eq. (13), but the resulting forces f r

1, f
r
2, f

r
3, f

r
4 would not

be quite realistic. We plot these forces, on the rightmost
of Fig. 7. Note how their values evidence sharp changes,
indicating that a random compliance matrix would not ap-
propriately model the underlying physics of the object.

6. Conclusions
In this paper we have formulated the NRSfM problem us-

ing a new low-rank force model. From only 2D point tracks,
besides recovering shape and camera motion, this approach
also provides an estimation of an elastic model of the object,
allowing for rich physical interpretations of the dynamics
in terms of force and displacement. Additionally, we have
shown the connections of our force-model to the shape and
trajectory-based spaces used so far. The results demonstrate
that the proposed technique is applicable to a wide variety
of real-world deformations and materials, without requiring
any prior knowledge about the physical or geometric ob-
ject properties. We obtain state-of-the-art performance in
reconstruction accuracy, while also providing an estimation
of the object elastic model. Yet, this model is recovered up
to scale. In the future, we plan to retrieve the true elastic
model by including certain constraints into our optimiza-
tion. By doing this from just a monocular video would be a
major step in engineering mechanics, which usually rely on
complex laboratory procedures for obtaining such models.
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