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ABSTRACT 
The performance of a leak detection and location algorithm depends on the set of 
measurements that are available in the network. This work presents an optimization strategy 
that maximizes the leak diagnosability performance of the network. The goal is to 
characterize and determine a sensor configuration that guarantees a maximum degree of 
diagnosability while the sensor configuration cost satisfies a budgetary constraint. To 
efficiently handle the complexity of the distribution network an efficient branch and bound 
search strategy based on a structural model is used. However, in order to reduce even more 
the size and the complexity of the problem the present work proposes to combine this 
methodology with clustering techniques. The strategy developed in this work is successfully 
applied to determine the optimal set of pressure sensors that should be installed to a District 
Metered Area (DMA) in the Barcelona water distribution network. 

KEYWORDS: Leak detection and location, sensor placement, structural analysis, water 
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INTRODUCTION 
An important matter concerning water distribution networks is system water loss, which has a 
meaningful effect on both water resource savings and costs of operation (Farley and Trow, 
2003). Continuous improvements on water loss management are being applied. New 
technologies are developed to achieve higher levels of efficiency, intended to reduce losses to 
acceptable levels considering technical and economical aspects. 
 
Telemetry systems have long been used in large water distribution systems for improving 
real-time monitoring of quantity and quality parameters. As monitoring technologies evolve, 
new possibilities of controlling and managing complex infrastructures are provided. This is 
the case for water networks. Sectorization of distribution networks into smaller subnetworks, 
such as DMAs, contributes to achieve, in real-time, an accurate estimation of the amount of 
water that is being consumed in each subnetwork. It is an efficient measure to control water 
loss, since flow and pressure meters bring a huge amount of data with information about the 
network behavior. Over the last decade, the concepts and methods developed for system-wide 
water balance calculations have been based upon water asset physical data and the statistics of 
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pipe bursts, service connections and underground conditions (Lambert, 2002). Performance 
measures and indicators are used to support the managerial approaches to minimize different 
components of water losses. 
 
Once a leakage has been identified, techniques are used to locate the leakage for pipe 
replacement or repairing. The whole process could take weeks or months with an important 
volume of water wasted. Technologies for locating leaks range from ground-penetrating radar 
to acoustic listening devices (Farley and Trow, 2003). Some of these techniques require 
isolating and shutting down part of the network. However, techniques based on locating leaks 
from pressure monitoring devices allow a more effective and less costly search in situ. 
 
In Brdys and Ulanicki (1994), techniques based on fault diagnosis are applied for leak 
detection and isolation. In this case, a mathematical model is used which permits comparing 
data gathered by installed sensors in the network with data obtained by a model of this 
network. If a difference is detected between these data sets, a detection of an abnormal event 
is obtained. Thus, modeling is paramount in order to achieve successful results. The model is 
the mathematical tool linking real sensor data gathered from the network to the decision 
making procedure. The tool provides leak detection as well as its approximate location in the 
network. 
 
Fault diagnosis systems are an increasing and important topic in many industrial processes. 
The number of publications devoted to fault diagnosis has increased notably in the last years 
(Blanke et al., 2006). In model-based fault diagnosis, diagnosis is basically performed using 
the responses of residual generators. These are functions obtained from the model and check 
the consistency between the process model and on-line process information. Since process 
information is usually obtained by means of the sensors installed in the process, it is important 
to develop methodologies to place the correct sensor set in the process in order to guarantee 
some diagnosis specifications. 
 
The present work aims at developing a methodology to decide where to install a set of 
pressure sensors in a water distribution network such that leaks can be easily detected and 
located. Since water companies will plan just a limited budget for sensor installation, the 
methodology should provide the best node emplacement for a reduced set of pressure sensors. 
 
Some results devoted to sensor placement for diagnosis can be found in the literature (Travé-
Massuyès et al., 2006; Krysander and Frisk, 2008; Sarrate et al., 2012). All these works use a 
structural model-based approach and define different diagnosis specifications to solve the 
sensor placement problem. A structural model is a coarse model description, based on a bi-
partite graph, which can be obtained early in the development process, without major 
engineering efforts. This kind of model is suitable to handle large scale systems since it 
doesn’t have numerical problems and efficient graph-based tools can be used. Structural 
analysis is a powerful tool for early determination of fault diagnosis performances (Blanke et 
al., 2006). 
 
Sarrate et al. (2012) developed an algorithm to determine where to install a specific number 
of pressure sensors in a DMA in order to maximize the capability of detecting and isolating 
leaks. The number of sensors to install is limited in order to satisfy a budgetary constraint 
requirement. Despite an efficient branch and bound search strategy based on a structural 
model is used, its applicability is still limited to medium-sized networks. In order to overcome 
this drawback by reducing even more the size and the complexity of the problem, the present 
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work proposes to combine this methodology with clustering techniques. Clustering is the 
unsupervised classification of patterns (observations, data items, or feature vectors) into 
groups (clusters). The clustering problem has been addressed in many contexts and in many 
disciplines (Jain et al., 1999). It is a mature and active research area (Xu and Wunsch, 2005) 
and many efficient algorithms have been developed in the literature. 
 
The main contribution of this work consists in combining a clustering technique with a branch 
and bound search based on a structural model to solve the sensor placement problem. This 
methodology is applied to a DMA in Barcelona network to determine the best location of 
pressure sensors for leak detection and location. 

 

SENSOR PLACEMENT METHODOLOGY 

Model-based fault diagnosis 
Model-based fault diagnosis is a consolidated research area (Blanke et al., 2006). Most 
approaches to detect and isolate faults are based on consistency checking. The basic idea 
behind all these works is the comparison between the observed behavior of the process and its 
corresponding model. This is performed by means of consistency relations, which can be 
roughly described as a function of the form 
 
 ( ( ), ( )) 0h y t u t = , (1) 
 
where ( )y t  and ( )u t  are vectors of known variables, denoting respectively process 
measurements and process control inputs. Function h is obtained from the model and is the 
basis to generate a residual 
 ( ) ( ( ), ( ))r t h y t u t= . (2) 
 
A residual is a temporal signal indicating how close is behaving the process compared with its 
expected behavior predicted by the model. In the absence of faults, a residual equals zero. In 
fact, a threshold based test is usually implemented in order to cope with noise and model 
uncertainty effects. Otherwise, when a fault is present the model is no longer consistent with 
the observations (known process variables) and the residual exceeds the prefixed threshold. 
 
Detecting faults is possible with only one residual sensitive to all faults. However, fault 
isolation is usually required rather than just detecting the presence of a fault. The fault 
isolation task is performed by designing a set of residuals based on several consistency 
relations. Each residual is sensitive to different faults such that the residual fault signature is 
unique for each fault. Therefore, distinguishing the actual fault from other faults is possible by 
looking at the residual fault signature. These fault signatures are usually collected in matrix 
form. 
 
Given a set of residuals R and a set of faults F the fault sensitivity matrix Ω  is defined in (3). 
When an element ijω ∈  is close to zero then residual ir ∈R is weakly sensitive to 
fault jf ∈F, whereas when it diverges from zero then the residual is strongly sensitive to the 
fault jf . 
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This matrix can be obtained by convenient model equations manipulation as long as faults 
effects are included in them (Blesa et al., 2012). Alternatively, it can be obtained by 
sensitivity analysis through simulation (Pérez et al., 2011). The latter approach will be used in 
the present work. Given a set of possible measurable variables{ }1 2, , , nx x x , the fault 
sensitivity matrix will collect those (primary) residuals that are obtained by comparing each 
real measurement ix  to the corresponding signal obtained through simulation x̂i  in the fault 
free case, i.e. ˆi i ir x x= − . An approximate procedure to obtain the fault sensitivity matrix 
involves using a simulator to get an estimation of measurement ix  in the fault free case 0ˆix , as 

well as in every faulty situation ˆ ,ij jx f∀ ∈F , i.e. 0ˆ ˆij i
ij

j

x x
f

ω
−

=
∆

, where jf∆  represents the 

simulated fault magnitude. 
 
Sometimes a binary version of the fault sensitivity matrix is used. Then the corresponding 
binary residuals are usually called structured residuals, whereas in the non-binary matrix they 
are referred to as directional residuals. 

Problem formulation 
Let S be the candidate sensor set and m the number of sensors that will be installed in the 
system. Then, the problem can be roughly stated as the choice of a combination of m sensors 
in S such that the diagnosis performance is maximized. It is assumed that a bounded budget is 
assigned to instrumentation and that all sensors to be installed have equal cost. This is the case 
in the DMA application, since all candidate sensors will be pressure sensors. 
 
Let F be the set of faults that must be monitored. In a water distribution domain a leak is an 
example of a fault, but other damages could be considered such as pipe blocking or tank 
overflow. In this work, the single fault assumption will hold (i.e., multiple faults will not be 
covered) and no candidate sensor fault will be considered. In model-based diagnosis, fault 
detectability and fault isolability are the main objectives (Blanke et al., 2006). Assuming 
structured residuals, a fault is detectable if its occurrence can be monitored, whereas a fault 

if ∈F is isolable from a fault jf ∈F if the occurrence of fi can be detected independently of 
the occurrence of fj. 
  
Assuming that a sensor configuration S ⊆S is installed in the process, ( )DF S ⊆F will denote 
the detectable fault set. Fault isolability will be characterized by means of fault pairs. 
Let :F×F be all fault pairs, then ( )IF S ⊆   will denote the set of isolable fault pairs 
(i.e., ( , ) ( )i j If f F S∈  means that fault fi is isolable from fj when the sensor configuration S is 
installed in the system). Based on the set of isolable fault pairs the isolability index is defined 
as the number of isolable fault pairs when a sensor configuration S is installed, i.e. 
I(S)=|FI(S)|, where |·| denotes the cardinality of the set. 
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To solve the sensor placement problem proposed in this work, a system description  is also 
required. Such description will allow the computation of the detectable faults and the 
isolability index for a given sensor configuration. Hence, the sensor placement for fault 
diagnosis can be formally stated as follows: 
 

GIVEN a candidate sensor set S, a system description , a fault set F, and the 
number m of sensors to be installed. 

FIND the m-sensor configuration S ⊆S such that ( )DF S = F and 
( ) ( ), | |I S I S S S m′ ′ ′≥ ∀ ⊆ ∧ =S . 

 

This problem was already solved by Sarrate et al. (2012), using a branch and bound search 
strategy based on a structural model of the process. However, the complexity of such 
algorithm critically depends on the cardinality of S. In order to overcome this constraint, a 
preprocessing step is proposed in the present work. Clustering techniques will be applied to 
reduce the candidate sensor set before solving the sensor placement problem proposed by 
Sarrate et al. (2012). 

Structural approach 
The analysis of the model structure has been widely used in the area of model-based fault 
diagnosis (Blanke et al., 2006). Therefore, consistent tools exist in order to perform 
diagnosability analysis and consequently compute the set of detectable and isolable faults. 
 
The structural model is often defined as a bipartite graph ( , , )G M X A  where M is a set of 
model equations, X a set of unknown variables and A a set of edges, such that ( , )i je x A∈ as 
long as equation ie M∈  depends on variable jx X∈ . A structural model is a graph 
representation of the analytical model structure since only the relation between variables and 
equations is taken into account, neglecting the mathematical expression of this relation. 
 
Structural modeling is suitable for an early stage of the system design, when the precise 
model parameters are not known yet, but it is possible to determine which variables are 
related to each equation. Furthermore, the diagnosis analysis based on structural models is 
performed by means of graph-based methods which have no numerical problems and are 
more efficient, in general, than analytical methods. However, due to its simple description, it 
cannot be ensured that the diagnosis performance obtained from structural models will hold 
for the real system. Thus, only best case results can be computed. 
 
It is well-known that the over-determined part of the model is the only useful part for system 
monitoring (Blanke et al., 2006). The Dulmage-Mendelsohn decomposition (Dulmage and 
Mendelsohn, 1958) is a bipartite graph decomposition that defines a partition on the set of 
model equations M. It turns out that one of these parts is the over-determined part of the 
model and is represented as M+. 
 
Fault detectability and isolability can be defined as properties of the over-determined part of 
the model (Krysander and Frisk, 2008). First, it is assumed that a single fault f ∈F  can only 
violate one equation (known as fault equation), denoted by fe M∈ . Without loss of 
generality, it is assumed also that a sensor s∈S  can only measure one single unknown 
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variable sx X∈ . In the structural framework, such sensor will be represented by one single 
equation (known as sensor equation), denoted as es. Given a set of sensors S, the set of sensor 
equations is denoted as SM . Thus, given a candidate sensor configuration S and a model M, 
the updated system model corresponds to SM M∪ . Hence, the detectable fault set and the set 
of isolable fault pairs can be determined as 
 ( ){ }( ) F |D f SF S f e M M += ∈ ∈ ∪ , (4) 

 ( ) { }( )( )( ) , | \
i jI i j f S fF S f f e M M e

+ = ∈ ∈ ∪ 
 

 . (5) 

The sensor placement algorithm developed by Sarrate et al. (2012) is briefly recalled next. 
Algorithm 1 is based on a depth-first branch and bound search. The search involves building a 
node tree by recursively calling function searchOpm, beginning at the root node down to the 
leaf nodes. Each node corresponds to a sensor configuration (node.S) and child nodes are built 
by removing sensors from its corresponding parent node. Set node.R specifies those sensors 
that are allowed to be removed. 
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Algorithm 1 S* = searchOpm(node, S*) 

childNode.R := node.R 
for m-(|S|-|R|)+1 iterations do 

Take s∈  childNode.R at random 
childNode.S := node.S { }\ s  

   childNode.R := childNode.R { }\ s  
if I(childNode.S) > I(S*) and FD(childNode.S) = F then 

if |childNode.S| > m then 
S* := searchOpm(childNode, S*) 

else 
     S* := childNode.S 

if I(node.S)=I(S*) then 
      return S* 

end if 
end if 

end if 
end for 

 return S* 
 
Throughout the search, the best solution is updated in S* whenever an m-sensor configuration 
with a higher fault isolability index than the current best one is found, as long as all faults are 
detectable. The search is initialized as follows: node.S = node.R = S and S* = Ø. During the 
search only those branches that can be further expanded to an m-sensor configuration are 
visited. Tree expansion is aborted whenever the fault isolability index is not improved or 
some faults are not detectable. 

Clustering approach 

Given a set of elements { }1 2, , , nx x x , clustering consists in partitioning the n observations 

into l sets { }1 2, , , l= =� = = =  (l ≤ n) in such a way that objects in the same group (called 
cluster) are more similar (in some sense) to each other than  those in other groups (clusters). 
For example, k-means clustering algorithm (MacQueen, 1967) minimizes the within-cluster 
sum of distances by solving the optimization problem 

 ( )
1

arg  min ,
j i

l

j i
i

d
= ∈
∑ ∑

= =x
x m , (6) 

where d is a distance and im  is the centroid of cluster i=  (i.e. it is the mean of observations in 

i=  according to metric d). In the original algorithm, d is the squared Euclidean distance, but 
other distance measures can also be used. Problem (6) is nonconvex and obtaining the 
solution is NP-hard, but there are efficient heuristic algorithms that converge quickly to a 
local optimum. 

In this work, a reduction in the number of candidate sensors is proposed by applying the k-
means algorithm to partition the n initial sensors into l groups (l ≤ n). Then, a representative 
sensor will be selected for each cluster, setting up the new candidate sensor set. 
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In this case, the criterion used for determining the similitude between elements (sensors) is the 
sensitivity pattern of their primary residuals to faults. In particular, according to the procedure 
described in the model-based fault diagnosis section, this is given by every row i of the fault 
sensitivity matrixΩ  defined in (3). So, choosing j= , 1,...,j j nω • =x (where jω • is the j row 
vector of matrixΩ ) and applying the k-means algorithm defined in (6), a set of l clusters of 
sensors with a similar fault sensitivity pattern will be obtained. Since residuals are directional, 
the cosine distance is chosen for the k-means algorithm. 
 
Once the elements xj (sensors) have been grouped in l clusters, the most representative 
sensors ci, i=1, …, l can be chosen as the nearest ones to the cluster centroids among the 
elements of each cluster. 
 

RESULTS AND DISCUSSION 

Case study 
The sensor placement methodology is applied to a DMA located in Barcelona (see Figure 2). 
It has 883 nodes and 927 pipes. The network consists of 311 nodes with demand (RM type), 
60 terminal nodes with no demand (EC type), 48 hydrant nodes without demand (HI type), 14 
dummy valve nodes without demand (VT type) and 448 dummy nodes without demand (XX 
type). The network has two inflow inputs modeled as reservoir nodes. 
 
Leakage detection is based on the premise that damage (leakage) in one or more locations of 
the piping network involves local liquid outflow at the leakage location, which will change 
the flow characteristics (pressure heads, flow rates, acoustics signals, etc.) at the monitoring 
locations of the piping network. In this work, it is assumed that leaks might only occur at XX 
type nodes, so there are 448 potential leaks to be detected and located. Actually leaks could 
occur at any network node or pipe. However, leak locations have been restricted to certain 
type nodes in order to delimit the size and complexity of the problem. 

 
A similar practical reason is applied when defining the possible location of the network 
monitoring points. Pressure sensors at RM type nodes will be used as network monitoring 
points, so there are 311 candidate sensors that could be chosen for installation. Despite 
measuring flow rate could also be useful for leak detection, collecting pressure data is cheaper 
and easier, and pressure transducers give instantaneous readings whereas most flow meters do 
not react instantaneously to flow changes (de Schaetzen et al., 2000). 

DMA network model 
Solving the sensor placement problem defined in the problem formulation section requires a 
structural model of the water network (as described in the structural approach section) and a 
fault sensitivity matrix (see Equation (3)). 
 
The model of the DMA comprises 883 flow balance equations 
 
 

i n

i n
q Q

q d
∀ ∈

=∑ , (7) 

 
where Qn represents all flows corresponding to incident edges to node n and dn is the known 
flow demand of node n, and 927 pipe flow equations 
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 ( ) ( )e eq t f p= ∆ , (8) 

 
where qe is the flow corresponding to edge e and f is a nonlinear function of the pressure drop 
on the adjacent nodes of edge e. These equations depend on 927 unknown flow variables and 
883 unknown pressure variables. The resulting structural model is depicted in Figure 1. A dot 
(i, j) in the figure indicates that variable i appears in equation j. 
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Figure 1. Structural DMA model. 
 
A leak in a node involves violating a flow balance equation, so fault equations are Equation 
(7) for type XX nodes. 
 
A fault sensitivity matrix has been also obtained using the EPANET hydraulic simulator 
(Rossman, 2000).  Given a set of boundary conditions (such as water demands) EPANET 
software has been firstly used to estimate the steady-state pressure at the 311 RM type nodes. 
Next, 448 leaks have been simulated in the XX type nodes and the steady-state pressure has 
been estimated again in the 311 RM type nodes. Finally, a 311 448×  fault sensitivity matrix 
has been obtained as the pressure difference between the fault free case and each faulty 
situation, according to the procedure described in the model-based fault diagnosis section. 
Although the fault sensitivity matrix depends on the leakage size, diagnosability properties are 
robust against this uncertainty. In this work, an average leakage size of 6.3 l/s has been 
considered in the simulations.  

Sensor placement analysis 
In principle, to fully isolate all 448 possible leaks, the required isolability index should be 

448

2
100128  = 

 
. However, according to structural analysis, installing all 311 candidate 

sensors, the isolability index would just be 100099. Achieving a better performance would 
require installing more sensors than those designated in the candidate sensor set. Therefore, 
there is a trade-off between the diagnosis performance and the number of installed sensors. 
Assume that the water distribution company has established a maximum budget for 
investment on instrumentation that makes it possible to install up to 8 pressure sensors. 
Hence, the water distribution company wants to install 8 sensors maximizing the resulting 
diagnosis performance. Applying Algorithm 1 to the initial candidate sensor set is not feasible 
since it would require a huge amount of computation time. So first of all the candidate sensor 
set will be reduced by applying the clustering approach described in the clustering approach 
section. 
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k-means algorithm has been applied to partition the initial candidate sensor set into 31 
clusters, and a representative sensor for each cluster has been found. So, the new candidate 
sensor set has now 31 pressure sensors (see the blue circled nodes in Figure 2). Next, applying 
Algorithm 1 the 8-sensor configuration, pointed by a red arrow in Figure 2, is obtained. With 
these 8 sensors all leaks can be detected and the isolability index amounts to 100092. 

 
Figure 2. DMA network sensor placement results. 

 
Regarding performance issues the clustering step takes around 22 s, whereas the branch and 
bound search takes more than 7 h. Bearing in mind this computation time difference, it might 
sound appealing to directly apply the clustering step to obtain the 8-sensor configuration. 
However, this would not necessarily produce the same results for several reasons. First, it is 
well known that although the k-means algorithm finds an optimum partition, it does not 
necessarily find the global one. In fact, the algorithm is significantly sensitive to the initial 
randomly selected cluster centres. To alleviate this drawback the algorithm is commonly run 
multiple times with different initial conditions. Secondly, notice that only a reduced set of 
directional residuals (the primary residuals) are represented in the fault sensitivity matrix 
according to the simulation method proposed by Pérez et al. (2011). In fact, the full set of 
directional residuals that could be designed based on the model equations would be much 
bigger, but computationally harder to obtain. The structural analysis approach takes all 
structured residuals into account, instead. Thus its results are more complete. Therefore, the 
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sole purpose of the clustering step is complexity reduction. But the branch and bound step is 
always desirable since it produces sound and complete results. 
 
Despite the branch and bound search is time consuming, its performance is much better than 
that of an exhaustive search. Remark that during the branch and bound search, the most 
demanding operation is evaluating the isolability index through Equation (5), which takes in 
average 1.24 s in this case. Whereas Algorithm 1 just computes it 17286 times, an exhaustive 

search would involve evaluating it 
31

8
7888725  = 

 
times, which would require more than 100 

days. 

CONCLUSIONS 
The topic of this work concerns leak detection and location in water distribution systems 
based on telemetry technology. Telemetry systems provide huge amounts of data for real-time 
monitoring, which allow for a prompt alert when a leak occurs along with an indication of its 
approximate location. 
 
This work proposes a methodology to decide the optimal placement of pressure sensors to 
maximize the water network leak diagnosability. The goal is to characterize and determine a 
sensor set that guarantees a maximum degree of diagnosability while a budgetary constraint is 
satisfied. To overcome the complexity of the problem this work proposes the combination of a 
branch and bound search based on a structural model of the distribution network and 
clustering techniques. The strategy developed is successfully applied to a DMA in the 
Barcelona water distribution network. The results show that this combined technique manages 
to solve the sensor placement problem in a reasonable time, which otherwise would not be 
possible. 
 
Although promising, these are preliminary results and more research has to be done. On the 
one hand, as already mentioned in clustering approach section, the k-means algorithm does 
not guarantee a global optimal solution so the performance of other clustering techniques 
should be investigated. On the other hand, applying clustering techniques to reduce the 
problem complexity by partitioning the fault set could be investigated. 
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