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bInstitut de Robòtica i Informàtica Industrial (CSIC-UPC), 08028 Barcelona, Spain

Abstract

We propose a cognitive system that combines artificial intelligence techniques for
planning and learning to execute tasks involving delayed and variable correlations
between the actions executed and their expected effects. The system is applied to
the the task of controlling the growth of plants, where the evolution of the plant at-
tributes strongly depends on different events taking place in the temporally distant
past history of the plant. The main problem to tackle is how to efficiently detect
these past events. This is very challenging since the inclusion of time could make
the dimensionality of the search space extremely large and the collected training
instances may only provide very limited information about the relevant combi-
nations of events. To address this problem we propose a learning method that
progressively identifies those events that are more likely to produce a sequence of
changes under a plant treatment. Since the number of experiences is very limited
compared to the size of the event space, we use a probabilistic estimate that takes
into account the lack of experience to prevent biased estimations. Planning opera-
tors are generated from most accurately predicted sequences of changes. Planning
and learning are integrated in a decision-making framework that operates without
task interruptions by allowing a human gardener to instruct the treatments when
the knowledge acquired so far is not enough to make a decision.
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1. Introduction

This work addresses the complex problem of how to control the evolution of
a system where the relations between actions applied to the system and their cor-
responding effects take place with variable delays and strengths. In particular, we
will focus on the application of controlling the growth of plants, which is an in-
dustrially relevant application useful to control, for example, seed productions and
plant breeding. Controlling the growth of plants is a challenging problem requir-
ing advanced predictive cognitive properties, which so far can only be provided
by experienced human gardeners (GARNICS, 2010-2013).

In this work we propose a cognitive system to control the growth of plants
using artificial intelligence (AI) techniques for planning and learning. The main
reason behind this is that controlling the growth of plants is indeed a human-like
task that can be easily formulated in a declarative language, compatible with AI
techniques. This allows using robust and well-known AI techniques for reasoning
and decision-making such as logic-based planning (LaValle, 2006). This kind of
planners uses a set of planning operators coding cause-effects in terms of proposi-
tions and logical predicates easily understandable by humans, making the defini-
tion of human-related decision-making problems, such as controlling the growth
of plants, straightforward. However, the hand-coding of the planning operators
may be very complicated. Even for apparently simple tasks, many of the relevant
aspects of the cause-effects to be encoded can be easily overlooked. This is par-
ticularly true in applications involving weakly correlated cause-effects since it is
difficult to precisely specify the expected evolution of plants and the past events
responsible for this evolution. Therefore, to avoid spending a lot of time in cod-
ing such operators and to prevent long task interruptions due to an incomplete or
incorrect coding of the operators, the system should learn them online, while the
task is executed, and from the fewest experiences possible.

The requirement of online learning of operators is achievable if planning is
interleaved with learning so as to progressively improve the decision-making ca-
pabilities of the planner by injecting new knowledge after each action execution.
Interleaving planning and learning has been proposed in several works to improve
the performance of a logic-based planner (Agostini et al., 2011; Wang, 1995,
1996; Benson, 1995; Shen, 1989; Gil, 1994; Walsh and Littman, 2008). For in-
stance, in the works by Wang (1995, 1996) a set of planning operators is initially
generated using examples collected offline from expert’s solution traces of the task
to be executed. Then, the system refines these operators using experiences col-
lected from a simulated environment where a modified PRODIGY planner is used
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for decision-making, and an adaptation of the Version Space method (Mitchell,
1997) called the OBSERVER, is used to refine planning operators. If the planner
fails in finding a plan due to an incomplete operators set, it returns a failure sig-
nal and interrupts the execution of the task. In Benson (1995) a strategy called
TRIAL for continuous planning and learning is proposed. TRIAL continuously
generates plans, executes them, and learns operators until the system reaches a
planning impasse, in which case an external teacher is called to take control of
the task and complete it. In Gil (1994) a system called EXPO uses PRODIGY as
a baseline planner and improves its domain knowledge assuming it is completed
up to 50 %. Planning operators are learned using results obtained from simulated
environments and they become immediately available for planning. We would
like to remark that none of the aforementioned approaches has been developed for
tasks involving weakly correlated cause-effects.

We present a decision-making framework that interleaves AI techniques for
planning and learning of weakly correlated cause-effects to provide a cognitive
system with decision-making capabilities for controlling the growth of plants
(GARNICS, 2010-2013). In this task, the system should make decisions about
which treatment, e.g. which combination of water and nutrient, a plant should
receive to achieve a given goal state provided the history of the plant. In order to
implement our cognitive system we use the framework proposed in Agostini et al.
(2011) as the basic architecture to integrate planning and learning. The framework
operates without task interruptions by allowing a human expert to make a decision
in those situations where the knowledge acquired so far is not enough to decide the
action autonomously. We adapt this framework for tasks involving weak correla-
tions and propose a new method for learning planning operators coding weakly
correlated cause-effects.

The main idea of learning weakly correlated cause-effects is to identify those
events (sensed values and actions) that once observed in the past history of a plant
permit predicting the future evolution of the plant attributes. There are two im-
portant difficulties to face in this regard. The first one is the dimensionality of
the sequence space, where the possible combinations of events is infinite, pro-
vided we assume sequences of any length. For example, given an M-dimensional
attribute space and an action space of dimensionality N, at each time step there
are N +M dimensions to explore. If we want to evaluate events belonging to 10
different time steps, then the dimensionality of the search space is 10x(N +M).
The second difficulty is the limited number of training instances available (with
respect to all the possible combinations of attribute, actions, and time-steps). This
is a problem since cause-effects rules should correctly predict the future evolution
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of attributes during sequences never experienced before. To cope with these prob-
lems the learning method should be able to generate cause-effects that perform
extensive generalization, in feasible time, and using few experiences.

To address the learning problem we use a parallel strategy that generates many
alternative combinations of past events that are potentially relevant to predict the
sequence of changes obtained from the execution of a sequence of actions. From
all these alternative combinations, the one that most likely produces the sequence
of changes is used for planning. Our approach could be compared to expanding
multiple independent search trees that are not subordinated to one another. This
permits trying in parallel combinations of events from many different regions of
the event space (possibly disjoint), increasing the chances of finding combinations
with accurate predictions.

Not all the possible sequence of changes may be important to arrive at a good
control of the growth of the plant. Therefore, to speed up the learning, we let the
system learn planning operators mostly coding important sequences of changes by
using the help of a human gardener that guides the exploration of actions towards
those producing relevant changes. To have confident evaluations of combinations
of events from a small number of observations, we use the probabilistic estimate
proposed in Agostini et al. (2011), the density-estimate. This estimate takes into
account the lack of experience to compensate the bias introduced when the esti-
mation is done from a few examples.

The layout of the paper is as follows. The next section introduces the gen-
eral notation. Section 3 outlines the elements of the decision-making framework.
Later, in Section 4, we provide the details of the mechanisms for learning plan-
ning operators coding weakly correlated cause-effects. Section 5 presents the task
of controlling plant growth. In Section 6, we present the results of the application
of our cognitive system to such task. In this section we also provide a thorough
comparison with one of the most widely used methods for learning planning op-
erators, the OBSERVER method (Wang, 1995). The paper ends with conclusions
about the work.

2. Basic Notation

We assume that there is a finite (or countable infinite) set of world states S
and a finite (or countable infinite) set of actions A executable at those states. A
state s ∈S is described using a set of descriptors {di}, i = 1...N, which can take
different discrete values di, j, j = 1...|di|. We use the notation ak, k = 1...|A |, to
refer to a particular action.
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To provide a concrete example of possible instantiations of descriptors, we use
the state-space definition for the task of controlling the growth of plants presented
in Table 2 (Sec. 5). For instance, the first descriptor, d1, corresponding to the
number of leaves of the plant, can take different discrete values:

d1, j ∈ {0,1,2,3,4,5,6,7,8,9,10,> 10}, (1)

with j = 1, ...,12.

2.1. Events
We use the notation st to indicate a state observed at time-step t and the nota-

tion at to refer to an action taken at time-step t (wrt a given time reference t=0).
In the same way, we will use dt

i, j and at
k to indicate the instantiations of descriptor

di and the action executed at time t, respectively. We will refer to an event at time
t, vt , as either a value of the descriptor dt

i, j or an action at
k.

2.2. Sequence Space
We refer to a sequence as any sequence of states and actions of any length.

The (infinite) set of all the possible sequences configures the sequence space. We
define a subspace q of sequences, or simply a subspace, as a set of events

q = {vti,vti+k , ...,vti+m}, (2)

where the superscripts may refer to the same or different time-steps. The subspace
represents all the sequences having the enumerated events, hence permitting a
compact representation suitable for generalization over sequences. For instance,
the subspace

q1 = {d−1
1,2 ,d

0
1,3,d

0
2,3,d

1
1,4} (3)

covers all the sequences having the second value of descriptor 1, one time-step
before a reference time t = 0, the third value of descriptor 1 and the third value of
descriptor 2, both at time t = 0, and the fourth value of descriptor 1, one time-step
after the reference time.

To shed more light on the example sequence, we use again the state-space
definition of Table 2. Using this definition, the subspace q1 would code an obser-
vation of 1 leaf one time-step before t = 0 (d−1

1,2), 2 leaves at t = 0 (d0
1,3), all of

them green (d0
2,3), and 3 leaves one time-step after t = 0 (d1

1,4).
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2.2.1. Subspace Distance
We define the distance between two subspaces q and u as

diff(q,u) =
∑tmax

t=tmin Dt
q,u

tmax− tmin
, (4)

where tmin and tmax is the minimum and maximum time-steps in q and u, and Dt
q,u

is the typical metric used in nearest neighbour algorithms (Finnie and Sun, 2002),

Dt
q,u = 1−

∑N
i=1 wi sim(vt

i,q,v
t
i,u)

∑N
i=1 wi

, (5)

where N is the number of state descriptors, wi is the importance weighting of
descriptor i, and sim(vt

i,q,v
t
i,u) is the similarity measure between events vt

i,q and
vt

i,u, of the subspaces q and u, respectively. If the variable corresponding to an
event has ordinal values, the similarity is calculated as

sim(vt
i,q,v

t
i,u) = 1− | j− k|

M
(6)

where M is the number of possible values of the variable, and j and k are the
indexes of the ordinal values vt

i,q and vt
i,u, respectively. On the other hand, if the

descriptor is defined in a non-ordinal way, the similarity between the two events
is defined as sim(vt

i,q,v
t
i,u) = 1, if j = k, and sim(vt

i,q,v
t
i,u) = 0, otherwise.

Note that events vt
i,q and vt

i,u can be state descriptors or actions. A descriptor
at a specific time-step in one subspace would be only comparable with the same
descriptor, though with likely a different value, at the same time-step of the other
subspace. The same is applicable for the comparison between actions. On the
other hand, if a descriptor or action of one subspace is not present in the other
one, the similarity measure is 1. This is so since, if an event is not considered
in one of the subspaces, it indicates that all the values for that event are actually
covered by that subspace, including the one of the other subspace. For example,
using the state-space definition of Table 2 to define the value of M, the similarity
measures between events of subspaces

q = {d−2
1,2 ,d

−1
1,3 ,d

0
2,3}, (7)

and

u = {d−2
1,4 ,d

0
2,3}, (8)
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would be

sim(d−2
1,2,d

−2
1,4) = 5/6, (9)

sim(d−1
1,3, /0) = 1, (10)

and

sim(d0
2,3,d

0
2,3) = 1, (11)

where /0 denotes that the corresponding descriptor is not present in subspace u at
time-step -1.

2.3. Rule Representation
Rules coding weakly correlated cause-effects are represented using the con-

ventional notation of precondition-action-effects. However, there are some funda-
mental differences between the traditional representation of cause-effect rules and
the representation of cause-effects coding weak correlations. In the latter case,
each part of a rule consists not of events at a single time-step, but of sequences of
events where time is now explicitly represented.

Each rule has a reference time t = 0 that defines past and future events. The
precondition part considers events in the past, both descriptors and actions, and
events consisting only of descriptors at the reference time t = 0. The action part
consists of actions applied from the reference time t = 0 on. Finally, the effect
part is composed of events consisting only of descriptors in future time steps.

To refer to a rule we use the notation

r = {P,A,E}, (12)

where P, A, and E are the precondition, action, and effect parts of the rule, respec-
tively. To illustrate the rule codification, one instantiation of the parts of a rule
could be

P = {d−1
1,1 ,a

−1
1 ,d0

1,3},
A = {a0

1,a
1
1},

E = {d1
1,5,d

2
1,7}. (13)
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Note that the actions executed in the past become conditions in the precondition
part. Using again the state-space definition of Table 2 to give a concrete example
of descriptor instantiations, rule (13) would code the evolution of the number of
leaves (d1), starting from 2 leaves at t = 0 (d0

1,3), following with 4 leaves in the
next time-step (d1

1,5), and ending with 6 leaves in the following time-step (d2
1,7).

The rule also considers in its precondition part two past events that would be
necessary to obtain the coded changes: 0 leaves should be observed in the plant
one time-step earlier than t = 0 (d−1

1,1) and the treatment a1 of mild watering (see
Table 4) should have also been applied one time-step earlier.

A rule represents all the sequences in which the coded weak correlation takes
place. To see this more clearly, let us define a subspace

q = {P∪A∪E}. (14)

Then, all the sequences covered by the subspace q contain the events that code
the same weakly correlated cause-effects. Ideally, we would like to learn rules
that permit good predictions of the effects, i.e. that the sequences included in the
subspace {P∪A}, once experienced, lead to the same effect E.

2.4. Instances
The experienced sequences are stored as instances ŝ t , consisting in the tuple

ŝ t = (ŝ t−1,at−1,st), (15)

which describes all the state transition information up to time t, where st is the
state description at time t, at−1 is the action executed at t− 1, and ŝ t−1 consists
of the past experienced sequence of state-action-state transitions until time-step
t−1.

We say that an instance is covered by a rule r = {P,A,E} when qPA = {P∪A}
matches the instance. If a covered instance also matches qPAE = {P∪A∪E} we
denote it as a positive instance, otherwise we call it a negative instance.

2.5. Coding Weakly Correlated Cause-Effect into Planning Operators
Logic-based planners assume Markov decision process models of the environ-

ment, i.e. the probability of transition between states only depends on the state
at which the action is executed. The representation of state transitions is carried
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out through the planning operators (POs), which compactly represent the transi-
tions by only considering the changes in the state with an action as well as all the
non-changed descriptors that are responsible for these changes 1.

However, tasks involving weakly correlated cause-effects are essentially non-
Markovian since the probability of transitions between states depends not only on
the state in which the action is executed but also on previous states. To permit cod-
ing weakly correlated cause-effects into logic-based POs we use the well known
fact that a non-Markovian decision process can be transformed into a Markovian
one by a redefinition of the state considering history (McCallum, 1996): the cur-
rent state would consist not only of the current sensory input, but also of past
sensory inputs and actions. To do this, we define a state for planning using the
instance definition of previous Sec. 2.4, rewritten here for convenience,

ŝ t = (ŝ t−1,at−1,st). (16)

This state definition fulfils the Markovian property since

Pr(ŝ t+1|ŝ t,at , ŝ t−1,at−1, ...) = Pr(ŝ t+1|ŝ t ,at). (17)

To represent a logic-based PO we use the traditional STRIPS-like represen-
tation (LaValle, 2006) formed by the precondition part, and the addition (events
added to the state with the action) and deletion (events deleted from the state with
the action) parts to code the effects.

To generate a plan, the planner evaluates sequences of POs so as to transform
the current state into any of the goal states, by adding and deleting descriptors
from the state representation according to the addition and deletion parts of the
evaluated POs, respectively. In our case, the current state codes all the past events
up to time t = 0. Therefore, in order to add and delete events from the current
state, as well as to evaluate which PO to apply at each situation, the events of
the precondition, addition, and deletion parts should also be referenced up to time
t = 0. This is implemented by including in the addition part all the events coded
in the rule, shifting the time reference such that the last event in the rule coincides
with time t = 0. The deletion part suffers no time shift and includes all the events
that should be deleted from the state, i.e. the events of the precondition part of

1To rapidly provide an example of a non-changing but causative descriptor, imagine a PO
coding the action of opening a door. In this case, a non-changed causative descriptor could be a
predicate indicating that the door is unlocked, which would actually permit the door opening and
remains unchanged after executing the action.
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the rule that are no longer in the new state due to the time shift. Finally, the
precondition part of the rule is considered as such for the precondition part of the
PO since it already matches the time reference of the current state.

To provide a clarifying example on how the coding of a PO is carried out from
a cause-effect rule, we use the example rule (13). Note that this rule codes a two-
step effects: the plant reaching 4 leaves one time-step after the initiation of the
rule execution (d1

1,5) and 6 leaves two time-steps after the application of the rule
(d2

1,7). To code them into the addition part of the rule, these two events should be
referenced with respect to t = 0, indicating that the plant would have 6 leaves after
the PO execution (d0

1,7) and would have had 4 leaves one time-step before (d−1
1,5).

The same is applicable to all the other events coded in the rule. For example,
after the rule execution, the events in the precondition part of the rule would be
{d−3

1,1 ,a
−3
1 ,d−2

1,3} while those from the action part would be {a−2
1 ,a−1

1 }. All these
events are considered in the addition part of the PO since they should be added to
the new state. After completing the precondition and deletion parts according to
the previous explanations, the PO generated from the cause-effect rule (13) would
be

name = r,
prec = d−1

1,1 ∧a−1
1 ∧d0

1,3,

del = {d−1
1,1 ,a

−1
1 ,d0

1,3},
add = {d−3

1,1 ,a
−3
1 ,d−2

1,3 ,d
−1
1,5 ,d

0
1,7,a

−2
1 ,a−1

1 }, (18)

where the precondition part (prec) has the same events of the precondition part of
the rule, but now coded in a conjunctive normal form, as required by the STRIPS-
like coding, the addition (add) and deletion (del) parts contains the events with the
corresponding time shift, and r is the name assigned to the PO.

2.6. Elements for Planning
The elements used by a logic-based planner to generate a plan consist of a

set of objects, a set of predicates, describing properties of the objects or relations
between them, a description of the initial state for planning ŝini, from which the
planner should find a plan to achieve a goal state sg, a goal specification g, con-
sisting of the set of predicates describing all the goal states {sg|g ⊆ sg}, and a
set of planning operators (POs) used to build plans. In the problem of planning
in weakly correlated environments the initial state for planning ŝini is formed by
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all the events describing the current as well as all the previous states and actions
taken on the plant.

3. Decision-Making Framework

To provide the agent with the capability of decision-making we implemented
the decision-making framework depicted in Fig. 1. In this framework, the learner
constantly enriches the PO set with every experienced instance. With the operators
learned up to a given moment, the planner tries to find a plan that would permit
achieving the goal (provided by the user) from the initial state. The state repre-
sentation is generated with the help of the perception module that transforms the
raw information of the sensors into declarative state descriptors. At each iteration,
the planner yields one of the three possible outcomes: the first PO of a plan for its
execution, an action request, or an end-of-plan (goal reached) signal. The action
request takes place if the planner cannot generate a plan due to missing POs. In
this case, the planner sends a request to a human expert (e.g. a gardener) which
instructs the sequence of actions to be executed, allowing for the continuation of
the task.

The actions provided either by the planner or the teacher are then sent to the
execution module for their actual execution. After the execution, the planner gen-
erates a new plan and the process starts over again. This is a strategy known as
replanning, which permits an immediate use of new POs generated by the learner
and allows the system to find a new plan after eventual plan failures produced, for
instance, by an incomplete PO set.

The algorithmic description of the mentioned process is shown in Alg. 1.
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Algorithm 1 Decision-Making Framework
Specify the goal g
Initialize the rule set R (e.g. R←∅)
st−1←∅
at−1←∅
A←∅ {empty action sequence}
repeat

Get current state st {Perception module}
Generate training instance ŝ t = (ŝ t−1,at−1,st)
R← LEARNER(R, ŝ t) {update rule set with current instance}
ŝini← ŝ t

if g⊆ ŝini then
End of plan

else
if action sequence A completed then

Rplan = PLANNER (ŝini,R,g) {find a plan to achieve goal g from current state ŝini}
if Rplan =∅ then

A← TEACHER (ŝini,g) {request an action sequence to the teacher for the ongoing task}
else

A = Rplan(1).A {sequence of actions coded in the first PO of the plan}
end if

end if
at ← Next action in the sequence A
Execute at {Execution module}
t← t +1

end if
until End of plan

Figure 1: Schema of the decision-making framework.
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4. The Learning Mechanisms

The role of the learning method is to find those events that should be observed
in past states so as to be able to predict the changes that will be produced in future
states when a sequence of actions is executed. In this process, it is important to
keep the number of events as small as possible since the fewer the number of
events, the larger the sequences represented in the sequence space and the better
the generalization attained.

When relevant combinations of events are learned from scratch, the uncer-
tainty on which combinations of events are relevant is very high and all the possi-
ble combinations should have a chance to occur. This poses a lot of difficulties in
applications where sequences of events have different lengths, such as controlling
the growth of plants, since the number of all possible combinations of events is
intractable. Therefore, the learning method should be able to orient the search of
relevant events so as to give more chances to those combinations that are more
likely to be relevant according to the experience collected so far. Moreover, pro-
vided that the number of experiences is small with respect to the total number of
possible combinations, the learning method should be able to accurately evaluate
the relevance of a combination using only few experiences.

The following sections present how the relevance of a combination of events
is evaluated and how new combinations are generated.

4.1. Rule Evaluation
The evaluation of a combination of events in the precondition part of a cause-

effect rule is carried out using the conditional probability

P = Pr(E |P,A), (19)
where E is the effect part of the rule, P is the precondition part, formed by the
tested combination of past events, and A is the sequence of actions of the rule.
This probability could be calculated using many different methods such as the m-
estimate or a pure frequency approach (Furnkranz and Flach, 2003). In our case,
we will use the estimate proposed in (Agostini et al., 2011), the density-estimate,
since it compensates the lack of experience by considering in the estimate not
only the experienced instances but also the inexperienced ones, avoiding biased
premature estimations when few examples are collected. The formula of the den-
sity-estimate is,

P =
n++ n̂ /0 c

n++n−+ n̂ /0
, (20)
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where n+ is the number of positive instances, n− is the number of negative in-
stances, c is an a priori probability, usually set to c = 1/2, and n̂ /0 is an estimation
of the number of all possible instances covered by the rule that are still pending
to be experienced. The parameter n̂ /0 represents the uncertainty in the probability
estimation: the larger its value the larger the uncertainty.

In practice, the value of n̂ /0 is defined as n̂ /0 = nT − n+− n−, where nT is the
estimated number of instances which are required to be experienced to consider
the probability estimation as confident. The parameter nT is defined depending on
the total number of instances covered by the rule. If this number is relatively small
we could set nT to this number, assuming all the instances can be experienced in a
reasonable amount of time. This would provide a fully confident estimation when
all the covered instances are experienced, i.e. when n̂ /0 = nT−n+−n−= 0. On the
contrary, if the total number of covered instances is large, it may be impractical, or
even infeasible, to experience all the covered instances. In this case, the parameter
nT should be defined by the user, ideally by an expert user knowing the application
at hand, depending on how many instances are necessary to trust the probability
estimation. In the latter case, if nT < n++n−, then n̂ /0 is set to 0 and the estimate
(20) becomes the traditional frequency estimate.

Note that the density-estimate uses the density of samples in the region of the
sequence space covered by the rule. The lower the density of samples, the higher
the uncertainty, and the lower the variation of the probability in the estimation.
Note that a high uncertainty exists when the number of experienced instances is
much smaller than nT , i.e. when nT >> n+ + n−. In this case, according to
Eq. (20), if we have two rules with few experienced instances, their probability
estimates will be similar and close to the predefined prior probability c, which
prevents a biased probability estimation when few experiences are provided.

4.2. Rule Generation
The strategy for rule generation is in charge of finding those combinations of

events that, considered in the precondition part of a cause-effect rule, will produce
the effects coded in the rule with high probability (19). There are two instances
in which a new rule is generated. The first one takes place when the executed
sequence of actions was instructed by the teacher. The second instance of rule
generation is when the execution of a rule does not produce the expected effect.

4.3. Rule Generation from Instruction
After the execution of a sequence of actions instructed by the human expert, a

new rule is generated from the observed changes. The action part of the new rule

14



consists of the instructed sequence of actions, where the first action is considered
to take place at time-step t = 0. The precondition and effect parts are created
using the state descriptors that have changed with the sequence of actions. The
precondition part is formed by the initial values of the changed descriptors, all
considered to take place at time-step t = 0. The effect codes the evolution of the
changed descriptors with each action in the sequence.

To illustrate how this is carried out we use the example sequence presented
in Table 1, where the changed descriptors are extracted from a sequence of states
observed during the execution of a two actions sequence, say {a0

2,a
1
1}. The parts

of the rule generated from the observed changes would be

P1 = {d0
1,3,d

0
3,1},

A1 = {a0
2,a

1
1},

E1 = {d1
1,3,d

1
3,2,d

2
1,4,d

2
3,2}. (21)

All the rules generated from instruction are coded as planning operators using
the strategy explained in Sec. 2.5 and become immediately available for planning.

Table 1: Example of changed state descriptors
State Sequence Changed Descriptors

s0 = {d0
1,3,d

0
2,2,d

0
3,1,d

0
4,4} {d0

1,3,d
0
3,1}

s1 = {d1
1,3,d

1
2,2,d

1
3,2,d

1
4,4} {d1

1,3,d
1
3,2}

s2 = {d2
1,4,d

2
2,2,d

2
3,2,d

2
4,4} {d2

1,4,d
2
3,2}

4.4. Rule Generation from Unexpected Effects
The execution of a rule having missing relevant events in its precondition part

may produce changes different from the ones coded in the effect part. Such unex-
pected effects trigger the mechanism for refining the failing rule.

An unexpected effect occurs if the expected sequence of changes is differ-
ent from the observed one, which is determined using the previously introduced
metric (4) as

diff(Et
exe,S

t)> threff, (22)
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where St is the sequence of states observed from the execution of the first action
in the rule (i.e. at time-step t = 1) up to time-step t, Et

exe is the sequence of ex-
pected effects up to time-step t, and threff is the threshold to consider the observed
sequence as an unexpected effect. This threshold permits considering deviations
from the expected evolution produced, for instance, by hidden variables or by the
stochastic nature of the environments. In this case, the threshold threff should be
set by the expert user larger than, and close to, 0 depending on what deviation is
expected from the stochastic components. In deterministic fully observable envi-
ronments, instead, this threshold should be set to 0 since any deviation from the
expected evolution of events is produced by missing past events in the precondi-
tion part of the rule.

If an unexpected effect occurs, many specializations of the failing rule are
generated and the one with highest probability (19) is used to code a new PO
that replaces the failing one. To quickly find potentially relevant combinations of
events, our strategy consists in storing in memory the most accurate rules for each
of the coded changes. When an unexpected effect occurs, all the rules coding the
same changes of the failing one are brought together in the set

Rexe = {r|A = Aexe,E = Eexe}. (23)

Then, the set Rexe is expanded as

Rexe′ = Rexe∪Rbasic. (24)

The aim of Rbasic is to ensure that all the possible combinations of events have a
chance to occur. To this end, possible past events should be available individually
for the combination among them and with the ones in Rexe. This is implemented
by including in Rbasic rules having in their precondition part a single event in ad-
dition to those changing with the action. The added events are extracted from the
positive instances of the failing rule to prevent evaluating events with no evidence
to produce the expected changes. To gradually explore the past, we take events
between the reference time t = 0 and t = tmin−1, where tmin is the lower time-step
in the precondition part of the failing rule, Pexe.

After generating the set Rexe′ , new combinations of events are generated by
randomly selecting n rules from Rexe′ according to their probability (19) and com-
bining them into a new set

Rcomb = {rk|Pk = {Pi∪Pj},Ak = Aexe,Ek = Eexe}, (25)
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where Pi and Pj, i )= j, are the precondition parts of any two rules of the n selected.
The random selection according to the rule probability favours the combination of
events presenting more evidence to be accurate while allowing also for combina-
tion of events that may not produce a high probability when considered separately
but that may actually lead to a high probability when combined. Note that we
could combine all the rules in Rexe′ instead of n of them. This would actually
increase the chances of producing relevant combinations of descriptors but at the
expense of a significantly higher computational cost.

Finally, we merge the previously generated sets into the candidate set of rules,

Rcand = Rexe′ ∪Rcomb, (26)

from which the m most accurate, Rm ⊂ Rcand , are stored in memory for future
refinements. In particular, the one with highest probability, called the winner rule
rw, is selected to replace the failing rule, with

w = argmax
j∈icand

P j, (27)

where icand is the set of indexes for the rules in Rcand , and P j is the probability
for rule r j ∈Rcand .

4.5. Rule Elimination
To limit the proliferation of rules we eliminate those that are redundant with

other rules in the system, i.e. which are coding similar subspaces. The redundancy
between two rules ri and r j is calculated as

redi, j = 1−diff(qi,q j), (28)

where qi = {Pi ∪Ai ∪Ei} and q j = {Pj ∪A j ∪E j}. Two rules are considered as
redundant when

redi, j ≥ thrred, (29)

where thrred is the redundancy threshold. In case two rules are redundant we elim-
inate the one matching less experienced instances. The threshold thrred is usually
set close to 1, or to 1, depending on the intrinsic characteristics of the environ-
ment. For instance, in deterministic fully observable environments, this threshold
should be set to 1 since two rules coding a similar, but not equal, evolution of
events would be actually applicable to two different states. In this case, the two
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rules are redundant if they cover the same subspace of sequences, i.e. if the dis-
tance between the coded subspaces is 0. If that is so, the most specific rule, which
would match less instances, is eliminated, contributing to the generalization of the
system. On the contrary, a slight difference between rules may be acceptable (i.e.
a redundancy threshold close to 1) if, for instance, the perception module (Fig. 1)
generates some state descriptors with noisy values that are wrongly considered as
part of the changes produced by the execution of a treatment. In this case, a redun-
dancy threshold smaller than 1 would help to get rid of these rules by eliminating
the noisy ones since, in the long run, they will cover less experienced instances.

At a predefined number of iterations itelim, we eliminate all the rules that fulfil
the elimination criterion.

4.6. The Learning Algorithm
The processes for learning rules coding weakly correlated cause-effects are

summarized in Algorithm 2. These processes replace the LEARNER function in
the algorithm of the decision-making framework (Algorithm 1).

Algorithm 2 R← LEARNER(R, ŝ t)
Update probabilities P of rules in R using instance ŝ t

Get action at−1 from ŝ t

if at−1 belongs to an instructed sequence of actions then
if at−1 is the last action in the sequence then

Generate rinst {rule generated from instruction (Sec. 4.3)}
R← {R,rinst}
Generate a PO from rinst

end if
else

Get executed rule rexe from R
Get sequence of states St from ŝ t

if diff(Et
exe,St )> threff then

Generate Rcand {candidates rules for rexe}
Extract most accurate rules Rm from Rcand
R← {R ∪Rm}
w = argmax

j∈icand

P j {get index of the winner rule}

Generate a PO from rw to replace the failing one
end if

end if
if (t modulo itelim)=1 then

Eliminate rules fulfilling the elimination criterion {Sec. 4.5}
end if

5. Application Example: Controlling the Growth of Plants

A typical application where weak correlations are involved is the gardening
application of controlling the growth of plants. In this application, the correlation
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between the actions taken on the plants and their effects take place with variable
delays and strength, making it necessary to analyse the long-term evolution of the
plants to detect these weak correlations.

Since using real plants for the experiments would take an infeasible amount of
time, we adopt the usual approach in botany and agriculture of analysing the plant
growth processes using simulated scenarios (Fourcaud et al., 2008; Hackett, 1973;
Paine et al., 2012; Kang et al., 2012). This allows generating data in a reasonable
amount of time that could otherwise take months, even years, to obtain from real
plant experiments. The details of the used simulated scenario are presented in
Appendix A.

5.1. Problem Definition
In order to apply our cognitive system to the task of controlling plant growth

we need to define the state and action spaces introduced in Section 2. This defi-
nition was carried out with the help of an expert gardener from the project GAR-
NICS (2010-2013) so as to make sure that the problem definition is the proper one
to perform an efficient execution of the task.

The state space is defined by a set of 12 state descriptors representing different
attributes of the plant and environmental conditions. The complete set of descrip-
tors with their corresponding values is presented in Table 2. The values of the
descriptors are extracted from the plant simulator signals, most of them following
a discretization process. In the table, we specify the intervals employed in the dis-
cretization process, when applicable. For the definition of the number of yellow
leaves, we say that a leaf is yellow when the color of the leaf C(t) goes below
0.9 (see Eq. A.3 in Appendix A). The descriptor plant height corresponds to the
height of the stem.

The action space consists of 6 possible treatments, at
k, k = 1, ..,6, enumerated

in Table 3. To define each treatment we use sequences of 24 atomic actions ap-
plied in a per hour basis. An atomic action consists of a dose of water, a dose
of nutrients, and a percentage of light intensity variation applied to the plant (see
Table 4). In this way, an action for planning is defined as a sequence of 24 atomic
actions belonging to a treatment (i.e. the time interval t involves multiples of 24
hours). In practice, some of the 24 atomic actions consist just in 0 values. For
the nutrient income we use a nutrient-water solution. Therefore, every nutrient
intake is also considered a water intake. In Table 3 we reference the tables with
the atomic actions corresponding to each of the treatments.
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Table 2: State space definition.
i Descriptor (di) Values (di, j)
1 Number of leaves {0,1,2,3,4,5,6,7,8,9,10,>10}
2 Number of green leaves {0,1,2,3,4,5,6,7,8,9,10,>10}
3 Number of yellow leaves {0,1,2,3,4,5,6,7,8,9,10,>10}
4 Ratio green/total leaves {<0.2,[0.2,0.4),[0.4,0.6),[0.6,0.8),>0.8}
5 Mean size of leaves (cm2) {[0,1),[1,2),[2,3),[3,4),>4}
6 Size of smallest leaf (cm2) {[0,0.5),[0.5,1),[1,1.5),[1.5,2),>2}
7 Size of largest leaf (cm2) {[0,2.5),[2.5,3.5),[3.5,4.5),[4.5,5.5),>5.5}
8 Plant height (cm) {<1, [1,2), [2,3), [3,4],>4 }
9 Mean growth rate {<-100,[-100,-80),[-80,-60),[-60,-40),

of leaves (%) [-40,-20),[-20,0),0,(0,20),[20,40),
[40,60),[60,80),[80,100],>100 }

10 Largest leaf growth rate (%) {0,(0,20),[20,40),[40,60),[60,80),[80,100],>100}
11 Humidity (%) {0,10,20,30,40,50,60,70,80,90,100}
12 Temperature (◦C) {<15,15-20,21,22,23,24,25-30,>30}

5.2. Teacher Interfaces
To provide the human expert with the information required to instruct the treat-

ments to apply when the planner is not able to make a decision, we developed two
main graphical user interfaces (GUIs): a GUI for monitoring the plant and system
state and a GUI for instructing the treatments.

Fig. 2 presents a snapshot of the GUI for the monitoring of the plant and the
system. The GUI shows the general status of a simplified diagram of the DMF,
at the upper left corner, where the currently activated module is marked in red
(the learner module in the example). The goal specification and the command
buttons to run and to stop the system (and the simulation) are placed in the upper
middle side of the GUI (for an explanation about the goal specification, please
refer to Sec. 6). The upper right side of the GUI shows the evolution of the size

Table 3: Action space definition.
k Treatment (ak)
1 Extra mild watering (Table 5)
2 Mild watering (Table 6)
3 Mild nutrient (Table 7)
4 Strong watering (Table 8)
5 Strong nutrient (Table 9)
6 Strong watering and nutrient (Table 10)
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and number of leaves, the color of the leaves, and the concentration of water and
nutrients in the soil.

The GUI also shows the rule that is currently executed, with its precondition,
action, and effect parts, and the observed state-action sequence, both in the lower
half of the GUI. To deploy the rule and the state-action sequence we use a time
window of plus-minus 48 hours. The state descriptors observed at specific time-
steps in this time window are shown in tables painted in blue, while the actions
are shown in red. To reference state descriptors, the GUI shows a short name from
the name of descriptors enumerated in Table 2, e.g. ’n Leaves’ for the number of
leaves. For each treatment (see Table 3), each of the atomic actions is specified
using the notation A(h), where A takes values ’W’ for a dose of water and ’N’
for a dose of nutrient, and h indicates the hour at which this dose is provided to
the soil, with respect to the beginning of the treatment. Note that, for the rule
specification, only the values of the state descriptors involved in the precondition
and effect parts are displayed.

Every time the planner cannot make a decision due to missing POs the system
deploys the GUI shown in Fig. 3 for the input of the treatments to execute. The
GUI lets the teacher select and edit a single or a combination of treatments from
a list at the left hand side of the GUI, or create a new combination of treatments,
if required. For instance, in the snapshot of the GUI, the treatments enumerated
in Table 3 are specified as: xmW (extra mild watering), mW (mild watering),
mN (mild nutrient), sW (strong watering), sN (strong nutrient), and sWN (strong
watering and nutrient). The rest of the elements of the treatment list consists of
combinations of these basic treatments. For instance, the combination selected in
the example figure is sW sN, which corresponds to applying, first, a treatment of
strong watering and, second, one of strong nutrient.

The edition/creation of a treatment is carried out through two editable tables
at the right hand side of the GUI. The upper table (named ’Actions’) specifies
each of the atomic actions corresponding to the selected treatments. Each column
corresponds to an atomic action, where the day and hour at which the atomic

Table 4: Atomic actions.
Action Names Action Values
Dose of water (ml) {0,1,2,3,4,5,6,7,8,9,10}
Dose of nutrient (ml) {0,1,2,3,4,5,6,7,8,9,10}
Light variation (%) {-50’,’-20’,’-10’,’0’,’10’,’20’,’50’}
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Figure 2: Snapshot of the GUI to monitor the plant and the system.

action should be executed is also shown. If the teacher inputs a new sequence of
atomic actions, the system splits this sequence into sequences of 24 hours each
and checks whether these sequences already correspond to any of the existing
treatments. If a sequence is not already considered as a treatment, the system
creates a new treatment from this sequence and adds it to the list.

The lower table at the right-hand side of the instruction GUI (named ’At-
tributes’) permits specifying the expected evolution of each of the state descrip-

Table 5: Extra mild watering.
Atomic action t + 0
Water 1
Nutrient 0
Light 0
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tors for the selected treatments. If the teacher provides any input to this table, the
system automatically creates a cause-effect rule using the specified descriptors to
set the precondition and effect parts, and the treatments in the action table to set
the action part. All the descriptors that should be observed before the beginning
of the treatment are used to create the precondition part of the rule, and all those
after the beginning of the treatment, will form the effect part. If the specified
evolution of descriptors does not match the observed one when executing the in-
structed treatments, the system automatically corrects those descriptors that are
not matching the teacher specification. In this work, the teacher does not provide
any input to this table so as to let the learning method autonomously generate
the precondition and effect parts of the rules from the changes observed after the
instructed treatments execution (Sec. 4.3).

The selected treatment, or sequence of treatments, is sent to the system for the
execution after pressing the ’Send Instruction’ button at the lower left side of the
instruction GUI.

Finally, we show, in Fig. 4(a), the GUI deployed to input the goal at the
beginning of the system running, after the user presses the button ’Run’ in the
monitoring GUI (Fig. 2). To input the value of each descriptor in the goal speci-
fication, the system displays a GUI with all the possible values for the descriptor
selected in the goal GUI. For instance, Fig. 4(b) presents an example of a GUI
listing the possible values for the descriptor of the size of the largest leaf.

Table 6: Mild watering.
Atomic action t + 0 t + 5 t + 10 t + 15 t + 20
Water 1 1 1 1 1
Nutrient 0 0 0 0 0
Light 0 0 0 0 0
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Figure 3: Snapshot of the GUI to instruct treatments to execute.

Table 7: Mild nutrient.
Atomic action t + 0 t + 5 t + 10 t + 15 t + 20
Water 1 0 1 0 1
Nutrient 1 1 1 1 1
Light 0 0 0 0 0

Table 8: Strong watering.
Atomic action t + 0 t + 4 t + 8 t + 12 t + 16 t + 20 t + 23
Water 2 2 2 2 2 2 2
Nutrient 0 0 0 0 0 0 0
Light 0 0 0 0 0 0 0

Table 9: Strong nutrient.
Atomic action t + 0 t + 4 t + 8 t + 12 t + 16 t + 20 t + 23
Water 1 0 1 0 1 0 1
Nutrient 2 1 2 1 2 1 2
Light 0 0 0 0 0 0 0
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Table 10: Strong watering and nutrient.
Atomic action t + 0 t + 4 t + 8 t + 12 t + 16 t + 20 t + 23
Water 2 2 2 2 2 2 2
Nutrient 2 1 2 1 2 1 2
Light 0 0 0 0 0 0 0

(a) goal GUI (b) values GUI

Figure 4: Snapshots of the GUI to specify the goal and a descriptor value.
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6. Experiments

The experiments are carried out using a set of planning problems with initial
situations obtained by randomly selecting and applying two planning actions from
Table 3 for the first 48 hours of treatments. The goal is defined by four descriptors
representing the size and healthiness of the plant attributes. To specify the desired
size of the plant we use: number of leaves > 10, largest leaf size > 5.5, and height
of the plant > 4. The healthiness of the plant is considered by a ratio between the
number of green leaves versus the total number of leaves larger than 0.8.

For the experiments we use the same planner as in Agostini et al. (2011), the
PKS planner (Petrick and Bacchus, 2002). In the process, no rules are eliminated
to have a better idea of the rate of rule generation. The rule database is initially
empty. The number of instances to consider the estimation as confident in the
density-estimate formula is set to nT = 50. We set the threshold for detecting
unexpected evolutions of the plant to threff = 0.

6.1. Reference Performance: The OBSERVER Method
In order to evaluate performance, we compare the results obtained with our

learning approach with those obtained by using one of the most well-known ap-
proaches for online learning of planning operators, the OBSERVER method (Wang,
1995, 1996), adapted to the learning of weak correlations.

In this method, learning and planning are interleaved so as to acquire planning
operators in a learning by doing approach. A human expert provides solution
traces offline, which are used by OBSERVER to generate an initial set of rules that
are later refined from experience using a simulated environment. The refinement
from experience takes place using two sets of samples. The set of samples where
a rule is successfully executed (SUC) and the set of samples where the rule fails-
to-execute (FAIL). The OBSERVER method is an adaptation of the Version Space
method (Mitchell, 1997), which, for each rule, keeps and refines the most specific
and the most general representation of its precondition part. The most general
precondition representation is used by a modified PRODIGY planner that is able
to perform a plan repair, using the most specific representation, every time a plan
execution fails.

To carry out the comparison, we adapted the OBSERVER method to our
decision-making framework for the learning of rules coding weakly correlated
cause-effects. As in our case, rules are generated online, after each action in-
struction, and not offline from solution traces provided by an expert. The most
general representation is initialized to the observed changes in the sequence in the
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same way as we do in our method (see Section 4.3). The most specific precon-
dition representation is initialized with all the descriptors and actions of the past
5 days. This number of days corresponds to the maximum delay needed to accu-
rately predict the evolution of plants from different initial situations observed in
the experiments.

Once a rule is generated from an instruction, the most specific and most gen-
eral representations are refined using the mechanisms described in Wang (1995).
As in our case, these refinements are carried out on the failing rule if an unex-
pected effect occurs (see Alg. 2). The refinement takes place using the positive
and negative instances to create the sets SUC and FAIL, respectively. In general
terms, the most specific representation is refined from positive instances in SUC.
If OBSERVER detects that an event in the most specific precondition represen-
tation is not present in any positive instance, then it deletes the event from this
representation.

On the other hand, the most general precondition representation is refined in
two ways: by comparing the most specific representation with a negative instance
and by comparing positive and negative instances. If only a single event in the
most specific representation is not present in a negative instance while the rest of
them are, then this event is added to the most general representation. In a similar
way, if the difference between any positive and any negative instance is in only one
event, then this event is added to the most general precondition representation. In
this way, the most general representation is only refined with events proving high
relevancy.

Finally, since we use the PKS planner in our DMF, which does not perform a
plan repair when a plan execution fails, we only use the most general representa-
tions in the generation of planning operators.

6.2. Results
Figure 5 presents the results of the experiments for our approach (blue solid

lines) and for the OBSERVER method (red dashed lines). The figure shows the
accumulated number of teacher instructions during learning vs. the total number
of actions (iterations) (Fig. 5 A), the accumulated number of unexpected effects
(Fig. 5 B), the number of rules generated during learning (Fig. 5 C), and the ratio
between the number of plans completed successfully, i.e. without instructions or
unexpected effects, and the total number of plans (Fig. 5 D).

As we can see, our learning method generates rules that rapidly improve the
decision-making performance, permitting the system to successfully execute 70
% of the plans after about 100 planning problem executions and 95 % of the plans
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Figure 5: Results obtained with our learning approach are plotted in continuous blue lines while
the ones obtained with the OBSERVER method are shown in dashed red lines. A) Accumulated
number of teacher interventions during learning. B) Accumulated number of unexpected effects
during learning. C) Accumulated number of rules generated during learning. D) Ratio of plans
completed successfully (without teacher instructions or unexpected effects).

after about 500 executions. Rule generation and refinement are very intense at
the beginning of the learning. The teacher instructs several actions relevant for
the task, mainly at the beginning of the learning when no rules are available to
the planner. The execution of the instructed actions leads to the generation of
rules coding useful treatments to produce the needed changes to achieve the goal.
Then, these rules are progressively refined by the learning method, which is able
to find relevant events in the past history of the plant that actually allows the coded
changes to occur. The refinement process takes place until no unexpected plant
evolution occurs, permitting a successful execution of 100 % of the plans at later
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stages of learning.
To provide a concrete example of the learning capabilities of our approach,

Table 11 shows a rule generated from instruction, coding only the instructed ac-
tions and the changes observed after their execution (see Sec. 4.3). We use a table
representation for clarity in the notation, where the precondition, action, and ef-
fect parts of the rule are placed in the first, second, and third columns of the table,
respectively. We explicitly indicate a short name and the value of each descrip-
tor involved in the rule (see Table 2), as well as the time-step, in multiples of 24
hours, at which they are observed. The actions coded in the rule are also explicitly
referenced with the treatment applied at each time-step (see Table 3).

The example rule was generated after the execution of two instructed treat-
ments of strong nutrient (Table 9), applied at intervals of 24 hours: the first one
started at the beginning of the execution of the rule, i.e. at 0 hours, and the second
one one time-step later, i.e. 24 hours later. These treatments define the action part
of the rule, as shown in the second column of Table 11. The execution of the two
instructed treatments produced the changes in the descriptors: number of leaves (n
leaves), number of green leaves (n green leaves), mean size of leaves (Mean Sz),
size of the smallest leaf (Small Sz), size of the largest leaf (Large Sz), plant height,
and mean growth of leaves (Mean Gr). In the first column of the table we show
the initial values of these descriptors, which defines the precondition part of the
rule. In the third column of the table, we first show the values of the descriptors
after the first 24 hours from the beginning of the rule execution, i.e. once the first
treatment had ended, and then, the values observed at the end of the execution of
the two treatments, i.e. 48 hours after the beginning of the rule execution. We can
see, for instance, that the number of leaves has changed from 1, at the beginning
of the execution, i.e. at t = 0, to 2, at the first time-step of 24 hours, and to 4, 48
hours later than t = 0.

Due to the delayed effects of actions, considering only the initial values of
the changed descriptors as a precondition may not be enough to guarantee that
the encoded evolution of the plant will occur. This is actually the case for the
example rule, which is reflected in the number of positive and negative instances
associated to the rule presented in Table 15. The rule has 111 positive instances,
i.e. 111 state-action sequences where the observed changes occurred (see Sec.
2.4), but a larger number of 189 negative instances, where the coded changes were
not obtained even though the precondition and action parts of the rule matches the
sequences.

For an accurate prediction, the learning approach needed to find which other
events in the past history of the plant should also be observed in order to obtain
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the coded sequence of changes. For the case in point, our method was able to
find out, from all the possible past events, that the relevant ones for an accurate
prediction are the last two actions applied to the plant, i.e. two treatments of mild
watering (Table 6) 24 and 48 hours before the beginning of the rule execution, as
well as some past values of the descriptors that had changed with the actions: 0
green leaves 48 hours before the rule execution (n green leaves=0 at -48 h), size
of the smallest leaf in the range [0,0.5) cm2 24 hours before the rule execution
(Small Sz ∈ [0,0.5) at -24 h), and plant height lower than 1 cm 48 hours before the
rule execution (Plant height < 1 at -48 h). The precondition part of the rule after
this refinement is shown in Table 14. Tables 12 and 13 present two intermediate
stages of the refinement of the precondition part so as to exemplify the refinement
process. The statistics associated to all these refinements are shown in Table 15.
Note that the most accurate refinement of Table 14 has the highest number of 57
positive instances, and no negative ones.

Table 11: Rule refinement example: first rule generated from observed changes.
Preconditions Actions Effects
n leaves = 1 at 0 h Strong nutrient at 0 h n leaves = 2 at 24 h
n green leaves= 1 at 0 h n green leaves = 2 at 24 h
Mean Sz ∈ [2,3) at 0 h Mean Sz ∈ [2,3) at 24 h
Small Sz > 2 at 0 h Small Sz ∈ [1,1.5) at 24 h
Large Sz ∈ [0,2.5) at 0 h Large Sz ∈ [3.5,4.5) at 24 h
Plant height < 1 at 0 h Plant height = [1,2) at 24 h
Mean Gr ∈ (0,20] at 0 h Mean Gr ∈ (0,20] at 24 h

Strong nutrient at 24 h n leaves = 4 at 48 h
n green leaves = 4 at 48 h
Mean Sz ∈ [3,4) at 48 h
Small Sz ∈ [0,0.5) at 48 h
Large Sz ∈ [4.5,5.5) at 48 h
Plant height = [1,2) at 48 h
Mean Gr ∈ [-40,-20) at 48 h

Contrarily to our approach, the OBSERVER method does not perform well in
the selected application. Even though it is indeed able to find some relevant events
in the past, it is not able to completely refine all the rules, only reaching in the long
term a ratio of 40 % of the plans successfully executed (see Fig. 5 D). One rea-
son for the poor performance might be that it does not explore past events that
may produce the effects coded in a disjunctive form. Having events with disjunc-
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Table 12: Precondition part of the example rule after the first refinement
n leaves = 1 at 0 h
n green leaves= 0 at -48 h
n green leaves= 1 at 0 h
Mean Sz ∈ [2,3) at 0 h
Small Sz > 2 at 0 h
Large Sz ∈ [0,2.5) at 0 h
Plant height < 1 at 0 h
Mean Gr ∈ (0,20] at 0
Action mild watering at -24

Table 13: Precondition part of the example rule after the second refinement
n leaves = 1 at 0 h
n green leaves= 0 at -48 h
n green leaves= 1 at 0 h
Mean Sz ∈ [2,3) at 0 h
Small Sz ∈ [0,0.5) at -24 h
Small Sz > 2 at 0 h
Large Sz ∈ [0,2.5) at 0 h
Plant height < 1 at -48 h
Plant height < 1 at 0 h
Mean Gr ∈ (0,20] at 0
Action mild watering at -24

tive form is a frequent case in the gardening application, where plants may have
similar evolutions under different combination of past events. Note that, in the
OBSERVER mechanism for the most specific precondition refinement, an event
is deleted if it is not present in all the positive instances (see Sec. 6.1). Hence, dis-
junctive events, which would appear in some but not all positive instances, would
not be considered for the refinements of the most general precondition.

Our approach is instead able to consider disjunctive events, since all the events
in positive instances have a chance to be evaluated, disregarding whether they ap-
pear in some or all of the positive instances. To provide an example, we use the
rule presented in Table 16, generated after the teacher instruction of executing in
sequence three treatments: a strong nutrient treatment (Table 9), starting at t = 0
hours, another strong nutrient treatment, starting at t = 24 hours, and a treatment

31



Table 14: Precondition part of the example rule after the third refinement
n leaves = 1 at 0 h
n green leaves= 0 at -48 h
n green leaves= 1 at 0 h
Mean Sz ∈ [2,3) at 0 h
Small Sz ∈ [0,0.5) at -24 h
Small Sz > 2 at 0 h
Large Sz ∈ [0,2.5) at 0 h
Plant height < 1 at -48 h
Plant height < 1 at 0 h
Mean Gr ∈ (0,20] at 0
Action mild watering at -24
Action mild watering at -48

Table 15: Rule refinement example: statistics
Rule n+ n−

Rule generated from inst. (Table 11) 111 189
First refinement (Table 12) 98 36
Second refinement (Table 13) 98 36
Third refinement (Table 14) 57 0

of strong watering (Table 8), starting at t = 48 hours. The descriptors changed
with the execution of these treatments are: number of leaves (n leaves), number of
green leaves (n green leaves), mean size of leaves (Mean Sz), size of the smallest
leaf (Small Sz), size of the largest leaf (Large Sz), plant height, and growth rate
of the largest leaf (Large Gr). Tables 17 and 18 present two refinements of the
precondition part of the example rule carried out by our approach. These refine-
ments involve two disjunctive events that should take place 24 hours before the
rule execution: the action of mild watering (Table 17) and the action of strong
watering (Table 18). Any of these actions would produce the same changes with
the additional condition that the action of extra mild watering should be applied
48 hours before the rule execution. Both disjunctive refinements improve the ac-
curacy of the original rule as shown in Table 19. In this table we can see that the
rule generated from instruction has associated 241 negative instances and only 58
positive instances, while the two refinements have no negative instances, and 36
and 20 positive instances.
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Table 16: Disjunctive form example: first rule generated from observed changes.
Preconditions Actions Effects
n leaves = 1 at 0 h Strong nutrient at 0 h n leaves = 2 at 24 h
n green leaves= 1 at 0 h n green leaves = 2 at 24 h
Mean Sz ∈ [2,3) at 0 h Mean Sz ∈ [2,3) at 24 h
Small Sz > 2 at 0 h Small Sz ∈ [1,1.5) at 24 h
Large Sz ∈ [0,2.5) at 0 h Large Sz ∈ [3.5,4.5) at 24 h
Plant height < 1 at 0 h Plant height ∈ [1,2) at 24 h
Large Gr ∈ (0,20] at 0 h Large Gr ∈ (0,20] at 24 h

Strong nutrient at 24 h n leaves = 3 at 48 h
n green leaves = 3 at 48 h
Mean Sz ∈ [3,4) at 48 h
Small Sz > 2 at 48 h
Large Sz ∈ [4.5,5.5) at 48 h
Plant height ∈ [1,2) at 48 h
Large Gr ∈ (0,20] at 48 h

Strong watering at 48 h n leaves = 6 at 72 h
n green leaves = 6 at 72 h
Mean Sz ∈ [3,4) at 72 h
Small Sz ∈ [1,1.5) at 72 h
Large Sz > 5.5 at 72 h
Plant height ∈ [1,2) at 72 h
Large Gr = 0 at 72 h

Table 17: Disjunctive form example 1. Event: action mild watering at -24 h.
n leaves = 1 at 0 h
n green leaves= 1 at 0 h
Mean Sz ∈ [2,3) at 0 h
Small Sz > 2 at 0 h
Large Sz ∈ [0,2.5) at 0 h
Plant height < 1 at 0 h
Large Gr ∈ (0,20] at 0
Action extra mild watering at -48
Action mild watering at -24

Another reason for the poor performance of OBSERVER is that the refinement
of the most general precondition representation only takes place when there is
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Table 18: Disjunctive form example 2. Event: action strong watering at -24 h.
n leaves = 1 at 0 h
n green leaves= 1 at 0 h
Mean Sz ∈ [2,3) at 0 h
Small Sz > 2 at 0 h
Large Sz ∈ [0,2.5) at 0 h
Plant height < 1 at 0 h
Large Gr ∈ (0,20] at 0
Action extra mild watering at -48
Action strong watering at -24

Table 19: Disjunctive form example: statistics
Rule n+ n−

Rule generated from inst. (Table 16) 58 241
Disjuntive form example 1 (Table 17) 36 0
Disjuntive form example 2 (Table 18) 20 0

only one different event between positive and negative instances or between the
most specific precondition and negative instances (see Sec. 6.1). Even though this
strategy permits finding descriptors with high relevancy, the situation in which this
is actually happening is unusual in the application of controlling plant growth.
This is so since positive and negative instances consider the evolution of plants
along several days in the past, and finding two instances in which the evolution
only varies in one event is rare. In this way, there are relevant events that cannot be
identified by this method and some rules cannot complete their refinements, which
causes unexpected effects to never cease (see Fig. 5 B). In contrast, our approach
considers all the events in positive instances as potentially relevant, disregarding
whether they appear in negative instances or not, and tries different combinations
of them for rule refinement.

We can see in Fig. 5 A) that the accumulated number of instructions for the
OBSERVER method converges faster, and to a lower value, than for our approach.
The reason for this relies on the refinement of rules from unexpected effects. Note
that, when a rule is refined after an unexpected effect, it usually becomes more
specific, i.e. the number of situations in which the rule can be applied diminishes.
Eventually, some situations turn out to have no applicable rule, making the planner
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fail in finding a plan in these situations and, hence, triggering action instruction.
This is actually the process taking place in our approach. This process continues
until all the possible situations are covered by accurate rules, the moment at which
the number of instructions and unexpected effects both converge. In the case of
the OBSERVER, many of the rules producing unexpected effects are never refined
due to the reason explained before, keeping the same number of situations where
the rule is applicable, and triggering no further action instructions.

Finally, note that the number of rules generated by our approach is much
higher than the number of rules generated by OBSERVER (Fig. 5 C). One reason
for this is that our approach keeps refining rules until no rules produce unexpected
effects, while the OBSERVER stops this refinement much earlier. Another reason
is that OBSERVER only considers two precondition representations for the coded
changes, the most general and the most specific, while in our case many different
alternative preconditions are evaluated 2. If we group together all the rules gen-
erated by our approach coding the same changes, the resulting number of rules
is 50, which is comparable to the number of rules generated by the OBSERVER
method.

7. Conclusions

In this work we addressed the difficult problem of controlling the growth of
plants using artificial intelligence techniques for planning and learning. There are
two aspects that contributed to the feasibility of the approach. On the one hand,
we developed a novel method to learn planning operators coding the events in
the past history of the plant that are relevant to predict the future evolution of
the plant under different treatments. On the other hand, we integrated the learn-
ing method in a decision-making architecture that allows learning these operators
online, while the task is executed without interruptions.

The decision-making framework interleaves the learning method with a logic-
based planner and a human gardener. The integration of these three components
allows for a continuous improvement in the control strategy. The planner pro-
gressively improves its performance since it uses any refinement in the coded
weakly correlated cause-effects immediately after it happens. On the other hand,
the human gardener speeds up the learning by instructing actions that produce

2For a fair comparison with our approach, we count the most specific and most general pre-
condition representations generated by the OBSERVER as two rules.
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cause-effects relevant for the task at hand when the planner cannot make a deci-
sion due to missing operators. The improvement in the performance of the system
is reflected in Fig. 5 D), where the ratio of plans completed successfully is zero
at the very beginning of the learning, when many human instructions take place,
and one at final stages.

We observe from the experiments that the events relevant to predict the effects
of a sequence of actions are, in general, past values of the plant attributes that
change with the actions, as well as actions applied in the past. For instance, in
the example rule presented in Table 11, the final refinement done by the learning
method (Table 14) considers, from all the possible past events, five events con-
sisting of past values of three of the attributes changed with the actions and two
previously applied treatments of mild watering, which allow for the evolution of
the plant coded in the rule.

To assess the validity of our approach we ran several experiments in a simu-
lated environment and compared the results with those obtained using an adapta-
tion of OBSERVER, a well-known method for the online learning of operators for
planning (Wang, 1995). The results show that our approach significantly outper-
forms the OBSERVER method, it being able to find the past events that permit an
accurate prediction of the evolution of plants much faster. This allows the planner
to be able to complete most of the plans autonomously already at early stages of
the learning.

It proved hard to find a method for comparison, since no one has so far ad-
dressed the type of problem we were addressing, namely the learning of planning
operators from weakly correlated cause-effects. Thus, we had to resort to the
well-known OBSERVER method and adapt it to be applicable to our problem.
Although this adaptation was done in the best way we could think of, the com-
parison may still not be entirely fair, since our approach was devised from the
very beginning specifically for learning from weak correlations. For instance, in
the original version of OBSERVER, the most specific precondition representation
is initialized with all the descriptors from the state before the action execution.
According to our state definition for planning (16), this would involve all the past
events until the time at which the rule was executed, which may entail an arbitrary
large number of events. Since the maximum delay needed to accurately predict the
evolution of plants from different initial situations observed in the experiments is
5 days, we avoid considering for the implementation of the OBSERVER method
events farther in the past to limit the size of the search space. However, this fixed
number of days may compromise the performance of the OBSERVER method
when compared to our approach. This is so since many rules only need to con-
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sider events from up to two or three days in the past for an accurate prediction of
the effects, which involves a much smaller search space. Since this information
is not available in advance, we cannot restrict the search space for OBSERVER
to the optimal case for each rule. Note that our approach avoids this problem
by refining the precondition part in a general to specific approach, where the ex-
plorations of events in the past is carried out gradually, according to the learning
needs (see Sec. 4.4). Another factor to take into account from the implementation
of OBSERVER in our decision-making framework is that the samples available
for learning are only collected online, while the task is executed, and not offline,
from solution traces provided by an expert, as in the original implementation of
OBSERVER (Wang, 1995). This may significantly restrict the number of samples
available, mainly at early stages of the learning. Having less samples, it may de-
crease the chances of refining the failing rule due to the fact that no sample fulfils
the requirements necessary for the refinement using the OBSERVER method, as
explained in Sec. 6.

In the simulated evaluation we assume a fully observable deterministic envi-
ronment. This implies that plants presenting the same past history would have
the same evolution under the same treatments, and that all the relevant events to
predict this evolution are observable and considered in the state representation. In
this way, the capability of the learning approach can be evaluated precisely since
any deviation from the expected evolution of the plant would indicate that some
relevant events in the past history of the plant are still missing in the precondition
part of the failed rule. However, in real plant scenarios, the evolution of plants may
vary even if they present the same phenotype and history. This is so since not all
the factors affecting the plant development can be considered in the state descrip-
tion, e.g. intrinsic genetic factors. Note that our approach permits considering
this variability through the threshold for the generation of rules from unexpected
effects (see Eq. (22)). This threshold defines the minimum difference between
the coded sequence in the rule and the observed one that would trigger the rule
refinement process. By setting this threshold to the size of the variation expected
from the hidden variables, we would avoid refining rules that may already take
into account all the relevant observable events.

There are several possible extensions of the proposed decision-making frame-
work. One interesting extension would be to use a probabilistic planner instead of
a deterministic one (as the PKS) for decision-making so as to use the probabilistic
information attached to the learned rules. Another possible extension would be
to provide a more informative instruction request. So far, the instruction request
only informs that a plan was not found. If only one missing operator prevents the
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planner to find the plan, then the teacher may instruct several actions that produce
already existing operators until the missing operator is generated. To improve
performance, the planner could also provide some information about the possible
missing operators that originated the instruction request. This would permit the
teacher to instruct actions that generate the missing operators faster.
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Appendix A. Plant Simulator

Many plant simulators have been developed to study the growth of plants
(Fourcaud et al., 2008). These simulators are usually focused on specific aspects
of the plant behaviour, e.g. how a single leaf is developed, rather than the simu-
lation of the whole plant. In this section we propose a complete plant simulator
inspired by different approaches for modelling a plant behaviour. Our simulator
considers many aspects of plant behaviour, e.g. growth of leaves, growth of stem,
leaf generation and elimination, variation in the color of leaves, etc. We also sim-
ulate some aspects of the behaviour of the plant environment. We would like to
point out that the main purpose of this simulator is to rapidly generate sequences
of events involving weak correlations so as to test our decision-making frame-
work. To do this, we focused mostly on defining the set of equations that model
all the mentioned aspects of a plant behaviour, but not on fitting and validating the
model for a particular plant.

To implement the plant simulator we adopt a non-linear model assuming an
asymptotic final size of the plant with a growth profile corresponding to the monomolec-
ular approach (Paine et al., 2012). We consider each leaf individually with at-
tributes size and color, where the size is represented with a continuous value with
units cm2, and the color is represented with continuous values ranging in [0,1],
where 0 represents a completely yellow leaf (at this point already dead), and 1
represents a completely green leaf, with the highest value of healthiness.

To simulate the growth of the leaves we use a set of delay differential equa-
tions. The growth of a leaf is modeled as

dS(t)
dt

= AS(t− τ)− knl nl(t)− kSS(t), (A.1)

where S(t) represents the size of the leaf at time t, kS is the proportionality factor
that regulates the growth rate with the size of the leaf, nl(t) is the total number
of leaves at time t, knl is the proportional factor that regulates the influence of the
number of leaves on the growth rate, and

AS(t−τ) = kWSW (t−τ)+kNS N(t−τ)+kLS L(t−τ)+kTS T (t−τ)+kMS M(t−τ),
(A.2)

is the term representing the environmental influence on the size of the leaf with a
delayed response of delay τ . W , N, L, T ,and M are the concentrations of water and
nutrient in the soil, and the environmental light (in µmol), temperature (◦C), and
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humidity (%), respectively, and kWS , kNS , kLS , kTS , and kMS are the corresponding
gains regulating the influence of these factors on the size of the leaf.

The variation in the color of a leaf increases with water supply and nutrient
incomes and decreases with the age of the plant according to

dC(t)
dt

= AC(t− τ)− kGG(t), (A.3)

where C(t) is the color of the plant,

AC(t− τ) = kWCW (t− τ)+ kNC N(t− τ)+ kLCL(t− τ), (A.4)

is the soil and environmental influence on the color variation rate, G(t) is the age
of the plant in hours, and kG regulates the color with the age of the leaf: the older
the leaf the larger the color variation (old leaves get yellow more easily). kWC , kNC ,
and kLC are the parameters regulating the influence of water, nutrient, and light in
the color variation, respectively.

The growth of the stem of the plant is determined by

dH(t)
dt

= AH(t− τ)− kHH(t), (A.5)

where H(t) is the height of the stem and

AH(t− τ) = kWHW (t− τ)+ kNH N(t− τ), (A.6)

is the influence of the water and nutrient in the height variation, regulated by the
parameters kWH and kNH , respectively. The term kSS(t) diminishes the growth rate
of the stem according to its height in a proportion of kH .

Appendix A.1. Leaf Generation and Elimination
The simulator generates and eliminates leaves according to the plant and en-

vironmental conditions. Leaves are generated when the size of the stem is greater
than 0, and the average water and nutrient saturations are above a threshold thrgen,
i.e. when the inequalities W̄ > thrgen and N̄ > thrgen are fulfilled, where

W̄ =
1
t

∫ t

0
W (t)dt, (A.7)

and

N̄ =
1
t

∫ t

0
N(t)dt, (A.8)
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are the average concentrations of water and nutrient along time.
A leaf is eliminated when it is too yellow, which is determined by the inequal-

ity C(t)< thrcolor, where thrcolor is a threshold for the color of the leaf.

Appendix A.2. Water and Nutrient in Soil Simulation
We simulate the variation of water and nutrient concentration in the soil us-

ing a set of first order differential equations (Verkroost and Wassen, 2005). The
variation of the water concentration is modeled as

dW (t)
dt

= kW ∆W (t)− kS̄W
S̄− kVW (t), (A.9)

where W (t) is the water concentration, ∆W (t) is the water income in ml at time t,
kW is the parameter regulating the influence of the water income,

S̄ =
1

nl(t)

nl(t)

∑
i=1

Si(t), (A.10)

is the average size of the leaves, and kS̄W
is the parameter regulating the influence

of the average size of leaves. The term kVW (t)models the evaporation of the water
in the soil: the larger the amount of water in the soil the higher the evaporation
rate.

The variation of the nutrient concentration in the soil is modelled as,

dN(t)
dt

= kN∆N(t)− kS̄N
S̄, (A.11)

where N(t) is the nutrient concentration, ∆N(t) is the nutrient income in ml at time
t, and kS̄N

regulates the influence of the average size of leaves in the nutrient con-
centration. Note that, in the variation of the concentrations of water and nutrients,
the larger the mean size of leaves the higher the resources consumed by the plant
and the higher the decrease in concentration.

Appendix A.3. Plant Behaviour Example
In order to illustrate a prototypical plant behaviour we present in Figure A.6 an

example of a plant evolution under a specific treatment. The example shows the
evolution of the number and sizes of leaves and their respective color variations
with incomes of water and nutrient. In particular, we present a situation in which
the plant is first supplied with normal amounts of water and nutrients and then sit-
uate the plant under nutrient stress. Notice the variation in leaf generation, where
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Figure A.6: Plant evolution example.

many leaves are generated at the beginning, when the plant is treated normally,
to later diminish due to the nutrient stress. It is important to note that the plant
simulator also emulates the permanent wilting point, where older yellow leaves
cannot be fully recovered in the long run, even though they may show some tem-
poral recovery, when their color gets below 0.9. This is so even when the nutrient
supply is restored. These leaves are finally eliminated from the plant in the long
run.

Appendix A.4. Plant Simulator Set-up
The delayed response of the plant is simulated using a delay of τ = 25 hours.

We set this relative high value for the delay in order to increase the weakness
of the correlations between causes and effects. The threshold for the average
saturation of water and nutrient in the generation of leaves is set to thrgen = 0.1
and the threshold for the elimination of leaves according to their color is set to
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thrcolor = 0.7 (see Sec. Appendix A.1). For the simulation we use the Euler
method with a differential for time of dt = 0.5 hours and an actuation interval
of one hour. All the parameters of the equations of size and color variation rates
were defined by exhaustive manual tuning (Table A.20) based on observations of
Tobacco plants growth.
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