
Safe Robot Execution in Model-Based Reinforcement Learning

David Martı́nez, Guillem Alenyà and Carme Torras

Abstract— Task learning in robotics requires repeatedly
executing the same actions in different states to learn the
model of the task. However, in real-world domains, there are
usually sequences of actions that, if executed, may produce
unrecoverable errors (e.g. breaking an object). Robots should
avoid repeating such errors when learning, and thus explore the
state space in a more intelligent way. This requires identifying
dangerous action effects to avoid including such actions in the
generated plans, while at the same time enforcing that the
learned models are complete enough for the planner not to
fall into dead-ends.

We thus propose a new learning method that allows a robot
to reason about dead-ends and their causes. Some such causes
may be dangerous action effects (i.e., leading to unrecoverable
errors if the action were executed in the given state) so that
the method allows the robot to skip the exploration of risky
actions and guarantees the safety of planned actions. If a plan
might lead to a dead-end (e.g., one that includes a dangerous
action effect), the robot tries to find an alternative safe plan
and, if not found, it actively asks a teacher whether the risky
action should be executed.

This method permits learning safe policies as well as
minimizing unrecoverable errors during the learning process.
Experimental validation of the approach is provided in two
different scenarios: a robotic task and a simulated problem
from the international planning competition. Our approach
greatly increases success ratios in problems where previous
approaches had high probabilities of failing.

I. INTRODUCTION

Robotic applications often include risky actions that, if ap-
plied under certain circumstances, may yield unrecoverable
errors. When planning, these unrecoverable errors may lead
to “dead-ends”, as they are states from where the planner
cannot provide a solution anymore [1]. The robot decision-
maker should learn to identify these risky actions and be
specially careful before executing them in order to avoid
unrecoverable errors. This is a very challenging problem
when learning tasks, since models not yet completely learned
may lack important constraints and action effects needed
to generate safer plans. In this paper, we propose a new
method that extends active learning approaches to identify
risky action and avoid repeatedly making the same errors.

An example of such domain would be the task of clearing
tableware from a table, where the robot has to stack the
tableware and move it to the kitchen. As moving between
different rooms takes a long time, it is recommended to
stack all objects together before, and take piles with as many

This work was supported by CSIC project MANIPlus 201350E102. D.
Martı́nez is also supported by the Spanish Ministry of Education, Culture
and Sport via a FPU doctoral grant (FPU12-04173).

Authors are with Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain
{dmartinez,galenya,ctorras}@iri.upc.edu

Fig. 1. The WAM manipulator is stacking the tableware to clear the table.

objects as possible when moving. The problem is that, when
tableware is not properly stacked, objects may fall and break.
Thus, the robot needs a decision maker that plans which
objects should be stacked, and the correct order so the task
can be completed safely. Figure 1 shows the task of stacking
tableware performed by a WAM manipulator.

The decision maker uses model-based reinforcement learn-
ing (RL), which is a common paradigm for learning tasks
in which actions take long to execute and the learning
algorithm has long periods of time to process little input
data [2]. However, the learning process requires exploring
(i.e. trying different action-state pairs) to learn the transition
function [3], [4]. This can be a problem when tackling
stochastic domains, since the same dead-end may be reached
repeatedly before learning all the conditions that lead to
it. The decision maker has to recognize risky actions to
ensure that they are not explored when there is risk of
falling into a dead-end. In the opposite case, when using fast
learning algorithms that have good generalization capabilities
to reduce the exploration [5], the robot may overlook crucial
actions required to get an optimal behavior, and learn simple
policies that often fall into dead-ends.

Safety mechanisms have been included in different RL
approaches to avoid these risky actions. These approaches
either require a safety function to avoid dangerous states
while exploring [6], [7], or use simulators to confirm the
safety of states [8]. In our case, the decision maker does not
have any prior information about the risky states that may
be found, but in contrast, every time a dead-end is reached,
it will learn the causes and avoid them in the future.

A general method to analyze dead-end causes is using
planning excuses [9], [10], which are state changes that

would have to be made to find a proper plan. In this work
we propose to use these planning excuses to detect state
predicates associated to dead-ends (which we call “dangerous
predicates”), that will be used to detect risky actions. Note
that excuses require a model, and thus our approach can only
be applied to model-based RL.

Teacher interactions have been integrated with RL to speed
up the learning process [11], [12], as well as to provide
corrective demonstrations when the robot does not perform
as desired [13], [14]. In this work we use the REX-D
algorithm [15] which requests only a few teacher demon-
stration requests to speed up learning. To avoid dead-ends,
the interaction with the teacher is extended to confirm risky
actions. Once a risky action has been identified, if a plan
includes it, the decision maker can issue a teacher interaction
request to confirm its safety or request alternatives.

To summarize, the proposed learning approach yields
safer models and avoids dead-ends. Unlike other approaches,
our method can rely on models that are not completely
learned yet. Moreover, the robot is the one that actively
interacts with the teacher to learn how to overcome the dead-
ends, contrarily to other approaches that require the teacher
to continuously monitor the robot behavior. A preliminary
version of this work was presented in [16]. The dead-end
avoidance method has been improved significantly: the de-
cision maker searches for alternative plans before requesting
an interaction with the teacher, and the acceptable risk of
dead-end is maintained for each type of unrecoverable error
(while previously a global acceptable risk was used for every
dead-end). Finally, in addition to simulated experiments, the
performance in a real robot is also shown.

The paper is organized as follows. After this introduction,
the background needed to understand our proposal is pre-
sented in Section II. Afterwards, the method to avoid dead-
ends is detailed in Section III. Section IV shows the exper-
iments conducted in a simulator and a real robot. Finally,
conclusions and future work are presented in Section V.

II. THE DECISION MAKING AND LEARNING ALGORITHM

The initial assumption is that the perception modules can
provide full observability, and that robot actions are uncertain
because they may fail or yield unexpected outcomes. There-
fore, Markov Decision Processes (MDP) can be used, as
they formulate fully-observable problems with uncertainty. A
finite MDP is a five-tuple 〈S,A, T,R, α〉 where S is a set of
possible discrete states, A is the set of actions that the robot
can execute, T : S×A×S → [0, 1] is the transition function,
R : S × A → R is the reward function and α ∈ [0, 1) is
the discount factor. The goal is to find a policy π : S → A
that chooses the best action for each state to maximize future
rewards. To that end, we have to maximize the value function
V π(s) = E[

∑
t α

tR(st, at) | s0 = s, π], which is the sum
of expected rewards.

The decision maker uses a symbolic representation to
represent the model and the states. A state is composed
of a set of symbolic predicates that represent the scenario
that the robot is interacting with. The model consists of a

Action:
putPlateOn(X, Y)
Preconditions:
plate(X), on(X,Z), cup(Y), clear(Y)
Outcomes (Success probability: predicate changes):
0.6: on(X,Y), ¬on(X,Z), clear(Z), ¬clear(Y)
0.3: on(X,Y), ¬on(X,Z), clear(Z), ¬clear(Y), unstable(X)
0.1: noise

Fig. 2. NID rule example that models one behavior of putPlateOn action.

set of Noisy Indeterministic Deictic (NID) rules [17]. The
transition model T is represented with a set of NID rules Γ
which are defined as:

ar(χ) : φr(χ)→


pΩr,1 : Ωr,1(χ)

...
pΩr,nr

: Ωr,nr
(χ)

pΩr,0 : Ωr,0

, (1)

where ar is the action that the rule represents, φr(χ) are
the preconditions for the rule to be applicable, Ωr,i are the
effects that define the set of predicates that are changed in
the state with probability pΩr,i when the rule is applied, Ωr,0
is the noisy effect that represents all other, unmodeled, rare
and complex effects, and χ is the set of variables of the rule.
An example of a NID rule is shown in fig. 2. A NID rule
represents one action, while each action may be represented
by several rules. Each state-action pair (s, a) is covered by
just one rule r as all the rules that define one action have
disjoint preconditions φra,i

∧φra,j
= ∅ | ∀i, j, i 6= j. Finally,

a context is defined as the state-action pairs covered by a
rule. Note that, as actions are modeled by rules, the presented
method in this paper finds the dangerous rules that represent
risky contexts.

Reinforcement learning permits learning a transition
model T which is unknown a priori. A RL algorithm
balances exploration (try different actions to increase the
decision maker knowledge and obtain better policies in the
long term) and exploitation (choose actions to maximize the
reward according to the current policy) to obtain good results.
In particular we are using model-based RL where a model
is estimated from experiences, and this model is then used
to plan the actions that the system executes.

In particular, we are using the REX-D [15] algorithm
that integrates active teacher demonstration requests to speed
up learning. REX-D balances exploration, exploitation and
teacher demonstrations. To that end, REX-D explores the
state-action pairs considered unknown before exploiting the
model to try to obtain the maximum value. Moreover, if no
solution is found in a known state, then REX-D requests a
teacher demonstration as it considers that a completely new
action or yet unknown effects of an action under different
preconditions need to be demonstrated. Figure 3 shows a
summary of how the demonstration requests are integrated
in the RL algorithm.

REX-D uses a relational representation [5], generalizing
over different objects of the same type as they exhibit the

Fig. 3. The REX-D algorithm. Teacher demonstrations are requested by
the robot when the planner cannot obtain a valid solution.

same behavior. A context-based density count function is
used to handle the exploration-exploitation dilemma, which
reduces the number of samples before considering states as
known by grouping them in contexts:

k(s, a) =
∑
r∈Γ

|E(r)|I(r = rs,a), (2)

where |E(r)| is the number of experiences that cover the
rule with any grounding, and I() is a function that takes the
value 1 if the argument evaluates to true and 0 otherwise.
State-action pairs which have been explored less times than
a fixed threshold k(s, a) < ζ are considered unknown, and
the REX-D algorithm proceeds to explore them.

Finally, to tackle stochastic environments Pasula et al.’s
learning algorithm [17] is used to obtain the rules that
represent the actions from all previous experiences, and the
Gourmand planner [18] is used to plan with the model and
the observed state.

III. PROPOSED APPROACH TO AVOID DEAD-ENDS

In this section we propose a new method that allows the
decision maker to avoid exploring dangerous parts of the
state space as well as to safely refine such parts of the
model, so that the planner can avoid falling in dead-ends.
The following shortcomings are overcome with dead-end
avoidance:
• Exploration of dead-ends: until the states that lead to a

unrecoverable error get explored, a RL algorithm would
fall into that dead-end repeatedly.

• Suboptimal policies: Introducing relational generaliza-
tions and teacher demonstrations has the advantage of
reducing the exploration [15], but it also has drawbacks.
Using a relational count function implies that not all
states are explored before considering them as known,
since all states within a context are assumed to behave
likewise. Therefore, state-action pairs that could be
needed to attain the best policy might not be visited,
and thus their contexts would not be learned. This lack
of exploration may lead to models that yield suboptimal
policies that fall more frequently into dead-ends.

First, we explain how the dangerous predicates that model
unrecoverable errors are detected, and how these dangerous
predicates are used to find dangerous rules. Then we describe

how the decision maker analyzes plans to check whether
they have a high-risk of reaching a dead-end. Finally the
procedures to avoid dead-ends are presented.

A. Detecting Dangerous Predicates

The first requirement to avoid unrecoverable errors is
the ability to detect their causes. In the proposed model, a
dead-end has to be caused by one or more predicates that,
when present, prevent the planner from finding a solution.
We propose to find these predicates using the so called
excuses [9]. Excuses are defined as changes to the state
that turn the task into a solvable one. In a more formal
manner, given an unsolvable planning task that involves a
set of objects Cπ and an initial state s0, an excuse is a pair
ϕ = 〈Cϕ, sϕ〉 that makes the task solvable, where Cϕ is a
new set of objects and sϕ a new initial state. However, as we
are not considering domains in which objects can be added
or removed, we will only focus on the state changes sϕ.

Excuses can be classified as acceptable, good, or perfect,
as follows.
• Acceptable excuses change the minimum number of

predicates in the initial state. An excuse ϕ is acceptable
iff ∀ϕ′, Cϕ ⊆ Cϕ′ and s04sϕ ⊆ s04sϕ′ (where 4
denotes the symmetric set difference).

• Good excuses are acceptable excuses with changes that
cannot be explained by another acceptable excuse.

• A perfect excuse is a good excuse that minimizes a cost
function.

Applying goal regression over all acceptable excuses is
highly suboptimal, so a set of good excuse candidates are
generated. Candidates for good excuses can be obtained
under certain assumptions using a causal graph and a domain
transition graph [9]. Also, to restrict the number of candi-
dates, we only consider those that are relevant for achieving
the goal. Finally, the planner is used to test which of the
excuse candidates are the best. For each candidate, a new rule
that encodes the excuse changes is added, and the planner
selects the best excuse with the minimal cost.

From a planning point of view, the dangerous predicates
are those that when present in the state, the planner can
no longer find a sequence of actions that reaches the goal.
Therefore dangerous predicates represent unrecoverable er-
rors. If an excuse is obtained in a state with an unre-
coverable error, the excuse changes will show the danger-
ous predicates that are making the task unsolvable. Thus
the list of dangerous predicates Pϕ can be extracted as
Pϕ = s4sϕ | 〈Cϕ, sϕ〉 = ϕ, where s is the current state and
4 denotes the symmetric set difference.

1) Library of Dangerous Predicates: The decision maker
maintains a library of dangerous predicates Ld. This library
contains a list of pairs 〈dp, dr〉 where dp is the predicate that
has caused an unrecoverable failure and dr the acceptable
risk for that predicate. The acceptable risks are always
initialized to 0. This library is updated or used in the
following cases:
• Whenever a dead-end is reached: an excuse ϕ is ob-

tained, and for each predicate p changed by the excuse

Algorithm 1 Avoid dangerous rules
Input: Planned dangerous rule r, current state s, library of
dangerous predicates Ld

1: L′d = Ld . Store expected dead-end risk
2: d′r = 0∀〈d′p, d′r〉 ∈ L′d . Initialize expected risks to 0
3: danger = false
4: for each effect 〈Ωr, pΩr

〉 in rule r do
5: s′ = s
6: Add predicates in Ωr to s′

7: Plan(s′)
8: if dead-end then
9: for each dangerous predicate dp ∈ Ωr do

10: Get d′r | 〈d′p, d′r〉 ∈ L′d, dp = d′p
11: Update d′r = d′r + pΩr

12: if d′r > dr | 〈dp, dr〉 ∈ Ld then
13: danger = true
14: end if
15: end for
16: end if
17: end for
18: if danger then
19: Plan without rule r
20: if Obtained new plan then
21: Analyze new plan
22: else
23: Request teacher confirmation
24: if confirmed as safe then
25: for each 〈p′d, d′r〉 in L′d do
26: Get dr | 〈dp, dr〉 ∈ Ld, d′p = dp
27: dr = max(dr, d

′
r)

28: end for
29: else
30: Get demonstration from the teacher
31: end if
32: end if
33: end if

p ∈ Pϕ, we add the pair 〈p, 0〉 to the library if p had
not been added before @p | 〈p, dr〉 ∈ Ld.

• Whenever the teacher confirms that a dangerous rule has
an acceptable risk: the risk associated to the predicates
in the rule effects are updated (Sec. III-B.2).

• Whenever the model Γ is updated: any rule r ∈ Γ
whose effects include a predicate p ∈ Ωr | 〈p, dr〉 ∈ Ld
is marked as dangerous.

B. Avoiding Dead-ends

To avoid dead-ends, the decision maker has to skip explo-
ration of potentially dangerous rules and request help from
the teacher when the learned model leads to dead-ends.

1) Safe Exploration: To explore an action, rules have to
be considered known (using Eq. 2) and safe. To check the
safety, for each 〈dp, dr〉 ∈ Ld the decision maker checks that
the risk for each dangerous predicate is low enough. The
sum of the probabilities of getting the dangerous predicate

p(dp | r) =
∑
pΩr ∀{〈Ωr, pΩr 〉 ∈ r | dp ∈ Ωr,i} has to be

lower than the acceptable risk dr for that predicate dp.
2) Learning Safe Models: Whenever a new action is

planned, the decision maker checks if the state-action pair
corresponds to a dangerous rule. In this case a special
procedure is executed to analyze the action safety.

Algorithm 1 summarizes the procedure to detect cases
where there is danger of falling into a dead-end. First, in
lines 4-11, the possible effects Ωr of the planned dangerous
rule r are simulated, and the planner is used to check whether
any of them may lead to an dead-end. After this analysis, the
decision maker knows the expected dead-end probability d′r
associated to each dangerous predicate p′d. In lines 12-14,
if the expected dead-end probability is greater than the
acceptable risk for any predicate d′r > dr ∀ {dp, dr, d′r |
〈dp, dr〉 ∈ Ld, 〈dp, d′r〉 ∈ L′d}, either an alternative plan is
found or teacher help is required.

After finding a risky rule, the decision maker plans again
using a model that does not contain the dangerous rule r
(lines 18-21). If a safe plan is obtained, it can be executed,
and otherwise it is also analyzed using Algorithm 1. How-
ever, if a plan cannot be found, the robot interacts with the
teacher to confirm the safety of the originally planned action
(lines 22-28). The confirmation consists in notifying the
teacher about the action that the robot intends to execute, and
the teacher can either confirm that it is safe or demonstrate
a different and safer action instead. To handle domains
where dead-ends are not completely avoidable, if the teacher
confirms a rule as safe, the risks associated to the dangerous
predicates in that rule are updated dr = max(dr, d

′
r + ε),

considering that there was an estimated d′r risk of dead-end
for that predicate. However, if the rule is actually dangerous
(lines 29-31), a safer action will be presumably demonstrated
by the teacher. This new action will be learned and added to
the model, so that the planner will have the option to choose
it afterwards.

IV. EXPERIMENTAL RESULTS

Two experiments were carried out to validate our proposal.
The first one was a simulated problem from the Triangle
Tireworld domain of the 2008 International Probabilistic
Planning Competition (IPPC)The second was a real robotic
task, which consisted in clearing the tableware on a table.

A. IPPC: Triangle Tireworld

In this domain, a car has to move to its destination, but
it has a probability p = 35% of getting a flat tire while it
moves. The car starts with no spare tires but it can pick them
up in some locations. The actions available in this domain
are: a “Move” action to go to an adjacent position, a “Change
Tire” action to replace a flat tire with a spare tire, and a
“Load Tire” action to load a spare tire into the car if there
are any in the current location. The main difficulty in the
Triangle Tireworld domain is the unrecoverable error when
the agent gets a flat tire and no spare tires are available.
Safe and long paths exist with spare tires, but the shortest
paths do not have any spare tires. If the robot does not get

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Episode

S
uc

ce
ss

REX−D safe actions
REX−D

5 10 15 20 25 30
0

1

2

3

4

Episode

T
ea

ch
er

 d
em

on
st

ra
tio

ns

REX−D safe actions
REX−D

Fig. 4. Results in the Triangle Tireworld domain. The results shown are the means and standard deviations obtained from 2500 runs. The exploration
threshold is ζ = 2. Left: the success ratio of the algorithms. Right: the number of teacher demonstrations requested.

a flat tire while it explores locations where spare tires are
available, it will not learn how to change a tire and therefore
it will always choose the shortest path to the goal where no
spare tires are available. It is a challenging domain where
RL approaches with a low exploration threshold ζ can fall
easily into recurrent dead-ends.

However, the dead-end avoidance permits learning cor-
rectly this problem without requiring a large exploration
threshold and thus not increasing the number of exploration
actions needed to learn the domain. After the robot realizes
that moving may lead to flat tires, it will confirm the moving
actions with the teacher, who will recommend the safer paths
with spare tires instead of the shorter ones. Once the car
gets a flat tire with a spare tire available, it will learn how
to change tires and perform successfully afterwards. Figure
4 shows the advantages of recognizing and dealing with
dangerous rules, where a few extra teacher demonstration
requests allow the robot to have a much better success ratio,
getting a 98% success ratio after 15 episodes, compared
with 88% that would have been obtained without considering
dangerous rules (Fig. 4 Left). The cost of this improvement
is very low, as just one extra teacher demonstration is needed
in average (Fig. 4 Right).

B. Tableware Clearing
This experiment consists in clearing the tableware on a

table. The robot has to take plates, cups and spoons from
a table to the kitchen. However, moving to the kitchen is
a costly action, and therefore the robot has to stack the
tableware before taking them, minimizing the time spent.

The actions putPlateOn, putCupOn and putForkOn place
the corresponding object on another one. If a plate is placed
on a cup or spoon, or a cup is placed on a spoon, it may fall
and break. (For practical reasons, we used plastic tableware
in the experiments so that they wouldn’t actually break.
Instead, they were considered to be broken after falling from
a considerable height.) There are another 3 inverse actions to
place each of the objects back on the table, and one action
moveStacks to take the stacks to the kitchen.

The reward is based on the time spent, but there is also a
high penalty for each broken object. Each action reduces the

reward by 0.05, while the moveStacks action reduces it by
1 for every stack, and by 5 for every broken object. Finally,
when the table is cleared, a reward of 5 is obtained.

The robotic setup consists of a WAM arm equiped with
a gripper, and a RGB-D Kinect camera that is positioned
on the ceiling. To generate symbolic state representations
for the decision maker, the perception system recognizes
the tableware on the table and their relative positions, and
maintains a believe state that is needed to tackle the oc-
clusions when an object is placed on top of another. The
movement primitives to execute pick and place actions are
also available in the robot. Overall, the implementation is
similar to the one presented in [19], but the vision system
and action trajectories have been adapted to the new task.
Moreover, the interaction with the teacher is implemented
using a PC located near the robot.

In this experiment two different models were learned
using the REX-D algorithm [15]: one was learned with the
dead-end avoidance method presented in this paper, and the
other with the standard REX-D algorithm. Both were learned
during 8 episodes in which the teacher was available to
answer the robot inquiries. The initial setup consisted of 2
plates, 2 cups, and 1 spoon as shown in Fig. 5.

The two models were then used to complete the tableware
clearing task 15 times, and the results are shown in Fig. 6.
The model with dead-end avoidance reduced the number of
executions with broken objects drastically, from 40% to only
13%. Note that robot actions and perceptions are not perfect,
and reducing more the number of broken objects would be
very complicated without improving these actions.

Moreover, the model with dead-end avoidance did not
always stack everything into a single pile. The reason is that
the risk of breaking an object (and thus falling into a dead-
end) was not worth stacking the two piles together. Therefore
the decision maker decided to finish with two piles in 20%
of the runs.

V. CONCLUSIONS

We have presented a method that reduces the amount of
unrecoverable errors when using model-based RL, and that

Fig. 5. Tableware clearing setup. Left: Example of the initial setup. Middle: Example of a perfectly stacked pile of tableware. Right: Example of a
badly stacked pile, which if moved will result in objects falling from the pile.

REX-D Success 1 pile (reward) Success 1 or 2 piles (reward) Reward all cases Broken object
Dead-end avoidance 67% (3.78± 0.02) 87% (3.54± 0.43) 2.56± 2.79 13%
Standard REX-D 60% (3.58± 0.13) 60% (3.58± 0.13) −1.61± 7.49 40%

Fig. 6. Results for clearing tableware. The results shown are the success ratios, and the means and standard deviations of the accumulated rewards obtained
from 15 runs. The scenario was initialized with 2 plates, 2 cups, and 1 spoon. The exploration threshold is ζ = 3. Success 1 pile: Experiments where the
robot successfully (i.e. with no broken objects) piled everything into one pile (and the accumulated reward obtained in the successful executions). Success
1 or 2 piles: The same as before, but obtaining 1 or 2 piles. All: Accumulated reward counting all the executions. Broken objects: Experiments where
the robot broke at least one object.

also ensures that safe models are learned even in cases with
very sparse exploration. The robot is able to reason about
dead-ends, analyze the causes, avoid them in the easier cases,
and interact with a teacher to solve more complicated ones.
In addition to learning how to avoid dead-ends, the robot
is the one actively monitoring the scenario and interacting
with the teacher when needed, releasing the teacher from
monitoring the robot continuously. Experimental results have
proven the advantages of the method, both in an IPPC
domain and a robotics scenario. Our approach was shown
to yield good success ratios with just a few extra teacher
interactions.

As future work, we would like to extend the approach
to work under partial observability, which is an ubiquitous
problem in robotics. This would require to improve the
analysis of dead-ends to consider candidates that may not
have been observed, and integrate a POMDP planner that
could tackle partial observations.

VI. ACKNOWLEDGEMENTS

We would like to thank Alberto Ezquerro for helping us
to perform the robotic experiments with the WAM arm.

REFERENCES

[1] I. Little and S. Thiebaux, “Probabilistic planning vs. replanning,” in
Proc. of the ICAPS Workshop on IPC: Past, Present and Future, 2007.

[2] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey,”
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

[3] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2003.

[4] A. L. Strehl, L. Li, and M. L. Littman, “Reinforcement learning in
finite mdps: Pac analysis,” Journal of Machine Learning Research,
vol. 10, pp. 2413–2444, 2009.

[5] T. Lang, M. Toussaint, and K. Kersting, “Exploration in relational
domains for model-based reinforcement learning,” Journal of Machine
Learning Research, vol. 13, pp. 3691–3734, 2012.

[6] A. K. Akametalu, S. Kaynama, J. F. Fisac, M. N. Zeilinger, J. H.
Gillula, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in Proc. of the Conference on Decision and
Control, 2014, pp. 1424–1431.

[7] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” in Proc. of the International Conference on Machine
Learning, 2012, pp. 1711–1718.

[8] M. Pecka, K. Zimmermann, and T. Svoboda, “Safe exploration for
reinforcement learning in real unstructured environments,” in Proc. of
the Computer Vision Winter Workshop, 2015.

[9] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can
be found.” in Proc. of the International Conference on Automated
Planning and Scheduling, 2010, pp. 81–88.

[10] M. V. Menezes, L. N. de Barros, and S. do Lago Pereira, “Planning
task validation,” in Proc. of the ICAPS Workshop on Scheduling and
Planning Applications, 2012, pp. 48–55.

[11] A. Agostini, C. Torras, and F. Wörgötter, “Integrating task planning
and interactive learning for robots to work in human environments.” in
Proc. of the International Joint Conference on Artificial Intelligence,
2011, pp. 2386–2391.

[12] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Re-
search, vol. 34, no. 1, pp. 1–25, 2009.

[13] Ç. Meriçli, M. Veloso, and H. L. Akın, “Multi-resolution corrective
demonstration for efficient task execution and refinement,” Interna-
tional Journal of Social Robotics, vol. 4, no. 4, pp. 423–435, 2012.

[14] T. J. Walsh, K. Subramanian, M. L. Littman, and C. Diuk, “Generaliz-
ing apprenticeship learning across hypothesis classes,” in Proc. of the
International Conference on Machine Learning, 2010, pp. 1119–1126.

[15] D. Martı́nez, G. Alenyà, and C. Torras, “Relational reinforcement
learning with guided demonstrations,” Artificial Intelligence Journal,
Special issue on AI and Robotics, 2015.

[16] D. Martı́nez, G. Alenyà, and C. Torras, “Finding safe policies in
model-based active learning,” in Proc. of the IROS workshop on
Machine Learning in Planning and Control of Robot Motion, 2014.

[17] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, no. 1, pp. 309–352, 2007.

[18] A. Kolobov, Mausam, and D. S. Weld, “Lrtdp versus uct for online
probabilistic planning,” in Proc. of the AAAI Conference on Artificial
Intelligence, 2012, pp. 1786–1792.

[19] D. Martı́nez, G. Alenyà, and C. Torras, “Planning robot manipula-
tion to clean planar surfaces,” Engineering Applications of Artificial
Intelligence, vol. 39, pp. 23–32, 2015.

