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Abstract

The application of reinforcement learning to problems with continuous domains requires rep-
resenting the value function by means of function approximation. We identify two aspects of
reinforcement learning that make the function approximation process hard: non-stationarity
of the target function and biased sampling. Non-stationarity is the result of the bootstrap-
ping nature of dynamic programming where the value function is estimated using its current
approximation. Biased sampling occurs when some regions of the state space are visited too
often, causing a reiterated updating with similar values which fade out the occasional updates
of infrequently sampled regions.

We propose a competitive approach for function approximation where many different local ap-
proximators are available at a given input and the one with expectedly best approximation is
selected by means of a relevance function. The local nature of the approximators allows their
fast adaptation to non-stationary changes and mitigates the biased sampling problem. The
coexistence of multiple approximators updated and tried in parallel permits obtaining a good
estimation much faster than would be possible with a single approximator. Experiments in
different benchmark problems show that the competitive strategy provides a faster and more
stable learning than non-competitive approaches.
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1 Introduction

It is well known that generalization is mandatory in applications of reinforcement learning (RL)
involving large domains [29]. Only the most basic formulation of RL, which assumes a discrete
state-space, can avoid the use of generalization by explicitly storing the value (or the action-
value) of each state (or state-action) in a tabular representation. But the lack of generalization
implies that, in order to grant finding the optimal policy, all the possible actions in all the states
must be experienced at least once, if the system is deterministic, or many times in general.
This is impractical in applications where the number of states and actions is very large, and
completely impossible when it is infinite. Unfortunately, many of the interesting applications of
RL involve very large or continuous domains, and the only way to deal with them is to generalize
the result of experiences obtained for a given state and action to others similar to them.

Generalization techniques have been widely explored in the field of machine learning [20] and
pattern classification [14, 6]. In off-line, batch approaches, a finite set of input-output samples,
corresponding to an unknown function commonly referred as the target function, are available,
and some method for function approzimation (FA) [11] is used to build an approximating func-
tion that permits inferring values of the target function in points of the domain whose output
is actually unknown. A usual approach to FA consists in defining a parameterized family of
functions that is expected to contain a good enough approximation of the target function, and
trying to adjust the parameters to reproduce the known samples with optimal accuracy. On-line
incremental approaches are similar, except that the samples are not all available from the start
but arrive sequentially, and the approximating function is progressively adapted according to
the new incoming information.

In principle, many different machine learning methods for FA can be used in RL, but not
all of them will be equally suitable. Due to the bootstrapping nature of the value estimations
[29], the function that the FA process is trying to approximate becomes non-stationary. During
the learning process, this non-stationarity is usually different at different regions [16] and the
intermediate value function approximations at the different stages of the learning usually have
different structures, and could be even more complex than the optimal one [9]. This demands
the FA method to be flexible enough to cope with the local non-stationarity and complexity
variations. Another aspect to take into account in on-line RL is that samples can only be
obtained from the interaction with the environment, and they are presented along the trajectories
produced by the current action policy and the dynamics of the environment. This makes the
sampling of the target function to be highly biased, with some regions much more densely sampled
than others. Not all techniques for on-line FA are robust against biased sampling, since many of
them will tend to forget the information provided by the weakly sampled regions as more and
more inputs are processed from the more frequently sampled ones.

In this work we present a new approach to FA that addresses the non-stationarity and the
biased sampling problems associated with on-line RL. The main idea consists in building mul-
tiple approximating functions in parallel, defined on different, overlapping regions of the input
(state or state-action) space, so that, at each point, several approximations will be available.
Among them, the system will select the one with the best expected accuracy, as measured by a
relevance function estimated from the observed performance of each approximator. Since each
approximation is restricted to a limited region and independent of the other ones, there is more
flexibility in the overall global function that can be represented. Since each approximation is
only updated with samples falling in its domain, they can adapt more easily to local changes
of the target function, and oversampling in one region does not affect at all the approximation
existing in a different region.

This paper is organized as follows. Section 2 reviews existing local approaches to FA and
analyses how a competitive approach may improve their performance. Section 3 introduces
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the proposed approach to FA and presents the ICFA algorithm. Section 4 proposes a specific
implementation based on Gaussian mixture models, and Section 5 specifies how ICFA can be
used with RL, introducing the algorithm ICFARL. Next, in Section 6, some experiments with
the algorithm in standard RL problems are presented, and Section 7 closes the paper with some
conclusions.

2 Local Approaches for Function Approximation

A feasible way to deal with the non-stationarity and the biased sampling problems typical of
on-line RL consists in, instead of using a single function to approximate the target function in
the whole domain, partitioning the input space in smaller regions and try to approximate the
function locally with an independent FA process in each region. By doing this, the approximation
in a region is not affected by the eventual changes that may take place in other regions, nor
by how unbalanced are the sample rates in different regions, since each local approximator will
only take into account the samples falling within its own domain.

Moreover, in general, if the domain of a complex function is partitioned in smaller regions,
the complexity of the local functions required to approximate the target function will be lesser
than that required for a global function to provide an equivalent accuracy. As a consequence of
this, FA methods that use local function approximators may converge much faster to the desired
accuracy than those trying to make the approximation with a single global function.

2.1 Efficiency of Local versus Global Approximations

To compare the efficiency of using local and global approximators, we consider the example of
Figure 1(a). In this example, a sinusoidal target function defined in the interval [-1, 1] is ap-
proximated, on the one hand, globally by means of a fourth degree polynomial and, on the other
hand, locally in 4 intervals of length 1/2 by means of 4 linear functions (polynomials of degree
1). For a fair comparison, the functions have been chosen so that none of the approximations
can represent the target function perfectly, but the optimal solutions provide similar accuracies
in both cases. In the experiment, all polynomials are initialized with random coefficients, and a
set of randomly generated input-output pairs are used to sequentially update the coefficients of
both approximations using a gradient descent method.

As shown in Figure 1(b), the local function approximation converges much faster than the
global one, and both stabilize around a similar error value in the long term. Note that the
faster convergence of the local functions occurs despite the fact that they involve a total of 8
parameters, while the global function involves only 5. This result may be justified by the fact
that the parameters of each linear function are independent of those of the remaining functions,
so that only two parameters must be adjusted for each approximator, while in the global function
all parameters are interdependent and must be balanced altogether. Note also that each linear
approximator receives, in average, only one fourth of the training samples but, even so, their
adaptation is faster than that of the fourth degree polynomial which is updated with all samples.

2.2 Searching for Proper Local Domains: Partitions versus Coverings

One common approach in continuous-domain RL that performs local FA is state aggregation, in
which the state space is discretized into cells with some resolution, and each cell is considered as
a single state and treated as in the tabular RL approach. In this case each local approximator
consists in a simple constant-value function, with its only parameter being the value that will
be assigned to all the states aggregated in the cell. But, though simply partitioning the domain
to define local approximators may improve the accuracy and efficiency of FA, such improvement
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may vary largely depending on how the partition is made. For instance, in the example of Figure
1(a), it is clear that the accuracy of the approximation could be improved if the local domains
had been chosen in accordance with the shape of the target function, so that the bounds of the
intervals would coincide with the extrema of the function. However, since the target function is
unknown, a good partition can only be found through search.

A search strategy typically used with state aggregation is that of variable resolution (VR)
[22, 23], which consists in defining an initial coarse partition of the domain, and recursively
split those regions that can not be approximated with the desired accuracy with a constant
value. For example, in [26] a VR technique is used to approximate the action-value function
in a continuous-state, discrete-action space. In this case, the partition is represented with a
kd-tree [15], where each node defines a region of the state space, and children nodes correspond
to subsequent splittings of their parents. The leaves of the tree configure a partition where a
cumulative reward value for each action is associated to each part (leaf). The depth of the tree
is increased at those regions where a finer resolution is required to select the optimal action. A
related approach is proposed in the kd-@-Learning method [30, 31], which also uses a kd-tree
representation but where the values for each action are stored not only at the leaves of the tree
but also at the interior nodes at all levels of resolution. This allows selecting, for each action,
the value from the resolution level with highest confidence, which is given by the number of
updates. In this case, instead of increasing the resolution on-line by adding new leaves to the
tree, the maximum resolution at all parts of the state space is fixed from the very beginning
by a parameter of the system. Similar strategies can be found with multi-partition approaches,
as in the Adaptive Tile Coding [33], where the resolution of different partitions is increased
at regions with large approximation error. Some other VR approaches not only change the
resolution at the state space but also at the action space, allowing for generalization along the
action dimensions [17, 21].

A limitation of such VR techniques is that the improvement of the partition only takes place
by splitting already existing regions, what invariably increases its number and impoverishes
generalization. An alternative way to deal with this issue is, instead of forming a partition of
the domain in disjoint regions, allow regions to overlap to form an arbitrary covering. In this
case, when a new region needs to be generated, it can be defined at will and independently of
the already existing regions, thus increasing the opportunities of finding a region in which the
function can be appropriately approximated without losing generalization.

To illustrate this idea, we perform a simple experiment in which the function of Figure 2(a)
must be approximated with local constant-value functions. Note that, since the target function is
piecewise constant, it can be exactly represented with state aggregation, provided that the right
partition is found. As in the previous experiment, samples are randomly generated and used to
update the values of the approximations of the local functions, which in this case are taken as the
mean of the values observed within the domain of each approximator. Each time a sample arrives
for which the approximation error is above a given threshold, new approximators are generated
to improve the approximation. In a first test, we use a classical VR approach, in which the
inaccurate approximator is replaced by two new ones obtained by splitting its domain in two
halves, so that a partition of the domain is always obtained. In a second test, the inaccurate
approximator is maintained, and new approximators are generated with intervals containing the
input point but with bounds chosen randomly in the whole input range, so that the result is
a covering of the domain with overlapped regions. Since the purpose of this experiment is to
test the efficiency of the covering approach in generating the right intervals, we assume that,
in this case, the value attributed to the function approximation is that of the approximator
that is closest to the target function value. Of course, in a real situation, the target function is
unknown, and we should specify some way to select it. How this can be done will be discussed
later (see Section 3.2). For a fair comparison with the VR approach, two new approximators
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are generated when the approximation at the current point is inaccurate, but nothing prevents
us from generating an arbitrary number of them. In order to see the influence of the generation
rate, we performed a third test in which the number of competing approximators generated each
time is increased to 10.

Figure 2(b) shows the evolution, for each test, of the mean squared error of the approximation
with the number of samples. It can be seen that the strategy that generates a random covering
(labelled as CFA) produces a set of regions able to approximate the target function much faster
than the VR approach which simply refines the partition. As could be expected, increasing
the generation rate allows reducing the approximation error much faster. To better interpret
this result, Figure 3 shows the approximators generated by the two first tests at the end of the
experiment. We observe that the partition generated by the VR approach has been unnecessarily
fragmented due to the bad fitting of the binary subdivisions with the constant-valued intervals
of the target function (Figure 3(a)). The final partition consists of 173 intervals, and it can be
observed that some of them have remained with a tiny domain and a wrong value. These are
just the remnants of the initial intervals that have been cut off by successive splittings and, with
the simple approach adopted here, they will stay there forever since, even if a sample turns out
to fall into one of these intervals, it will be split in two, and only the half containing the point
will use its value. In contrast, the covering obtained by generating the two intervals at random
is able to give an accurate account of the target function with only 26 approximators, assuming
that the best one can be selected at any point of the domain (in fact, due to overlapping of some
of these 26 approximators, they configure an effective partition of the domain in 33 different
intervals).

In this example, each local approximator is reduced to a constant value for all points in
its domain, but to better fit the data, we can use any other form of FA, e.g., polynomials of
some degree, as in the example of figure 1. Whatever is the choice of the FA used for each
local approximator, a similar search strategy can be applied in order to find the regions of the
state-space whose function values fit best with such form of FA.

3 Function Approximation by Competition of Local Approximators

In the previous section we have seen that using local approximators with overlapping domains
is potentially more advantageous than using a single global approximator. However, in most
existing FA approaches that involve functions with overlapping domains, instead of taking the
value of just one of them, the value at each point is computed as a linear combination of the
values provided by the different functions, with weights that may depend on the distance to the
center of the respective domains [10]. In some of these approaches, the combined functions are
constant, as in some multi-partition schemes [33, 8], while in others they consist in some form of
Radial Basis Functions, which can be defined either in the input-space [24, 19], or in the input-
output space, as in [1]. It is usual that the number or scope of the functions is adjusted on-line
in order to improve the accuracy of the approximation. For example, [5] use a set of spline-like
kernels as basis functions, and their density is progressively increased by splitting them when
required, in a general to specific way. An alternative approach is followed in [19], where the area
of influence of the basis functions is modified by adapting the parameters defining their center
and dispersion with a gradient-based algorithm.

There is a crucial difference between combining overlapped functions and taking the value
of one of them. In the first case, none of the combined functions is completely responsible of
approximating the function at any point, since it will be combined with all the other functions
having some influence at this point. This means that the value taken by each function can
not be set independently of the others, and such a dependency may make the system difficult
to stabilize. On the other hand, when the domains of the combined functions are too wide,
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the isolation from different regions of the domain is lost, and the system becomes prone to
be perturbed by the non-stationarity and the biased-sampling effects. In contrast, none of
these problems appear when the value is given by a single local approximator, since each of
them tries to make its best approximation in its domain that is not affected by how good or
wrong are performing other competing approximators. If eventually, one approximator gets its
approximation degraded, there may still be some other approximator that performs acceptably
well there, and it will be selected as soon as it proves to be more accurate, allowing the system
to keep a good overall performance and producing a more stable behavior.

The counterpart of using local independent overlapping approximators is that a mechanism is
needed to ensure that, at each input point, the best or, at least, a good approximator is selected
among those that include the point in its domain. Next, we propose a competitive FA approach
with overlapping approximators for which a relevance function will be defined to estimate their
relative expected accuracies. Some of the contributions presented next are extensions of our
previous work [2].

3.1 Competitive Function Approximation

Let X be a connected D-dimensional set, and ® = {®;(z,&)|i = 1...N} a set of parametric
functions ®; : X; — R with parameter vectors &;, such that X = Uf\il X, i.e., that the domains
of the functions form a covering of X. For a given x € X, we say that a function ®; is active
if x € X;. The functions ®; will be called competitor functions since, given an input point z
for which more than one ®; is active, each of them will provide its own value in competition
with the other ones. For the sake of the competition, we will associate to each competitor
a relevance function, I';(z,;), which is a parametric function with parameters v;, defined in
the same domain X; as the competitor. If I' = {T';(x,v;)|i = 1...N} is the set of relevance
functions associated to ®, we define a competitive function F(x,®,T'), with competitors set ®
and relevance functions T', as a function F : X — R that assigns to each = the value provided
by the active competitor with highest relevance at x. More formally, let I, = {i|z € X} be the
set of indexes of all active competitors for . We say that ®,, is the winner competitor at x, if

w = argmax I';(z, ;).
i€ly

Then, the value provided by the competitive function is the value given by the winner competitor
F(z,®,T) = Oz, &y).

Now, assume that there is an arbitrary unknown target function f(x) defined in X that
should be approximated, but from which we can only observe its values at particular points
obtained sequentially, (z¢,y;), with y, = f(z;), where ¢ accounts for the ¢-th time step. Our
aim is to devise an on-line (i.e., incremental), memory-free function approximation method
using a competitive function F(x, ®,T") as defined before. We will call any method for function
approximation that uses a competitive function F(z, ®,T') a competitive function approzimation
(CFA) method, and in the specific case in which the updates are done incrementally after
each observation we will call it incremental competitive function approrimation (ICFA). For
each competitor ®;(x,&;) of a ICFA method we can use any arbitrarily complex parametric
function appropriate for the problem at hand for which an incremental FA method is available.
In principle, the FA’s of the competitors do not need to be all the same. However, in the
following, we will assume that all competitors implement the same function of its parameters,
iLe., ®;(x,&) = ®(x,&), and all of them are updated using the same procedures. Of course, the
specific FA method selected for the competitors and the extent of the domain of each competitor
will influence the allowed accuracy and performance of the CFA. However, if the relevance
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function is not able to provide a correct distinction between good and bad approximations, the
performance of the CFA system may be poor, no matter what competitor function is used.
Hence, a right definition of the relevance function is crucial for the good performance of the
CFA system. The next section is focused on this aspect.

3.2 The Relevance Function

To make the exposition clear, we will first assume that the competitor and the relevance functions
are constant-valued functions. A sensible choice for the value of a competitor function would
be the mean (i.e., the expected value Ex, [f(x)]) of the target function in the domain of the
competitor, which can be estimated by the sample mean Y; of the values of the samples observed
in this domain [7],

S
Pi(z, &) =Yi= ;Zytiﬁ
(2 ]:1

where n; is the total number of samples observed so far in X; and ti; is the j-th element of the
list of time steps at which competitor ¢ was active. To define the relevance function, note that
the variance of the target function f in X;, 07 = Ex, [(f(z) — Ex, [f(2)])?], is a good account of
how well Ex, [f(z)] (= Y;) approximates f at a point x € X;. Hence, the inverse of the variance
o2 would be a reasonable value for the relevance. However, as we only have a limited amount
of samples of f, the variance can not be determined precisely and should be estimated. We
estimate the variance using the (unbiased) sample variance S? [7],

n;

1 _
SF = g 2 oy — ¥ M
7 j=1

Since the variance is estimated using a limited amount of information, its estimation carries
uncertainties that vary with the number of samples n;. To take into account these uncertainties
we use a known result from statistics [7],

1 _
02; (yei, — Yz‘)2 ~x*(ni—1). (2)

Equation (2) states that the expression on the left has a x? distribution with n; — 1 degrees of
freedom. Using (1) and (2) we obtain

ni—l Sz2
= DS 1),

05

This allows us to build a confidence interval for the true variance 012 that only depends on the
sample variance and the number of samples experienced in the competitor domain!. For this,
we use the definition of the a-quantile x2(h) given by

P(Z > xa(h)) = . 3)

Equation (3) means that, if a random variable Z has a x? distribution with h degrees of freedom,
the probability that Z takes values greater than x2(h) is a. Fixing a to a convenient value, for

'In principle, the method to calculate the confidence interval for the variance through the x? distribution
assumes normally distributed samples. However, it is known [7] that this method is also valid when samples
are obtained from any other distribution, different from the normal. In this case, the values provided would
indicate approximated confidences, rather than accurate ones, that would become more precise as more samples
are considered.
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instance o = 0.95 to make things concrete, we can obtain an interval for Z that is 95 % certain
(ni—l)S.Z

to include its true value. Taking Z = “=—~* we have,
P <(ni ~1)s > x2 (ni — 1)) =P <0-2 < (ni = 1) 57 1)Si2> =«
o} o "X (ni—1)
The upper bound of this interval,
—_ (ni—1)S7
9, = 2 1)’
Xa (nl )

represents the highest possible value (with o confidence) of the actual unknown variance o?

(2
given the current uncertainties in the estimation. Identical sample variances obtained with a
lesser number of samples will have higher upper bounds. The value 012 provides a measure of the
quality in the approximation that balances the estimation accuracy and the confidence in that
estimation. Hence, we adopt the inverse of 012 as the relevance of a constant-valued competitor

@ia

This definition of the relevance avoids that estimations obtained from few observations that
eventually show low sample variances, can be preferred to those with slightly higher sample
variances but with much more confident estimations. To illustrate the behavior of the relevance
function (4) with the accumulation of samples we note that

(4)

i — 1
lim X (=D
n—00 n; — 1
and
. 1 1
o =
Hence,

. _oxa(mi—1) 1
A i) = lim & "~ Fyse = o7
which shows that, as the number of samples tends to infinite, the relevance function tends to
the inverse of the actual unknown variance.

For the definition of relevance in Eq. (4) we have assumed that both, the competitor and
the relevance functions are constant in their domains. Now we can extend this definition to
the general case of point-dependent competitor and relevance functions. In this case, no matter
what FA method is used for the competitor function, it is expected to approximate the mean
value of the target function at each point and, consequently, the relevance will be associated
to the variance of the target function at each point. A point-dependent estimation of the
variance for each competitor S?(z,7;) can be obtained with a further FA process, similar to that
used for the competitor function, but whose samples involve the squared differences between
the observed value and the current approximation, (y; — ®;(z,&;))?. Note that in many FA
problems, the target function is not deterministic but stochastic, so that the variance at a given
point does not only reflect the inaccuracy in the estimation of the target function at this point,
but also its variability due to the non-determinism. However, since this additional source of
variability is essentially associated to a given point x, it will affect in a similar measure all the
competitors covering it, and will not influence in the competition. Thus, in the general case of a
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point-dependent competitor function, definition (4) is extended to a point-dependent relevance
function that can be approximated by

Xa (hi(z,i))
hi(l', §Z)Szz($, Ti)’

were h;(x,s;) plays the role of n; — 1 in (4), but in this case is a point-dependent function that
estimates the number of samples used in the computation of the variance at each point. Such
estimation must take into account that, due to the generalization carried out by the FA process,
each sample is not used just to update the approximation at the input point, but has an influence
on its neighborhood in a way that depends on the specific FA approach and updating method.
This may make the estimation of h;(z,¢;) rather complex and, in order to simplify it, we will
assume that the amount of samples used at each point is proportional to the sample density at
this point. Thus, if p;(x,;) is a parametric approximation of the sample probability density for
the competitor, h;(x,s;) can be approximated by

Fi(l‘,l/i) = (5)

hi(x, <) = Vnipi(z, ) — 1, (6)

where n; is the total number of samples observed in X; and the proportionality factor V' can
be thought of as a measure of the equivalent volume from which each point is influenced with
the specific updating method, and must be set empirically for each particular problem. Note
that x?2 (hi(z,¢;)) is not defined for negative values of h;(x,s;), so that in such situation a small
positive value should be used for it.

3.3 Competitor Management

As pointed out in the introduction, during the process of FA in RL, the intermediate value
functions obtained at the different stages usually have different structures, and could be even
more complex than the optimal one [9]. Since the complexity of the intermediate value functions,
and of the final optimal value function, is usually unknown in advance, they cannot be expected
to fit into a predefined parametric model. In general, non-parametric methods deal better with
these complexity variations than parametric ones.

In order to make our approach non-parametric so as to be able to approximate an arbitrary
function to any desired precision, new competitors will be created on demand for a better
approximation. The idea is to find, through generating competitors, the regions of the domain
in which the target function can be well approximated with the parametric function used by
each competitor. In principle, any generation mechanism can be employed for this purpose and
even a random generation strategy could work, as shown in the example of Section 2.2. However,
in this work we propose the use of a more informed generation strategy, as we explain next.

New competitors will be generated when, after observing a new sample (z,y), the approx-
imation error is larger than a threshold e. corresponding to the maximum error allowed in
the approximation, and all the active competitors for & have reached a minimum user-defined
confidence threshold n..,

(f(x) = Fla,®,1))* = (y — Pu(x,&u))* > e,
n; > Ne, Vi |$ e X;.

This last condition is necessary to avoid the generation of further competitors in a region where
one has already been generated but has not yet been updated enough to adjust its parameters.

When these two criteria are fulfilled, new competitor domains are generated by two different
mechanisms. On the one hand, a new domain is generated by intersecting that of the winner
competitor, X,,, with the domain of the competitor that showed the least prediction error at the
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sampled point, assuming that they do not coincide. On the other hand, new domains are built
by splitting that of the winner, X, in three overlapping subdomains, each one of half the size of
Xw. Each subdomain is obtained by appropriately cutting X,, in the dimension d corresponding
to the longest side of the domain. Generation via splitting complements the generation via
intersection of existing domains, since it permits increasing the resolution indefinitely, which is
not possible by intersections alone.

Algorithm 1: ICFA (Incremental Competitive Function Approximation)

Initialize a set of N competitors ®; and their corresponding relevance functions I'; so that
their domains form a covering of the domain of the target function.
n; < 0,Vi € {1..N}
t+1
loop
Get new sample (z¢, y¢)
I, < set of indexes of active competitors for x;
w < index of the winner competitor for x;
for i € I, do
ei(we) « (yr — ®i(w4,&;))? %compute the approximation error of competitor ®;
Update the parameters ; of competitor ®; using sample (x¢, y¢)
Update the relevance function T'; by updating S?(x, 7;) with sample (74, e;(x;)) and
pi(z, ;) with sample x;
n;<—n; +1
end for
if (ey(z¢) > €. and n; > n., Vi € I;,) then
Generate new competitors by combination
Generate new competitors by splitting
end if
if (¢ modulo ite;y,) = 1 then
Eliminate useless competitors
end if
t+—t+1
end loop

3.3.1 Elimination of Competitors

The generation process will produce competitors that eventually may prove to be of little use
for the approximation. Despite a large amount of competitors improves the chances of general-
ization, the elimination of the less useful competitors may be convenient to avoid an excessive
computational cost in storing and processing them. The elimination of a competitor will not be
based on its inaccuracy since, even if a competitor has a large approximation error, it may be
the best the system has for some points of the domain. Instead, the competitors eliminated are
those which have not won in the last n, times they have been active, since this means that they
are not taking part in the approximation. Once every a certain number of iterations itcy;,, we
eliminate all the competitors that fulfill the elimination criterion.

3.4 The ICFA Algorithm

The complete algorithm for the incremental updating of a CFA is presented in Algorithm 1.
Note that, in this algorithm, the initialization and updating of each individual competitor and
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relevance functions is performed according to the specific FA approach chosen for them, which is
independent of the ICFA algorithm itself. In the following we will assume that an incremental,
memory-free FA method is used in all cases.

4 ICFA with Gaussian Mixture Models

As presented above, the ICFA system requires maintaining, for each competitor, three function
approximations: one for the estimation of the target function given by ®;(z,&;), a second one
for its variance S?(z,7;), and a third one for the sample probability density p;(z,¢;), the last
two, used to compute the relevance function (5). In principle, each of these estimations could
be obtained from an independent FA process with its own memory requirements and updating
process. To reduce this burden, we propose a simpler approach in which, instead of maintaining
these three function approximations, a single approximation is maintained for the sample density
distribution p;((z,y)) in the input-output space of samples (x4, ;). From this distribution we
can readily obtain the conditional distribution p;(y|x;) for the desired input x;, form which
the mean p;(y|r:) and variance o?(y|z¢) can be obtained, which correspond respectively, to the
estimated value ®;(zy,&;) and variance Si2 (¢, 7;) of the target function at this point. On the
other hand, marginalization of p;((x,y)) for the x variable provides the desired estimation of
the sample density in the input space p;(x,s;). Figure 4 provides a schematic representation to
illustrate this.

crf‘(y|xf)
pi(yx,)<,uf()’|x;)

r

Figure 4: Estimation of the sample density in the input-output space. Dots
correspond to observed samples (x¢, ), and shaded areas represent the sam-
ple density estimation. The conditional distribution p;(y|z;) is represented
on the vertical line passing through z;, from which the mean value pu;(y|x;)
and variance oZ(y|z;) can be obtained. The curve on the z axis represents
the probability density of samples in the input space obtained by marginal-
ization.

A convenient way to approximate the sample density distribution p;((z,y)) is by means of
a Gaussian mixture model (GMM), which is a standard tool for such task, and for which incre-
mental updating procedures have been developed. A GMM consists in a set of K multivariate
Gaussians defined in the input-output space, and the density estimation at a given point z is
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obtained as a weighted average of the values provided by the Gaussians as
K
p(z0) =Y oiN(z 15, %)),
j=1

where z = (x,y) is the input-output pair; K is the number of Gaussians of the mixture; oy,
usually denoted as the mixing parameter, represents the prior probability P(j) of Gaussian j
to generate a sample; N (z; p15,%;) is the multidimensional Gaussian function with mean vector
pj and covariance matrix X;; and © = {{oq,p1, %1}, ..., {ak, pkx, Xk }} is the whole set of
parameters of the mixture. We omitted the subindex ¢ referring to the competitor for clarity in
the formulas.

In [1], an incremental version of the Expectation-Maximization algorithm to update the
parameters of a GMM is proposed, which incorporates a progressive forgetting of old, possibly
outdated observations. This permits a better adaptation to non-stationary target functions, as
is the case of the Q-value estimation, and makes the approach well suited for RL, so that we
adopted it in our implementation. The details of the updating algorithm will not be provided
here, but the interested reader may found them in [1]. The difference between the mentioned
work and the present one is that the first uses a single GMM to represent the sample density
distribution in the whole domain, and new Gaussians are generated in the GMM when this
is required to improve the approximation, thus making the approach non-parametric. In our
case, a relatively simpler GMM is embedded in each competitor and, since the accuracy of the
approximation is already improved by the addition of new competitors as described in Section
3.3, increasing the complexity of each competitor is not necessary, so that the GMM of each
competitor will always stay with the same fixed number K of Gaussians.

4.1 Deriving the conditional and marginal distributions

To obtain the mean value and variance estimations for a given input point z;, we first need to
derive the conditional distribution p(y|z;). Decomposing the covariances ¥; and means p; in

the following way:
(" )
g < N? )

E;’?‘T E?y
Ej: ng Zgj{y )

the probability distribution of y for the given input z;, can then be expressed as

K
plyleed) =D Bi(@)N (y; pi(ylae), o3 () (7)

j=1

where )
pj(ylee) = pf + 357 (557) 7 (w0 — 45)
2 _ x zz\—1 w7
oj(y) = 8§ — 537 (¥57) =,

and

N (we; 5, X57)

Bj(@e) = — :
> N (g i, , BT)

m=1
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The competitor value function ®;(x,&;) can be obtained for each i as the mean u(y|z;) of the
corresponding conditional distribution (7), which is given by

K
plylee) = Byl (ylay).

j=1
Similarly, the variance SZ(z¢,7;) is given by the corresponding o2 (y|x;),

K

o*(ylze) =Y Bilae) (3 (y) + (g (ylze) — plyler))?).

J=1

The density of samples in the input space p;(x,¢;) is obtained as the marginal distribution

K
p(xr) = Z N (w4 /”’;‘:7 wa)
j=1

Note that, in this case, the parameters of the three function approximators of each competi-
tor, i.e. &, 7;, and ¢;, are those of the corresponding GMM, ©;.

5 Reinforcement Learning with a Competitive Function Approxima-
tion

Our purpose now is to use the ICFA approach as the function approximation method for RL in
continuous state and action spaces. The specific RL paradigm we have chosen to illustrate how
this can be done is Q-Learning [32, 29]. In this case, the target function to be approximated
by the CFA F(z, ®,T) is the value function Q(s,a), so that the input variable x consists in the
state-action pair (s,a), and each competitor function ®;((s,a),§;) will approximate the Q(s,a)
values in its own domain of the state-action space.

As usual in RL, samples are obtained from the interaction with the environment, which is
modeled as a Markov decision process, so that, at each time step, the system is in a given state
s¢ and the agent executes an action a;, after what the system changes to state s;y; and the
agent receives an immediate reward r; according to certain probability distributions determined
by the environment.

Ideally, each action execution should provide an observation of the (stochastic) target func-
tion @, thus giving rise to a training sample consisting of a pair ((s¢, at), ¢*(s¢, ar)), with ¢*(s¢, at)
defined according to the sampled version of the Bellman optimality equation [4] as

(st ar) =1 + vmgX(Q*(sm, a)),

where 7 is the discount factor, and Q*(siy1,a) is the true @Q-value of the state-action pair
(S¢+1,a). However, since the true @-function is actually unknown, the sample value must be
estimated using the current value provided by the same CFA that is being learned. Thus,
defining Q(s,a) = F((s,a), ®,T), the sample value will be given by a ¢(s;, a;) obtained as

~

q(st,ae) = ¢ + *ymgX(Q(sm, a)).

A~

To compute the value g(s¢, a;) we need to solve the maximization problem max(Q(s¢+1,a)), but,
a

in order to avoid the complexity of solving such maximization problem when the action set is
continuous, we will just estimate its value by computing Q(s;+1,a) for a finite number of actions
and taking the largest of them.
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5.1 Action Selection

A distinguishing trait of RL is that the agent must select what action to execute at each time
step, and for this, it has to counterpoise two conflicting aims: on the one hand, it has to
maximize the reward received in the long term, so that it should prefer to execute the actions
that were found to be more effective for this purpose in the past. On the other hand, the agent
must discover what actions that have not yet been tried enough can be even more effective
in producing reward, so that there is a need to execute exploratory actions whose result is
uncertain. This is the well known exploration-exploitation dilemma. A pure exploitation policy,
known as the greedy policy, would select, for each state, the action with the highest Q)-value as
estimated by the current approximation,

a = argmax Q(s, a’). (8)

a/

To allow for the execution of exploratory actions, a simple strategy consists in what is known
as the e-greedy policy, that takes the greedy action (8) with probability 1 —e, and an exploratory
random action with probability e. A more sophisticated strategy is the Boltzmann exploration
[29] which, in the case of a discrete action-set, selects the action to execute according to a

~

probability given by the values (s, a) of each alternative action,

(Q(s.0)/T

p(a’3> = W7

where T is a positive parameter, called the temperature, that is made to decrease with time, and
which regulates the influence of the values Q(s, a) in the probability: the higher the temperature
the lower the influence of Q(s, a). A high temperature is preferred at the beginning of the learning
process to decrease the influence of still poor estimations of Q(s, a). In contrast with the e-greedy
policy, which selects exploratory actions blindly, the Boltzmann exploration is biased towards
executing the more promising actions more often than less promising ones, what should improve
the overall performance. However, while it takes into account the estimated Q-value of each
action, it ignores the confidence with which each estimation is known. To address this issue,
[18] proposed an alternative action selection strategy that takes into account the uncertainty
in the estimation of Q(s,a). It is based on computing a confidence interval for Q(s,a) and
executing the action with the highest upper bound. By doing this, actions that have been tried
a fewer number of times will have larger confidence intervals, increasing their opportunities
to be executed. However, since this strategy is deterministic, it is vulnerable to sticking (a
phenomenon by which a statistically unlikely series of observations makes that a good action
will never be executed again), and while it favors the exploration of less executed actions, it
may not exploit enough the already acquired knowledge: even if it is well known that an action
produces a high reward, it will never be executed while there is some other action with so little
confidence as to have a larger interval upper bound.

Probabilistic Confidence-based Action Selection

We propose an action selection strategy that, like in the Boltzmann strategy, actions are not
selected in a deterministic way, but according to a probability distribution and, like in the
strategy of [18], both the current estimation of Q(s, a) and the confidence on this estimation are
taken into account. For this, we will use a known result from statistics which states that, if p is
the expected value of a random variable, Y is the sample mean of a set of n observations of this
variable, and S? is the sample variance, then the following random variable has a t-distribution
with n — 1 degrees of freedom [7],
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~t(n—1). 9)

Taking ¢(s,a) as the sampled random variable, x corresponds to its true (unknown) expected
value Q(s,a); the sample mean Y can be approximated by the estimation Q(s,a) given by
the winner competitor ®,, for (s,a); the sample variance S2, by the point dependent variance
estimation of the winner competitor, S2((s, a), 7, ); and the number of samples n, by the density-
based estimation (6) of the winner competitor ny(s,a) = hy((s,a),s) + 1, so that we can
approximate Eq. (9) by

A~

Q(Sv a) B Q(S’ a)
VS ((s,a), mw) (s, a)
To select the action to execute, we consider only a finite set of m actions a;,j = 1...m and we
evaluate each of them in a probabilistic way as follows: first, we take a value ¢; for the random
variable of the left term of (10) probabilistically, according to a t-distribution with n,(s,a;) —1
degrees of freedom. From this value, we derive the randomized value Q,nq(s,a;) that will be
used to evaluate action a; as

and(37aj) - Q(Sv a’j) - tj W

Once a Qrnd(s,aj) value has been assigned to every action a; in the current state, the action
with the highest randomized value is selected for execution,

~ t(ny(s,a) —1). (10)

a= arg(fnax Qrnd(s,a;).
J

With this action selection strategy, each possible action a; has a non-zero probability of
execution and, in the long run, will be selected an unbounded number of times as required for
the correct convergence of any asynchronous dynamic programming algorithm. Moreover, the
exploration-exploitation trade-off is solved by giving higher probabilities to those actions whose
expected @Q-value is larger or whose estimations are less certain, in a well balanced approach
based on statistically justified grounds. Note that, as the confidences increase, the amount
of exploration automatically decreases without any explicit schedule or parameter settings, as
required by the Boltzmann strategy for the temperature. It must be emphasized that, while
this form of action selection requires the estimations of S2((s,a),T,) and n.,(s,a), this does
not represent any additional cost, since they are already available for the computation of the
relevance of each competitor.

5.2 Algorithm for Q-Learning with a Competitive Function Approximation

When the ICFA is used to approximate the value function in @-learning, we can use Algorithm
1 as is, with the particularity that the samples used to update the system are obtained through
interaction with the environment following the action selection procedure just described. All
the steps necessary to obtain a new sample (z;,7;) at each cycle of the main algorithm are
summarized in Algorithm 2, which replaces the step “Get new sample (x¢,1)” in Algorithm
1. Algorithm 2 contains two for loops, the first is to evaluate each of the m possible actions
to execute, and the second to evaluate the QQ-value of the next state for m’ actions, but note
that they do not need to be necessarily the same set of actions in the two cases. The resulting
algorithm that combines the ICFA method of function approximation with RL will be denoted
as ICFARL.
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Algorithm 2: The “Get new sample (x4, y;)” step of the ICFA algorithm with Q-Learning
St <— current state
for j =1 to mdo
w; + index of the winner competitor for (s, a;)
Q(st, aj) — (I)wj (Stvaj)
tj < random value generated with a t-distribution with n,, (st,a;) — 1 d.o.f.
2 .
Qrnd(st,a5) < Q(st,a5) — t; 2, ) re)

nwj (Stvaj)

end for
ay < argmax Qpnd(se, aj) % Action selection
s

Execute c;t and observe reward r; and next state s;41
for j =1tom' do

w; < index of the winner competitor for (s¢41,a;)

Q(3t+17 aj) — (I)wj (St-i-l? aj)
end for
QStH ¢ max Q(stH, a;) % Next state evaluation

J

q(st7 at) <~ Tt + 7Q8t+1
(@, ye) < ((s¢,a¢),q(s¢,at))

6 Experiments

In order to assess the generality and efficiency of the approach we will consider three different
tasks that cover the basic types of difficulty in control problems [27]: avoidance, which consists
in keeping the system into a valid region of the state space; goal reaching, where the system is
requested to reach a goal area of the state space and finish the task when it gets there; and
regulation, where the system is also requested to reach a goal but, instead of finishing the task
when this happens, it should stay there using active control. For each of these tasks, we will use
a standard benchmark of reinforcement learning: the cart-pole balancing for the avoidance task,
the mountain-car for the goal reaching task, and the inverted pendulum for the regulation task.
With these benchmarks, we will not only assess the generality and efficiency of the ICFARL
method but, to some extent, also its scalability, since the state space of the cart-pole balancing
has two more dimensions than the other two benchmarks.

For each benchmark, the performance of ICFARL will be compared with that of Q-learning
using two different FA techniques: an incremental learning version of Variable Resolution (VR),
and a single global Gaussian Mixture Model corresponding to the GMMRL method described
in [1]. The first will serve as a basic reference with a well known standard approach, while the
GMMRL method will serve to asses the difference in performance specifically attributable to the
competitive approach. For both methods, the same “Get new sample (z,y;)” step described in
Algorithm 2 is implemented, just noting that the winner competitor must be understood as the
only approximator available at each input point. In particular, action selection is performed with
the probabilistic confidence-based approach described in Sec. 5.1, what in the case of the VR
method implies that additional statistics must be maintained for the variance of each aggregated
state. The parameters of each method are optimized through a non-exhaustive search for each
experiment.
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6.1 A Regulation Problem: the Inverted Pendulum

The inverted pendulum benchmark [13] is depicted in Figure 5. The task consists in swinging an
under-actuated pendulum until reaching the upright position and then staying there indefinitely.
The optimal policy for this problem is not trivial since, due to the limited torques available,
the controller has to swing the pendulum several times until its kinetic energy is large enough
to overcome the load torque and reach the upright position. Thanks to its simplicity but still
challenging control task, this benchmark was widely used to test the performance of state of the
art methods for FA in RL [28, 12, 10, 27].

Figure 5: Inverted pendulum benchmark.

The dynamics of the inverted pendulum is modelled as

ml?0 = —puf + mglsinb + a,

where 6 is the angular position, [ is the length of the link, m the mass of the pendulum (assumed
to be concentrated at a point at the end of the link), g the gravity constant, p the friction factor,
and a the input torque. In our simulations we use the values I = m =1, ¢ = 9.8, p = 0.01,
and an input torque a ranging in [—5,5]. For the simulation we use the Euler method with a
differential for time of dt = 0.001 and an actuation interval of 0.1.

The state-action space is three-dimensional, configured by the angular position 6, the angular
velocity 0, and the action a. As the reward signal we simply take minus the absolute value of
the angle of the pendulum from its top position: 7(6,6) = —|f| which ranges in the interval
[—7,0]. The discount factor v is set to 0.85.

6.1.1 Set-up for the Inverted Pendulum Experiments

Each competitor of the ICFARL algorithm is provided with a GMM with K = 10 Gaussians
defined in the four-dimensional space of vectors (6, 0,a, q). To define the initial set of competi-
tors, we form a covering of this space that is composed of 10 subsets, one corresponding to the
entire space, and three more for each of the input variables, obtained by segmentation of the
whole space along three overlapping intervals of the corresponding variable. Figure 6 shows a
schematic view of the domains generated in this way in the input space in the case that it is
two-dimensional.

For this experiment, we implemented two instances of the GMMRL method, one with an
initial number of Gaussians K = 10, the same as for each competitor of the ICFARL, and a
second one with K = 100, so that its initial number of Gaussians coincides with total number
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Input space

Figure 6: Example of the domains of the initial competitors in a 2D input
space.

of Gaussians of the initial ICFARL competitors. For the two maximization processes involved
in the action selection and next-state evaluation steps (cf. Algorithm 2), we use the same set of
discrete actions, obtained by subdividing the whole action range in intervals of length 0.1 and
taking their bounds. The factor V' introduced in (6) is taken equal to 1.

The experiments are performed using episodes of 500 iterations. At the beginning of each
episode, the pendulum is placed in the hang-down position. At the end of each episode, a test of
500 iterations is performed exploiting the policy learned so far, with no learning nor exploration.
As the result of the test we take the sum of the rewards obtained at each iteration. For each
experiment we show the average of 15 independent runs of 100 episodes.

6.1.2 Results

Figure 7 shows the results of the experiments comparing the performance of ICFARL, the VR
approach, and the two instances of the GMMRL method. In this experiment, the ICFARL algo-
rithm reaches a long term performace similar to that of the GMMRL with 10 initial Gaussians,
though it learns significantly faster at the beginning. Notably, the GMMRL with 100 initial
Gaussians shows a much poorer performance, though still outperforming the VR approach.
This is likely due to the fact that, in this case, the system must simultaneously balance a large
number of parameters (in fact, 100 Gaussians is far more than required, since the GMMRL with
10 initial Gaussians reaches a good performance with an average of about 45 Gaussians).

6.2 A Goal Reaching Problem: the Mountain-Car

The benchmark of the mountain-car [29] consists in driving an underpowered car up a steep
mountain road (Figure 8). The difficulty of the problem is that the force exerted by gravity is
larger than the force of the engine of the car. Then, in order to climb the mountain, the car
needs to first move away from the mountain up to the opposite slope, and then apply maximum
acceleration to accumulate enough energy to reach the tip of the mountain.

The equations modelling the dynamics of the car are

pi+1 = bound [pt + vi11],
ver1 = bound [vy 4+ 0.001a; 4+ (—0.0025) cos(3p)],
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Figure 7: Comparison of performance of the different approaches on the in-
verted pendulum.

where p; is the car position at time ¢, v; is the car velocity, and a; is the discrete action consisting
in the car acceleration forward, a; = 1, backward, a; = —1, or no acceleration a; = 0. The
operator bound|-] keeps the position and velocity in the intervals [—1.2,0.5] and [—0.07,0.07],
respectively. When the car reaches the left position bound, its velocity is set to 0. The car
arrives at the goal condition when the position p; = 0.5 is reached, in which case the reward is
r = 0 and the episode terminates. In any other case the reward is » = —1. For this task the
discount factor « is set to 0.999.

6.2.1 Set-up for the Mountain-Car Experiments

Since in this problem the action set is discrete, we use an independent function approximation
process of the @ function for each action a € {—1,0,1}. Each one of the three ICFA’s of the
ICFARL system is initialized with 22 competitors whose domains are composed of 16 subsets
forming a regular grid on the (p,v) space, plus 6 overlapping regions built as shown in Figure
6. Each competitor is provided with K = 10 Gaussians, which in this case are defined in the
three-dimensional space of vectors (p, v, q). Each one of the three GMM of the GMMRL system
is also provided with an initial number of K = 10 Gaussians. The factor V' introduced in (6) is
taken equal to 1.

In the experiments, we perform training episodes that run until the car reaches the goal
position or until a maximum of 300 iterations have been executed. Each time 600 new iterations
have been accumulated, a test episode is carried out exploiting the policy learned so far. As the
result of the test we take the sum of the rewards obtained in the test episode. Both, training
and test episodes are initiated in a state selected randomly. For each experiment we show the
average of 15 independent runs.
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Figure 8: Mountain-car benchmark.

6.2.2 Results

The results are presented in Figure 9. It can be seen that, while the difference in the performance
of the VR and GMMRL methods are not as large as in the previous experiment, the ICFARL
reaches a significantly higher performance and has a more stable behavior than the VR and
GMMRL methods in this problem.

6.3 An Avoidance Problem: the Cart-Pole Balancing

The Cart-Pole Balancing benchmark [3] consists in a pole mounted on a cart that has to be
stabilized inside an acceptable region by the motions of the cart (Figure 10). The cart is free to
move within a bounded range of a linear track, and the pole moves in a vertical plane parallel
to this track.

The equations for the model of the cart-pole system are

gsinf + cos 6 [—F — mplé sin @ + Mchn(i‘)} _ ol

mpl

" 1[4 - ] |
) F+myl [9 sin 6 — 6 cos 9] — pesgn ()
P o=

me + my '
where x is the cart position, 6 is the angular position of the pole, m,, is the mass of the pole, [ is
the length of the pole, m,. is the mass of the cart, F' = a is the control action, consisting in the
force applied to the cart, g is the gravity constant, and s and p, are the friction coefficients of
the cart and the pole, respectively. The parameters of the model are set to m, = 0.15, m, = 1.0,
1 =0.75, and g = 9.81. In our experiments, the friction coefficients are set to 0. The acceptable
region of the pole is defined by —7/6 < 6 < 7/6, and the one corresponding to the cart is defined
by —1.5 < z < 1.5. The action takes values within the interval [-50,50], and the actuation
frequency is 60 Hz. While the cart-pole system remains in its acceptable region, the reward is
a linear function of the absolute value of 8, taking the value 1 for 6 = 0, and 0 at the bound
of its acceptable range. When either the pole or the cart leaves its acceptable region, a reward
r = —1 is provided and the episode terminates. The discount factor is set to v = 0.95.
The cart-pole benchmark is of interest since it involves a five-dimensional state-action space,
(s,a) = (z,4,0,0,a), two more than the inverted pendulum and mountain-car, and serves to
illustrate the scalability of the algorithm.
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Figure 9: Performance of the ICFARL, GMMRL, and VR methods for the

mountain-car.

6.3.1 Set-up for the Cart-Pole Experiments

We provide the ICFARL system with an initial set of 15 competitors generated by splitting the
range of each variable in the state-action space in three overlapped segments, as illustrated in
Figure 6. Each competitor is provided with K = 20 Gaussians defined in the six-dimensional
space of vectors (z, &, 0, 0,a, q). The GMMRL system is also provided with an initial number of
K = 20 Gaussians. For the two maximization processes involved in the action selection and next
state evaluation steps of Algorithm 2, we use a discrete set of actions obtained by subdividing
the whole action range in intervals of length 2 and taking their bounds. The factor V' introduced
in (6) is taken equal to 50.

The set-up for the experiments is basically the same used in [25]. A training episode starts
in a random state so = (xo, 0, 0o, 90) obtained at random from a normal distribution with mean
vector g = (0,0,0,0) and covariance matrix ¥y = diag(0.1,0.1,0.1,0.1). Each training episode
lasts for 5 seconds or until the system fails in keeping the pole, or the cart, in the acceptable
region. After 10 seconds of simulated training time, a test is performed. Each test consists in
four episodes of 5 seconds of simulated time, or until failure, starting at four different positions
of the pole: —10°,—5°,5°,10°, respectively, and with the cart centered on the track. The result
of the test is obtained by averaging the sums of rewards obtained in the four episodes. For each
experiment we calculate the average of 15 independent runs.

6.3.2 Results

Figure 11 presents the results of the experiments where an estimation of the maximum possible
reward, corresponding to the best controller obtained by exhaustive manual tuning, is also shown.
Note that the ICFARL converges very fast to a near optimal policy, and keeps improving with
time approaching the optimal controller asymptotically. Its performance on this problem is
much better than that of the GMMRL and the VR approaches, which keep also improving with
time, but at much slower rates.
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Figure 10: Cart-pole balancing benchmark.

6.4 Discussion

The results of the experiments show that, in all cases, the ICFARL method has a better perfor-
mance than its non-competitive counterpart, the GMMRL method, which, in turn, outperforms
the VR method used for reference. However, the differences found between the three meth-
ods vary a lot from one benchmark to another. The different characteristics shown by the
three benchmarks give us the opportunity of evaluating the relative performance of the ICFARL
method on different aspects that will be analyzed next.

Adaptability to Different Complexities

In the first experiment, corresponding to the inverted pendulum, the performances of ICFARL
and GMMRL with 10 initial Gaussians are very similar in the long run, though ICFARL shows
a better performance at the beginning, reaching a near-optimal performance significantly faster.
To interpret this result we must distinguish two phases of this problem: the first phase consists
in moving the pendulum back and forth to drive it to the up position. The second phase
consists in, once the up position has been reached, stabilizing the pendulum there. The second
phase is relatively simpler, and there is no apparent advantage of one method over the other to
accomplish it. However, solving the first phase requires a precise enough determination of the
correct point at which the direction of the acceleration must be inverted. This corresponds to
a discontinuity in the @ function. Such a discontinuity is difficult to represent with the global
approximation of GMMRL, but can be easily done with the competitive approach of ICFARL if,
eventually, competitors are generated near, but not including, the discontinuity, so that they are
not affected by the too dissimilar @) values found beyond the discontinuity. An alternative way,
perhaps more interesting, in which ICFARL may account for a discontinuity occurs when each
of two overlapping competitors, both including the discontinuity, makes a better approximation
of the function at one side of the discontinuity than the other competitor. In this case their
corresponding relevance functions should cross each other near the discontinuity, resulting in
the selection of a different action at each side. The ability of the ICFARL method to deal with
discontinuous @ functions provides a likely account of its better performance over GMMRL in
the first phase of the experiment.
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Figure 11: Performance of the ICFARL, GMMRL, and VR methods for the
cart-pole.

Dealing with Biased Sampling

In the mountain-car experiment, receiving continued negative reward is only avoided at the goal
state, but the system has no cue of how to approach it before reaching it for the first time, what
is only possible by chaining a long series of correct actions by accident. This implies that most of
the actions will occur essentially at random and most of the situations experienced by the system
will be near the lower part of the road. This is a clear example of the biased sampling problem
common in RL. Biased sampling causes difficulties to the GMMRL approach (and to most global
FA methods), since the information provided by an eventual goal reaching will be followed by a
wealth of non-goal experiences that will inevitably fade the contribution of the goal experience.
This explains the instability shown by the performance curve of the GMMRL method in Figure
9, revealing that unlearning is taking place due to biased sampling. Local methods like ICFARL
can deal better with biased sampling, since each local approximator is only updated by samples
in its own domain, so that the information gained from an isolated goal experience can be better
preserved. This fact is confirmed by the results of Figure 9 showing the better performance and
more stable behavior of ICFARL. Note that locality is also a feature of the VR approach, what
can explain its relatively good performance in the mountain-car benchmark in comparison with
that of the other two.

Scalability

The third experiment, corresponding to the cart-pole, presents a different kind of difficulty: it
involves a state space of a higher dimension. A higher dimension implies a much larger function
domain, so that the complexity required by a global function approximator increases and, as
argued in Section 2.1, adjusting a complex global function is harder than adjusting a set of
simpler local functions covering the same domain. This is the reason why GMMRL takes much
longer to learn than ICFARL. On the other hand, the subdivision strategy of the VR approach
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becomes more and more inefficient as the dimension increases, and, as suggested in Section
2.2, forming a covering with overlapping competitors may be much more effective. The large
increase in performance of ICFARL with respect to the other two methods demonstrates the
good scalability properties of the approach.

On the Computational Cost

As could be expected, the computational cost per iteration of the ICFARL method is higher
than that of the GMMRL method, essentially due to the larger total number of Gaussians used
to approximate the function with the competitive approach. The average number of Gaussians
required to reach a good performance were, roughly, 2000 for the inverted pendulum, 15000 for
the mountain-car (considering all the actions), and 4400 for the cart-pole experiments, while the
GMMRL approach required of the 45, 600, and 400 Gaussians, respectively. Despite this, the
Gaussians that must be updated at each ICFARL iteration are just those of the competitors that
are active in the current situation. As a consequence, in all the experiments, the effective cost
per sample resulted in less than one order of magnitude higher in ICFARL than in GMMRL.

7 Conclusions

The ICFARL system has been developed to address some specific difficulties encountered by FA
in the context of RL, which we identified as the non-stationarity of the target function and the
biased sampling problem. To deal with the non-stationarity of the target function, the FA must
be able to adapt rapidly to the new observations, and ICFARL achieves this by the use of local
approximators that, thanks to its relative simplicity, may adapt much faster than a global FA
for the entire domain. At the same time, the local nature of the competitors makes them much
less affected by biased sampling, since no matter how many samples fall in a given region, they
have no effect on those competitors whose domains do not include it.

The performance of the method is further increased by the fact that competitors have over-
lapped domains that are updated in parallel, and, thanks to the relevance function, the system
is able to select the competitor that is more accurate and confident at each point of the domain.
With this approach, when a sudden change of the target function occurs at some point of the
domain, it is not necessary that the formerly winner competitor at this point completely reshape
its approximation for the output to become accurate again; instead, a different competitor that
manages to be more accurate at that point will provide the output as soon as its relevance gets
larger there.

A key aspect in the competitive strategy is the proper definition of the relevance function
that, associated to each approximator, permits selecting the best approximator in a point. We
proposed a relevance function that uses a point-wise estimation of the variance as a measure
of the accuracy of the approximation, and a point-wise estimation of the sample density as a
measure of the confidence in the approximation. The results obtained in the experiments support
the validity of our proposal and corroborates the advantage of the competitive approach for FA,
which we expect that can be used in many other contexts not necessarily related with RL.
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