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Abstract

This paper presents two techniques to detect and classify navigable terrain in complex 3D
environments. The first method is a low level on-line mechanism aimed at detecting obstacles
and holes at a fast frame rate using a time-of-flight camera as the main sensor. The second
technique is a high-level off-line classification mechanism that learns traversable regions from
larger 3D point clouds acquired with a laser range scanner. We approach the problem using
Gaussian Processes as a regression tool, in which the terrain parameters are learned, and also
for classification, using samples from traversed areas to build the traversable terrain class.
The two methods are compared against unsupervised classification, and sample trajectories
are generated in the classified areas using a non-holonomic path planner. We show results
of both the low-level and the high-level terrain classification approaches in simulations and
in real-time navigation experiments using a Segway RMP400 robot.

1 Introduction

A large number of mobile robot applications are tailored to human environments, and the robots used are
expected to navigate and move efficiently on them. An elementary capability for efficient navigation in such
environments is obstacle avoidance. In planar indoor and outdoor domains, 2D range sensing suffices to
guarantee adequate obstacle avoidance, and a large number of deployed systems rely purely on 2D range
sensing for safe navigation alongside humans. In less structured 3D settings however, 2D sensing does not
suffice to guarantee safe and robust navigation, and 3D sensing alternatives are favored, such as stereo vision
or 3D laser scanning.

Time-of-flight (ToF) cameras combine the advantages of image-based sensing and range sensing as they
provide registered range and intensity values for each pixel. Moreover, ToF cameras capture range data
at high frame rates overcoming the need to aggregate range measurements typical of other 3D scanning
devices (Ortega and Andrade-Cetto, 2011). However, since ToF cameras are active infrared illumination
devices, they have not been used prominently for outdoor robot navigation due to sun saturation effects. As
new more powerful devices enter the marketplace, this situation is expected to change.

In this paper we exploit the advantages of ToF sensing and report the use of a photonic mixer device (PMD)
ToF camera for robust obstacle and hole detection for real-time outdoor mobile robot navigation. The
technique includes several sensor data processing algorithms combined with a custom-developed short-term
planner to account for the non-holonomic constraints of the platform used. The camera is located in the
front of the robot and facing downwards as shown in Fig. 1.
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Figure 1: Obstacle detection with a ToF camera. Top left: The ToF camera is located in the frontal part of
the robot and facing downwards. Bottom left: Intensity image of the scene as observed by the ToF camera.
Right: The detected obstacle is shown in red, and the traversable regions are shown in green. The pink area
represents an inflation radius around the detected obstacle, used to compute the local path to the goal as
shown in black.

Once a low-level obstacle avoidance mechanism at high frame rate is in place, it is desirable to have a high-
level technique that can plan longer paths to a desired goal. This requires not only the acquisition of dense
maps, but also a classification strategy on these maps. To build the maps, we use our method in (Valencia
et al., 2009). In this paper, we present such classification scheme.

State-of-the art terrain classification methods use 3D laser range finder data at impressively rich point cloud
density, and extract features from these point clouds (Douillard et al., 2011). Such features are then used to
build traversable and non-traversable classes, usually through parametric classification. Feature thresholding
is a difficult task that sometimes requires human intervention (Stoyanov et al., 2010; Triebel et al., 2006;
Joho et al., 2007). However, learning algorithms with manual labeling of data (Lalonde et al., 2006) can also
be used.

In this paper we present a pair of methods to attain high-level off-line classification of traversable areas, in
which training data is acquired automatically from navigation sequences. Our experiments show f-scores
–weighted average of precision and recall values– as high as 0.98 for the classification of traversable and
non-traversable regions.

To motivate the reader, Fig. 2 shows the type of terrain our method is able to handle. Using only some of the
traversed areas as positive training samples, our algorithms successfully classified the rest of the traversable
terrain and our robot was able to climb the steep grass incline next to the stairs. This is in contrast to other
techniques which search for global planarity constraints or other features not in accordance with the training
data.

The originality in this paper is two-fold. On the one hand, we present a study in the use of ToF sensing for
outdoor obstacle avoidance, and a technique to smooth the local obstacle avoidance paths produced with
an A* planning algorithm using cubic B-splines. Secondly, we present an off-line GP-based classification
mechanism to detect traversable regions purely from traversed positive samples. The classification results
are then used to plan global paths for the robot.
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Figure 2: Non-parametric classification of complex terrain. a) A photo of the Facultat de Matemàtiques i
Estad́ıstica (FME) patio. b) Classification results. Traversable areas in green, and obstacles in height-valued
gray. The positive samples in the training sequence used to produce this result included the points at the
robot footprint that were acquired while climbing the slope next to the stairs. Consequently, the classification
technique was able to correctly label such scenario.

2 Related work

In contrast to indoor robot navigation, outdoor mobile robots need to be equipped with 3D sensing capabil-
ities. The state of the art in high speed 3D sensing for mobile robots is achieved with the Velodyne sensor.
This device, in its HDL32 and HDL64 versions is tailored to scanning wide areas at high frame rates, and are
commonplace in research in autonomous vehicles (Leonard et al., 2008). The device provides point clouds
with 700,000 points per second on a 360 degree view of the scene with a limited vertical field of view of about
40 degrees and up to 70 meters (Spinello et al., 2011).

To detect objects at closer range, or to build maps with much denser resolution, one could use instead a
custom made 3D scanner (Valencia et al., 2009). We use such device and method to build large maps of the
environment, but the device contains moving parts and a limited bandwidth and cannot be used to render
full 3D views of the scene at high speed; and thus is unsuitable for real time obstacle avoidance.

A high speed alternative to laser scanning for 3D imaging is the use of CCD or CMOS cameras and stereo
triangulation, and more recently, the use of 3D time of flight cameras. ToF cameras measure both intensity
and range by illuminating the scene with an infrared wave form and by demodulating the amount of light
reflected by the scene onto the sensor (Foix et al., 2011). These devices have been modestly used for robot
navigation. The first approaches in indoor robot navigation with a prototype of the SR-2 Swissranger (Wein-
garten et al., 2004; Blanc et al., 2004) motivate their use for obstacle avoidance, and point out that camera
calibration and data preprocessing steps were necessary to get stable range data from the sensor. Further-
more, ToF cameras have been integrated with the Player middleware (Hussmann et al., 2009), and their
signal cropped to be used as a 2D range sensor for indoor mapping (Almansa-Valverde et al., 2012), or only
to enhance the results obtained with laser navigation (Yuan et al., 2009).

Better sensors have appeared in the market and also the calibration procedures have been refined (Fuchs and
Hirzinger, 2008), to the point that ToF range images are used nowadays in the context of robotics, to create
models of 3D rigid (Foix et al., 2010) and flexible objects (Alenyà et al., 2011), to fit conics for pipeline
landmark detection (Thielemann et al., 2008) or to create high resolution range maps through fusion with
stereo (Gandhi et al., 2012). In this paper we analyze the use of ToF imaging for fast obstacle detection and
outdoor navigation.

Aside from reactive local navigation, we want to add to our system global path planning capabilities. To
that end, we need to to classify our global maps of the terrain with traversable and non-traversable areas.
Terrain classification on 3D environments with not-flat surfaces has been an active research topic in mobile
robotics.

Figure 2: Non-parametric classification of complex terrain. a) A picture of the Facultat de Matemàtiques i
Estad́ıstica (FME) patio. b) Classification results. Traversable areas in green, and obstacles in height-valued
gray. The positive samples in the training sequence used to produce this result included the points at the
robot footprint that were acquired while climbing the slope next to the stairs. Consequently, the classification
technique was able to correctly label such scenario.

2 Related work

In contrast to indoor robot navigation, outdoor mobile robots need to be equipped with 3D sensing capabil-
ities (Sanfeliu et al., 2010). The state of the art in high speed 3D sensing for mobile robots is achieved with
the Velodyne sensor. This device, in its HDL32 and HDL64 versions is tailored to scan wide areas at high
frame rates, and is commonplace in research in autonomous vehicles (Leonard et al., 2008). The HDL64
device provides point clouds with over 1.3M points per second on a 360 degree horizontal view of the scene
with a limited vertical field of view of 26.8 degrees and up to 120 meters (Spinello et al., 2011).

Laser-based 3D sensors are prone to transformation errors at high speed due to the need for motion com-
pensation. A high speed alternative to laser scanning for 3D imaging is the use of CCD or CMOS cameras
and stereo triangulation, and more recently, the use of 3D time-of-flight cameras. ToF cameras measure
both intensity and range by illuminating the scene with an infrared wave form and by demodulating the
amount of light reflected by the scene onto the sensor (Foix et al., 2011). These devices have been modestly
used for robot navigation. The first approaches in indoor robot navigation with a prototype of the SR-2
Swissranger (Weingarten et al., 2004; Blanc et al., 2004) motivate their use for obstacle avoidance, and
point out that camera calibration and data preprocessing steps were necessary to get stable range data from
the sensor. Furthermore, ToF cameras have been integrated with the Player middleware (Hussmann et al.,
2009), and their signal cropped to be used as a 2D range sensor for indoor mapping (Almansa-Valverde et al.,
2012), or only to enhance the results obtained with laser navigation (Yuan et al., 2009).

Real-time ToF 3D sensing is now commonplace, and also the calibration procedures have been refined (Fuchs
and Hirzinger, 2008), to the point that ToF range images are used nowadays in the context of robotics, to
create models of 3D rigid (Foix et al., 2010) and flexible objects (Alenyà et al., 2011), to fit conics for pipeline
landmark detection (Thielemann et al., 2008) or to create high resolution range maps through fusion with
stereo (Gandhi et al., 2012). In this paper we analyze the use of ToF imaging for fast obstacle detection and
outdoor navigation.

Aside from reactive local navigation, we want to add to our system global path planning capabilities. To
that end, we need to build larger maps, and to classify their terrain into traversable and non-traversable
areas. Dense 3D mapping calls for special sensing modalities. The Velodyne is fast, but produces sparse
point clouds. ToF cameras on the other hand have limited range. To accommodate for dense long range
sensing, we have built instead a series of 3D scanners (Valencia et al., 2009; Teniente and Andrade-Cetto,
2013), and used them to build large and dense maps of the environment.



Terrain classification on 3D environments with non-flat surfaces has been an active research topic in mobile
robotics. An early approach to the problem is the use of elevation maps (Hebert et al., 1989; Howard et al.,
2006). This is a discrete representation of the terrain that stores surface height in its cells. Neighboring cells
with a difference in height above a user-defined threshold are marked as non-traversable. In (Pfaff and Bur-
gard, 2005) an extension of elevation maps is given that allows to deal with vertical and overhanging objects.
These were further extended to represent multiple levels with the Muti-Level Surface Maps (MLS) (Triebel
et al., 2006). And later, in (Joho et al., 2007), MLS were extended to include slope information to handle
possible abysses and holes.

Terrain classification is approached with the aid of Markov random fields in (Häselich et al., 2011; Anguelov
et al., 2005; Munoz et al., 2009), either using cameras or range data. All these mapping schemes store the 3D
environment information in regularly spaced grids. Our technique does not treat annotated 2D maps, but
rather full 3D data, allowing us to handle underpasses or tree shadows with ease. Another version of terrain
classification that uses 3D data is through the use of 3D occupancy maps (Martin and Moravec, 1996). This
technique however has large memory requirements. To deal with the memory requirements of 3D occupancy
maps, one can resort to the use of variable resolution grids, such as octrees (Wurm et al., 2010; Stoyanov
et al., 2010). Instead of learning the classification, (Pauling et al., 2009) segmented the point clouds through
a graph-based ellipsoidal region-growing process using a minimum spanning-tree and two maximum edge-
weight conditions, leading into discrete regions that represent obstacles in the environment. (Morton and
Olson, 2011) classifies objects according to height-length-density parameters. The above-mentioned methods
to terrain classification are parametric. They offer fast terrain segmentation, but generally it is difficult to
find the rules which work for a variety of terrain types and dangerous areas like abyss.

Non-parametric approaches use some learning strategies that include the use of training data. Some recent
methods use learning from demonstration (Silver et al., 2010), imitation learning (Silver et al., 2009), learning
from proprioceptive measurements (Sofman et al., 2006; Angelova et al., 2007), or coordinate ascent learning
to estimate terrain roughness (Stavens and Thrun, 2006). In (Lacroix et al., 1999) for instance, Bayesian
classification is performed on elevation maps using stereo vision to compute occupancy maps. In a method
similar to ours in spirit, (Kim et al., 2006) produce a grid with traversable regions from an autonomous data
collection along the robot path. Their method extracts 13 different features from monocular images, and
feeds them to a majority voting process to predict the traversability of each cell. Our method is simpler in
that we use less features, and are not constrained to regularly spaced grid settings. Another non-grid based
representation for 3D data is presented in (Lalonde et al., 2006). They perform terrain classification directly
over the point clouds just as we do, learning the terrain feature distribution by fitting a Gaussian Mixture
Model using the Expectation Maximization algorithm on a set of hand labeled training data. We resort
instead to the use of Gaussian Processes for classification, and do so over automatically acquired positive
training sequences.

Gaussian processes (GPs) (Rasmussen and Williams, 2005) have recently called attention in mobile robotics
for classification (Murphy et al., 2012). Compared to a more traditional technique such as Support Vector
Machines (SVM) GPs offer several advantages such as learning the kernel and regularization parameters,
integrated feature selection, fully probabilistic predictions and interpretability. In comparison with Support
Vector Regression (SVR), GPs take into account the uncertainties, predictive variances and the learning
of hyper-parameters. Using GPs, (Karumanchi et al., 2010) proposed a mobility representation where in
contrast of the traversability criterion, the maximum feasible speed is used to classify the world adding
exteroceptive or proprioceptive states augmenting the GP input vector. An approach using GPs on two-
dimensional range data to compute occupancy probability is presented in (O’Callaghan and Ramos, 2012).
Another approach, (Murphy and Newman, 2010), takes advantage of GPs to build cost maps for path
planning from overhead imagery. In (Vasudevan et al., 2009), the authors infer missing data in 3D range
maps for open pit mines. And recently, GPs were used to segment point clouds in not one but multiple
classes (Paul et al., 2012). In (Douillard et al., 2011), the Gaussian Process Incremental Sample Consensus
(GP-INSAC) algorithm is presented, that consists of an iterative approach to probabilistic, continuous ground
surface estimation, for sparse 3D data sets that are cluttered by non-ground objects. This approach however
does not specifically address traversable region classification as presented in the next sections.



Figure 3: The ToF camera data passes through various low-level filters according to the task to be solved.

3 Obstacle detection with a time-of-flight camera

Time-of-flight cameras use infrared light to illuminate the scene, thus sunlight influences their distance
measurements. For this reason, ToF devices require algorithms for suppression of background illumination
(SBI) or an equivalent infrared suppression scheme if their use is intended for outdoor applications. (Piatti
and Rinaudo, 2012) showed that the PMD CamCube 3.0 camera is more robust to sunlight than other ToF
cameras. This camera is based on phase shift measurements and has a PMD 41k-S2 sensor of 200 x 200
pixels, with integrated SBI technology. For this reason, PMD CamCube 3.0 camera has been used for this
work.

Our objective is to detect obstacles in front of the robot at a high frame rate and this is done by analyzing
the planarity and orientation of patches in the point cloud. Depth measurements coming from the ToF
camera are contaminated by both systematic and nonsystematic errors (Foix et al., 2011). Systematic errors
can be dealt with calibration. For instance, the PMD camera used in this paper is claimed to work under
sunlight mainly thanks to its powerful IR auto-illumination characteristic, but the camera integration time
(IT) has to be adjusted for each particular illumination condition. As discussed in (May et al., 2006), the IT
affects the amplitude and intensity of the data. As for the random non-systematic errors, these need to be
removed with various filtering schemes. In this paper, we develop several low-level and morphological filters
depending on the task to be solved. Without filtering, the ToF camera produces a very low signal to noise
ratio. For obstacle detection, we implemented amplitude and noise reduction filters, downsampling, outlier
removal and normal estimation. For hole detection, downsampling suffices. The source point cloud is passed
through the above-mentioned filters ending with the estimation of local orientation at each point. See Fig. 3.

- Amplitude filtering is used to remove 3D points which have been read with a lower amplitude than
a threshold. The amplitude has no specific units and it represents the amount of near infrared
light reflected from the scene. Higher amplitude means more confidence in the measurement and
thresholding it discards primarily data resulting from objects with low infrared reflectivity, far away
distances, or from objects which are located at the peripheral area of the measurement volume due
to inhomogeneous scene illumination. The ToF camera has limitations on surfaces with high or low
reflection characteristics that pass undetected, by sensor saturations at sunlight, or by absorbing
entirely the IR illuminant.

- Average filtering consists of an integration approximation by observing each pixel in the point cloud
at consecutive time intervals and keeping the z distance average. This filter smoothes the output
averaging a number of consecutive point clouds depending on the buffer size. The use of the average
filter improves signal-to-noise ratio and although it removes temporary outliers it introduces a delay
to detect obstacles.
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Figure 4: Classification of points into traversable (green) and non-traversable (red) areas according to their
locally estimated normal orientation( a) ground, b) obstacle, c) slope, d) stairs, e) hole).

Figure 5: The area in front of the robot is divided into three regions, and the amount of data in each region
is analyzed to evaluate the presence of a hole on the road.

- Point cloud downsampling. The density of the point cloud produces delays due to computation costs.
Once the data has been filtered by amplitude and average, it is interesting to down-sample the point
cloud mainly because in our application not all points add extra information to perform obstacle
detection. To down-sample, we uniformly reduce the number of points considering an expected
output resolution.

- Sparse outlier removal is based on the computation of the distribution of point neighbor distances in
the input dataset. For each point, its mean squared distance to all its k neighbors is computed. By
assuming that the resulting distribution is χ2, all points whose mean squared distances are outside
an interval defined by the point mean and standard deviation can be considered as outliers and
trimmed from the dataset. Outlier removal is at the expense of filtering the boundary of step edges,
which for our application is inconsequential.

- Normal estimation. We estimate the normal orientation of local planar patches at each point with
the method in (Ortega et al., 2009). Traversable regions will have a local normal orientation nearly
perpendicular to the robot footprint, whereas obstacles will be either non-flat, or have other ori-
entations, see Fig. 4. In the special case of a gradual increase of ground inclination we added a
safety condition comparing the absolute orientation of the planar patch with that of the 3D compass
onboard the robot.

A robust navigation strategy must not only be able to detect obstacles efficiently, but also to detect apertures
or holes in the terrain. No specific low-level processing of the data is required to do this but only to quantify
the amount of data gathered from a particular region. To do this we divide the region in front of the robot
in three areas as shown in Fig. 5, and analyze the amount of registered data in them. Finer subsampling
can be used in this case since the structure of the data is not relevant for this task and the normals need
not be computed. To interface with the navigation cost map, once a hole is detected, we generate a virtual
point cloud simulating an obstacle in that region.



Figure 6: Example of the automatic data collection. In green the positive traversable samples along the
robot’s path footprint.

4 Gaussian processes for off-line terrain classification

We want to identify traversable areas in very complex terrain. This means that we must be able to deal
with many terrain characteristics, such as slopes and bumps, vegetation, different terrain surfaces (e.g., soil,
grass, concrete), etc. To build a map of the environment, we drive our mobile robot taking multiple dense
3D point clouds. Pose SLAM (Ila et al., 2010; Valencia et al., 2009) is used to register these point clouds
together.

Initially we compute two features for each point in the map, slope and texture, using principal component
analysis over a window of points centered at each query point. The eigenvector associated with the smallest
eigenvalue defines the orientation of the local plane, and is used to compute plane slope fs, with regards to
the world reference frame. The smallest eigenvalue is used to describe the terrain roughness fr.

We model the traversable class as a Gaussian process (GPs) (Rasmussen and Williams, 2005) and train
a covariance function to estimate its non-parametric underlying distribution. The prior knowledge of the
environment is the training dataset D = {(xi, yi)|i = 1, ..., n}, where xi contains the slope and roughness
input values for each point pi in the map, and yi is a scalar target value which is dependent of the problem
to solve (regression or classification), e.g., the traversable and non traversable classification class labels. In
our case, we take advantage of automatic data collection to build the training set, similar to (Kim et al.,
2006). Since our robot trajectories were human-driven, they already satisfy any unmodeled traversability
constraint. The points located below the robot footprint at each node in the Pose SLAM path are thus
tagged as traversable. See Fig. 6. This collection method alleviates the hard work of manually labeling the
training dataset. For each point in this set we compute our slope and texture features, and aggregate them
into a positive feature vector x = [x1,x2, ...,xn] : xi = [fr, fs]. Ideally, the training dataset would consist of
all the observations made. However we subsample the data. Data reduction is important since the GP has
worst case computational complexity O(n3), and memory complexity O(n2).

The problem of learning in GPs is exactly the problem of finding suitable properties for the covariance
function that best models the training data D. These properties, called the hyper-parameters, are adjustable
variables that are learned from D and are used to do predictions for new inputs that we may have not seen in
D. There are numerous covariance functions (kernels) that can be used to model the relationship between the
random variables corresponding to a given data. In our approach, we have used a neural network covariance
defined as
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where x̃i = (1,xi)T is the so-called feature augmented input vector (Rasmussen and Williams, 2005). We have
set its hyper-paramteres Σ = diag(σ2

0 , σ
2) as those fitting the squared expected value of the error function

on the samples x. σ2
f is the hyper-parameter signal variance, used to scale the correlation between points.

The use of a neural network covariance kernel has been proved to be effective in handling discontinuous
(rapidly changing) data, and this is the main reason why we think it is effective to model complex terrain
data (Vasudevan et al., 2009).

At this point we propose two different approaches to classify the points as traversable Pt or obstacles Po. The
first proposal employs GP regression and only traversable samples. The main advantage of using regression
is to have less computational effort for the training and inference than GP classification, but with lower
accuracy. In this case, the training dataset D will consist of a uniformly sampled and filtered version of x
including only traversable points as in Fig. 6. We use a statistical density filter to remove spurious data
which may affect the regression. The specification of the prior is important, because it fixes the properties
of the functions considered for inference. In this case, we use a zero mean Gaussian prior (Rasmussen and
Williams, 2005). The algorithm will produce a classification threshold y = c such that traversable points are
Pt = {pi|yi ≥ c} and obstacle points are Po = {pi|yi < c}. We can use regression in our proposal since data
dimensionality is small and we can assume continuity, and also because we only have two classes.

A second approach is to perform GP classification, which increases the computational load but we believe
it offers a more accurate prediction for this problem, as shown in the experiments section. The training
data set is established differently than for regression. Now the training dataset needs two different classes.
The first class comprises the same labelled traversable features used during regression, which came from the
robot footprint samples during manual robot motion. In this case, we do not further subsample the training
set since the prediction of the GP classification is expected to remove spurious data during classification.
We call the input data set in this class x+, and receives the label y = +1. The second class with label
y = −1 is built by randomly sampling the remaining unlabeled points in x. This set is called x−. Now we
build the two-class training data set as D = {(x+,x−),y}. To obtain the traversable points we create a grid
over the slope and roughness features. This grid is used to compute the log predictive probability curves
with the learned hyper-parameters, see Fig. 7. It should be noted that the region of high likelihood for
high roughness and low slope (on the bottom right of the Fig. 7) is largely underrepresented in the training
set, meaning that the GP would classify samples in that region with large uncertainty values. In reality,
since no points in the entire dataset satisfied such condition, it is very improbable that during execution, a
point would be found to have such feature values and be misclassified. Traversable points will be those with
a probability larger than a threshold pt indicated by the likelihood curve that best fits x, i.e., traversable
points are Pt = {pi| ln p ≥ pt} and obstacle points are Po = {pi| ln p < pt}.

Note that when no true negatives are available, as in our case, it is still possible to train only with positive
samples during regression, or to randomly draw negative samples from the unlabeled data during classifica-
tion. These two strategies are commonly used in learning, and are not unique to GPs, but are also applicable
for SVM classification (Elkan and Nato, 2008) or with the SpyEM algorithm (Liu et al., 2002).

Once the point cloud is either regressed or classified, we propose a filtering step to remove isolated points
on each class (Lalonde et al., 2006). The filter uses nearest neighbor information, discarding all points that
have less than a selected number of neighbors in a search radius. Moreover, a statistical density filter is also
applied to remove points in regions with low density.

Identifying borders is important to protect the robot integrity. Border points may be located near abysses,
on stairs and on holes that normally are out of the sensor field of view. We define border points as Pb =
{pi ∈ Pt|fb1 ≥ (µ(fb1) + κ ∗ σ(fb1)) ∧ fb2 ≥ r ∧ fb3 > β}, where r indicates distance to the border, and β is
the maximum angle interval for a no border point. Next in line, we remove Pb from Pt and add these points
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Figure 9: Likelihood curves example ( a) training dataset inputs, b) Likelihood curves for the GP classifica-
tion). In the color bar, red indicates the maximum likelihood for a point to be traversable.

the maximum angle interval for a no border point. Next in line, we remove Pb from Pt and add these points
to the obstacle set.

The first border feature fb1 is given by the distance between the centroid of the search window and the query
point. The second border feature is given by fb2 = λ1/λ2. For points located near or at a border, 2λ1 ≈ λ2.
To compute the third border feature fb3, we project the points in the query window onto the xy plane, and
compute the angles between the query point and all its neighbors and sort them. We use as the third feature
the maximum angle interval between neighbors (Gumhold et al., 2001).

Once the terrain has been classified, we are now in the position to compute a global path to a desired
destination that can be fed as waypoints to the robot navigation moduled described in Sec. 4.

To this end we resort to a hybrid randomized A* method that can plan safe trajectories in rich complex 3D
environments whilst guaranteeing reachability at a desired robot pose with significantly lower computation
time than competing alternatives (Teniente and Andrade-Cetto, 2013). The method is called HRA* and
it has been shown to compare favorably against A*, RRT and RRT*, in terms of computation time, and
generates significantly shorter paths than A* and RRT.

This path planner incrementally builds a tree using the A* algorithm. However, it includes a hybrid cost
policy to efficiently expand the search tree. The method combines random sampling from the continuous
space of kinematically feasible motion commands with a cost to goal metric that also takes into account the
vehicle nonholonomic constraints.

To speed up node search, the method also includes heuristics to penalize node expansion near obstacles,
with a penalty proportional to the inverse distance to collision; and to limit the number of explored nodes,
the method book-keeps visited cells in the configuration space, and disallows node expansion at those con-
figurations in the first full iteration of the algorithm.

Figure 7: (a) Training dataset. (b) Likelihood curves for GP classification. In the color bar, the red color
indicates the maximum likelihood for a point to be traversable.

to the obstacle set.

5 Robot navigation

We have a two-level robot navigation scheme, in which a global plan is computed off-line, and a local
navigation module is used to drive the robot during path execution. The global path planner is a modified
A* algorithm that plans trajectories in the off-line segmented map. The local planner on the contrary is a
simpler planer that plans small paths to avoid obstacles locally as observed by the ToF camera. Since the
global planner was previously reported in (Teniente and Andrade-Cetto, 2013), it is not fully developed here.
The main contribution of the section is on the use of a B-spline smoother in the local planner to account for
the non-holonomic constraints of our vehicle. This two-level navigation scheme is explained next.

Once the terrain has been offline classified, we are now in the position to compute a global path to a desired
destination that will be fed as waypoints to a lower level online robot navigation module. To this end we
resort to a hybrid randomized A* method that can plan safe trajectories in rich complex 3D environments
whilst guaranteeing reachability at a desired robot pose with significantly lower computation time than
competing alternatives. The method is called HRA* and it has been shown to compare favorably against
A*, RRT and RRT*, in terms of computation time, and generates significantly shorter paths than A* and
RRT (Teniente and Andrade-Cetto, 2013).

This path planner incrementally builds a tree using the A* algorithm. However, it includes a hybrid cost
policy to efficiently expand the search tree. The method combines random sampling from the continuous
space of kinematically feasible motion commands with a cost to goal metric that also takes into account the
vehicle non-holonomic constraints.

To speed up the node search, the method also includes heuristics to penalize node expansion near obsta-
cles, with a penalty proportional to the inverse distance to collision; and to limit the number of explored
nodes, the method book-keeps visited cells in the configuration space, and disallows node expansion at those
configurations in the first full iteration of the algorithm.

Once this global plan has been computed, the trajectory is fed to the online navigation module consisting
on a local plan to drive the robot from one waypoint to the next, and uses a low-level controller to follow it.
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Figure 8: Comparison between (a) straight and (b) B-spline paths. The path (a) includes in-place rotations
which are avoided in (b) considering our skid steer platform.

Within this navigation scheme, obstacle data in the area close to the robot is assembled into a discretized
two-dimensional structure, i.e., the cost map. The local planner is in charge of finding a suitable path to the
next waypoint whilst avoiding large-valued cells in the cost map. The cost map is a 2D structure because
the robot is constrained to drive on surface ground, although the underlying representation of the world
actually consists of a 3D voxel grid. This 3D-occupancy grid is projected down into 2D and costs propagate
outward as specified by a decay function as in (Marder-Eppstein et al., 2010).

Without the need to consider the specific hybrid cost policy and the heuristics of the underlying method of
the global planner, we take advantage of a simpler method for the online navigation module. Our system
is integrated to the Robotics Operating System (ROS) navigation stack that uses the Rollout Trajectory
Planner (RTP) method as a low level controller. This, in contrast to the more popular Dynamic Window
Approach (Fox et al., 1997), samples the control space directly instead of sampling target trajectories in
velocity space. The advantage of sampling directly in the space of velocity commands is that sampling can
be performed at a higher pace than with DWA for which the robot dynamics needs to be inverted to compute
the desired velocity commands that will generate the trajectory. The RTP planner has been reported to
be the best performing low-level controller in the DARPA LAGR contest (Gerkey and Konolige, 2008).
Unfortunately, the planners included in such ROS navigation stack only implement Dijkstra (Cormen et al.,
1992) or A* (Hart et al., 1968) algorithms but do not take into account the initial and final robot orientation,
as well as the robot’s non-holonomic constraints.

Since the cost function in the navigation stack implementation is only related to the traveled distance, the
paths obtained are minimal distance paths made up of straight trajectories that enforce in-place rotation at
the waypoints, which are problematic for skid-steer platforms such as ours. These rotations put maximum
stress on the motors because of friction as the wheels skid, leading to motor failure. To avoid it, we have
modified the planner by replacing straight segments with cubic B-splines as in (Pan et al., 2007), enforcing
continuity in the start and goal velocities. See Fig. 8. B-spline curves are minimal support representations
with respect to a desired degree and smoothness. They are preferred over Bezier curves because their degree
is independent of the number of control points.

The main practical application of the B-spline smoother is to account for the non-holonomic constraints of
the platform during path execution. The offline global planer takes such platform constraints into account
when planning a path. But, the real time local planner for obstacle avoidance that was present in the
online navigation ROS module used did not have such feature. Our B-spline smoother serves that purpose,
replacing the motion commands created by the the A* planner in the ROS navigation module so that in
plane rotations are avoided for our skid steer vehicle.

Given an initial collision-free piecewise linear trajectory computed by the A* local planner on the cost map,
our objective is to modify this cost map to smooth the path to the next waypoint. In contrast to (Pan et al.,
2007), in which obstacles are dealt with by recursively splitting the piecewise trajectory in those areas in



Figure 9: Cubic B-spline with control and knot points that satisfy the velocity constraints.

which a collision is detected, we take a different strategy. We carve a valley on the cost map along a cubic
B-spline curve that satisfies continuity of velocity. The curve will erode this valley along collision-free areas
but its contribution will not be significant in cells with large obstacle values. The resulting local trajectory
will be smoothed while maintaining collision avoidance.

For each linear segment we need m = 8 knots, t0 ≤ . . . ≤ tm−1, and our B-spline becomes a parametric curve
S(t) : [tn, tm−n−1]→ R2, made up of a linear combination of basis B-splines bi,n(t)

S(t) =
m−n−2∑

i=0
pi bi,n(t), t ε [tn, tm−n−1] (2)

where pi εR2 are the desired control points, and the basis B-splines bi,n obey the Boor recursion. This
blending function can be easily precomputed, which put in matrix form becomes

Si(t) =
[
t3 t2 t 1

] 1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




pi−1
pi

pi+1
pi+2

 , (3)

for t ε [0, 1].

The control points pi are chosen to satisfy linear and angular velocity constraints, and are computed using
the robot kinematic equations: xt+1

yt+1
θt+1

 =

xt + vtx dt
yt + vty dt
θt + ωt dt

 . (4)

So, if p0 = [xs, ys]T and p3 = [xg, yg]T are the start and goal locations, with θ0 = θs and θ3 = θg the start
and goal orientations, the remaining control points, shown in Fig. 9, can be computed by:

p1 = p0 + vs dt , θ1 = θ0 + ωsdt , (5)
p2 = p3 − vg dt , θ2 = θ3 − ωgdt . (6)

With this parameterized B-spline we modify the potential propagation wave used by the A* planner, carving
on the cells containing the spline path, i.e., subtracting a user-trained value from each cell in the cost map
on which the B-spline passes by. Thus, we modify the local A* path with the cubic B-spline and use RTP as
a local planner up front to follow the valley in the cost map as closely as possible while taking into account
the kinematics of the robot.
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Figure 10: (a) The mobile robot Teo, a skid steer Segway RMP400 platform, and its various sensors, and
(b) the relation between its coordinate frames.

Figure 11: Camera depth calibration. 2D laser shown in black, and ToF range data shown in green and red
during the calibration process.

6 Experiments

6.1 Online obstacle avoidance

To validate the performance of the low-level online obstacle avoidance method, we conducted a series of
experiments using our robot Teo, shown in Fig. 10, a Segway RMP400 unit equipped with a variety of
sensors to which we added a PMD Camcube 3.0 ToF camera, working at 20MHz modulation frequency. To
obtain data from the ToF camera, we developed a ROS compliant driver and its accompanying ROS nodes,
using the SDK libraries from the manufacturer, PMD technologies.

The camera calibration parameters are used by the ROS camera driver to correct monocular distortions and
solve camera model errors whereas the front laser in the robot was used as a reference to calibrate the sensor
pose calibration with respect to the base reference frame. The robot was placed in front of a wall with the
ToF camera facing the wall and the floor, as shown in Fig. 11. The rigid transformation between the ToF
camera and the front laser was 130mm, 0mm, 0mm,-2.09rad, 0rad, and -1.5707rad in x, y, z, roll, pitch, and
yaw, respectively. Similarly, the front laser is related to the base link by a translation of -590mm along the x
axis and 50mm along the z axis; and the base link to the robot footprint by a mere translation of 266.7mm
along the z axis.
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Figure 12: Integration time for different scenarios and sunlight illuminances. (a) Bright sunlight (120,000
lux), (b) Low light (7,500 lux).
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Figure 13: Pixel amplitude analysis. (a) Standard deviation vs pixel amplitude, (b) ROC curves

To choose an appropriate integration time (IT) value for the camera, a series of experiments were driven
under different illuminations and for various surface types. Fig. 12a shows the percentage of detected points
in a region of interest (ROI) corresponding to the floor in front of the robot for varying IT values and heavy
sunlight exposure. In contrast, Fig. 12b shows also percentage values of detected points in the ROI under low
light conditions, where most of the light reflected to the sensor comes from the camera illumination source.
We compute the optimum IT value for each case as the best mean of points in the ROI for the different soil
samples in both the high and low sunlight exposure settings. In the bright sunlight case the optimal IT is
1,000 µs and in the case of low light, 12,000 µs is the appropriate IT value. Given that our methods are
tailored to outdoor scenarios, we choose as integration time a value of 1,000 µs.

To compute the amplitude and average filter parameters, another series of experiments were conducted.
Fig. 13a shows the relationship between the measured standard deviation of point depths read from the
sensor and the pixel amplitude mean for different soil types. A suitable way to filter the point cloud is to use
a high pass filter on the pixel amplitude. Fig. 13b shows ROC curves at different standard deviations and
varying amplitudes. The optimal amplitude is chosen considering the equal error rate (EER) and corresponds
to a standard deviation of 0.2 meters and an amplitude of 400.

Considering the maximum expected robot velocity of 1 m/s, a camera frame rate of 15 fps and a camera
field of view up to 5 m, we set the average buffer size to 7 frames. This amounts for a delay in obstacle
detection of less than half a second.
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Figure 14: Distribution estimate of neighbor’s squared distances.
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Figure 15: Low-level data processing. (a) Original point-cloud, (b) amplitude and average filters, (c) down-
sampling and (d) sparse outlier removal.

To down-sample the data, we consider the camera resolution (200x200), the focal length (0.013m), and the
field of view (40◦x40◦). The desired resolution at which we wish to detect obstacles at 5m is 55points/m,
thus we set the downsampling ratio to get one third of the original points with a point each 5.5cm.

As for sparse outlier removal, if we a compute the squared distance of each point to its k nearest neighbors,
and assume a χ2 distribution for these squared distances, we can easily remove all points laying outside
a confidence zone with value of 95% using a χ2 test. This is shown in Fig. 14. Due to computational
limitations, we have set to 20 the total number of k nearest neighbors to compute.

To qualitatively see the effect of each of these filters for the acquisition of the ToF depth maps, Fig. 15 shows
the point cloud obtained from the robot facing a set of stairs, and the results of the various low-level filtering
steps.

Considering our particular robot platform configuration, obstacle detection was triggered for planar patches
of 100 points, due to computational costs, and the reachable slopes with normal orientations smaller than
78.46 degrees from the robot base. Fig. 16 shows obstacle detection for various outdoor scenarios: a wall, a
tree trunk, and a set of stairs. In the image, green points mean traversable, whereas red indicate obstacles.

Hole detection is triggered when less than 50 points are detected in any of a set of three boxes of 60 × 5 ×
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Figure 16: Obstacle detection on different outdoor scenarios, (a) wall, (b) tree trunk and (c) set of stairs

Figure 17: Hole detection.

80 centimeters each, in front of the robot. Fig. 17 shows the three detection regions in three levels of blue,
and the detection warning in red once it is triggered.

During local navigation, obstacle information is assembled into a cost map, and our local planner modifies
the values in those cells corresponding to the B-spline valley. With these modifications, the planner searches
a minimum cost path to the waypoint. Fig. 18a shows the difference between the original non-holonomic
unaware planner and our B-spline modification.

There is one free parameter to choose in our implementation, the B-spline integration time. With this
parameter we can effectively control the location of the control points and generate trajectories with varying
smoothness. Fig. 18b shows the different forms of the B-spline curve for varying values of dt. Considering
a usual distance to the waypoint at 4m and a robot translational speed of 0.2 m/s (although the maximum
speed could be at 1m/s, for safety reasons the usual speed is lowered), we get the best results at dt = 0.5s.

In our navigation stack the local planner updates in real-time the cost map with obstacles and holes. Thus,
the planner updates also in real-time the path to the waypoint. Fig. 19 shows this situation. The figure
shows in black the obstacles detected by the front laser and in red the obstacles detected by the ToF camera.
The green dots represent the obstacle free areas detected by the ToF camera. Note that our implementation
integrates in the cost map information from both the front and rear 2D lasers as well as the ToF camera.
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Figure 18: (a) Comparison of the paths produced by the original and the B-spline local planners in ROS.
(b) B-spline trajectories for varying values of the parameter dt.

(a) (b)

Figure 19: Real-time update of the path to a waypoint, (a) before and (b) after obstacle detection.

Finally Fig. 20 shows different frames of an outdoor navigation sequence using the ToF camera integrated
with all other sensing devices from Teo with some obstacles in another outdoor scene. In this sequence,
the cost map is also plotted. In red, cells in the map with low values, indicating the chosen trajectory. In
magenta, the detected obstacles. The lower left frames at each iteration show the robot model together
with the path of potentials towards the waypoint as computed with the rollout trajectory planner and the
B-spline smoothing.

6.2 Off line terrain classification

Two different datasets were used for the experiments. In both dataset, point clouds were gathered using a
custom-built 3D laser with a Hokuyo UTM-30LX scanner mounted in a slip-ring. Each scan has 194,580
points with a resolution of 0.5 deg azimuth and 0.25 deg elevation. The data of the first dataset was acquired
in the Barcelona Robot Lab, located at the Campus Nord of the Universitat Politècnica de Catalunya, and
consists of a 10,000 sq meters with several levels and underpasses with moderate vegetation. The custom-
built 3D laser was mounted on Helena, a Pioneer 3AT mobile robot, acquiring 400 scans. The entire dataset
is available in (Teniente et al., 2011). The second dataset was gathered in the Facultat de Matemàtiques
i Estad́ıstica, located at the Campus Sud of the Universitat Politècnica de Catalunya. The space consists
of 2,500 sq meters located in the inner courtyard of the building, which has two main levels together with



Figure 20: Outdoor navigation using the ToF camera and the front and rear lasers. The figure also plots a
color coded version of the cost map.

FME Dataset BRL Dataset
Method Recall Recall

Naive parametric 0.987 0.978
SVM linear 0.9329 0.9266

SVM quadratic 0.9289 0.9266
SVM polynomial 0.9224 0.9054

SVM RBF 0.9250 0.9112
SVM MLP 0.7039 0.1583

GP regression 0.997 0.998
GP classification 0.995 0.993

Table 1: Traversability segmentation results using only the robot footprint to train the classifier.

some outdoor furniture and some vegetation including trees inside the navigable zone. For this dataset, the
sensor was mounted atop Teo, our rough outdoor terrain Segway RPM400 mobile robot. In this case only
39 scans were collected. There are important differences between the two datasets, despite both including
uneven terrain, the surfaces that the robots traverse are significantly different. While in the first dataset we
only have paving, in the second one we have soil, gravel, grass and concrete. Also Teo is capable of going
over bumps as big as 15 cm in height.

The point clouds were uniformly sampled using a box size of bz = 0.15m. Then for each sampled point
we search the nearest neighbors in a search radius of 1.35bz over the raw data, and compute fr and fs.
Also, we discarded points with local height above 2.5m, since the points above this height do not add useful
information and are a computational burden. Filtering and border detection were performed on the union
of the two classified point clouds. In the outlier removal filter we discarded points with less than 7 neighbors
within a 3 ∗ h(bz) radius, where h(bz) is the box diagonal. In the density filter, the search radius was the
same. To compute border features the search radius was set to 2.5 ∗ h(bz). The border detection values are:
κ = 2, r = 1.85 and β = 35o.

For the learning algorithm the training dataset sampling steps were 0.005 for roughness, and 0.5o for normal
orientation. In the GP classification for the first class data we sample x as stated before. For the second
class data we first sampled the unlabeled set xu uniformly, and then picked n random samples, where n is 7
times the number of elements in x. We decided to do this because we needed to reduce the training data set
dimension to ease computational burden. For the execution times reported, we run the experiments in an
Intel Core i7-2720 system @ 2.20 GHZ, with 8 GB of RAM, running Ubuntu 10.04 64 bits, with MATLAB.



FME Dataset BRL Dataset
Method Precision Recall f-score Precision Recall f-score

Naive parametric 0.9212 0.9949 0.9566 0.8832 0.9738 0.9263
SVM linear 0.8422 0.9962 0.9127 0.9015 0.9582 0.9290

SVM quadratic 0.9043 0.4761 0.6238 0.8656 0.9718 0.9266
SVM polynomial 0.8529 0.9962 0.9190 0.9213 0.3822 0.5402

SVM RBF 0.8634 0.9957 0.9248 0.8101 0.9819 0.8877
SVM MLP 0.7582 0.9886 0.8582 0.2156 0.9194 0.3492

GP regression 0.7229 0.9936 0.8369 0.5188 0.9382 0.6681
GP classification 0.9724 0.9916 0.9819 0.9112 0.9617 0.9358

Table 2: Traversability segmentation results using hand-labelled ground truth.

FME Dataset BRL Dataset
Total size 16937 points 11518 points

GP regression
Training size 832 points 338 points
Training time 0.8 sec 0.35 sec

Segmentation time 0.53 sec 0.19 sec

GP classification
Training size 6080 points 4144 points
Training time 326 sec 550 sec

Segmentation time 11.82 sec 8.84 sec

Table 3: Dataset sizes and execution times.

We used the GP toolbox in (Rasmussen and Nickisch, 2010).

We compared the two proposed GP-based segmentation schemes against a naive linear classifier, and also
using SVMs with different kernel functions (linear, quadratic, polynomial, RBFs, and multilayer perceptron).
To measure classification performance, we employ two different approaches. First we run the regression
and classification methods purely on robot footprint points, and use this as ground truth to compute the
recall ratios shown in Table 1. We can see that segmentation of the point clouds in both cases, regression
and classification, produce slightly better recall values than naive parametric classification and significantly
outperform the SVMs. By recall we mean the ratio of true positive samples over the sum of true positive
and false negative samples. False negatives are in this case the points in the labeled part of the dataset that
were not classified as traversable. Note that since we have only positive samples, only recall as a measure of
classification performance can be computed.

The evaluation however is not completely fair. The large recall values obtained for the naive parametric
classifier might be misleading since no labeled obstacles are being considered. To come up with an evaluation
that takes false positive and true negative classification into account, we hand labeled the point clouds with
positive and negative ground truth and computed not only recall but also precision and f-scores. The results
are shown in Table 2. By precision we mean the ratio of true positives over the sum of true positives and
false positive samples; and the f-score, a common statistic for classification performance, is computed as
twice the product of precision and recall over the sum of precision and recall. The table shows how GP
classification outperforms all of the other methods on f-scores in both datasets used at the expense of larger
computation costs. Database sizes and computation times are given in Table 3.

Quantitatively speaking, GP classification is less resilient to filtering and shows better precision than re-
gression, parametric classification, and SVM classification. In some cases however, it might be sufficient to
use GP regression given its significantly smaller computational load. Fig. 21 shows qualitative results of all
segmentation methods on the BRL dataset, compared against hand-labelled ground truth.

One reason why GP classification produces slightly better results than GP regression in this particular
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Figure 21: Qualitative comparison of GP traversability segmentation on the BRL dataset: a) Hand labeled
classes, b) Naive parametric classification, c) SVM classification, d) GP regression, and d) GP classification,
Traversable areas are shown in green and obstacles are in height-valued gray.

problem might be that whereas function values take fixed values during regression, during classification, the
relation from function values to class labels is achieved via class probabilities. The flexibility of using a
threshold function to accommodate such class probabilities could be a reason for the improved classification
results at the expense of higher computational cost. Although, the statement cannot be generalized to any
other GP regression/classification problem.

Finally, Fig. 22 shows the results of using the classified point cloud to compute a global path using HRA*.

7 Conclusions

This article presents two systems for 3D terrain classification in outdoor environments. The first, using a
TOF sensor, runs in real time and heuristically detects non-traversable areas in front of the robot. The
second, using 3D LIDAR point clouds, runs offline and uses a self-supervised classifier to classify regions in
a point cloud map as traversable or non-traversable. Trajectory generation and path planning methods for
the mobile platform are also addressed.

A first of its kind detailed study in the use of ToF cameras for outdoor mobile robot obstacle avoidance is
presented. The technique detects not only obstacles, but also holes, is tightly integrated with the low level
controller and is able to produce steering commands to the robot meeting vehicle motion constraints.

An alternative to our method to generate smooth trajectories would be to compute Dubbins curves to the
goal (Bonnafous et al., 2001) instead of our smooth B-splines. The substitution of our B-splines for Dubbins
curves in the carving of the cost map, as well as the use of intensity images provided by the ToF camera
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Figure 21: Qualitative comparison of GP traversability analysis on the BRL dataset: a) GP regression, b)
GP classification, c) Parametric classification and d) Hand labeled. Traversable areas are shown in green
and obstacles are in height-valued gray.
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Figure 22: Terrain classification on the FME dataset. (a) GP classifier, (b) filtered obstacles, (c) Filtered
obstacles and borders, and in red, the resulting HRA* path. Traversable points are in green, obstacles are
in height-valued gray, and borders are in blue.

Figure 21: Qualitative comparison of GP traversability analysis on the BRL dataset: a) GP regression, b)
GP classification, c) Parametric classification and d) Hand labeled. Traversable areas are shown in green
and obstacles are in height-valued gray.
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Figure 22: Terrain classification on the FME dataset. (a) GP classifier, (b) filtered obstacles, (c) Filtered
obstacles and borders, and in red, the resulting HRA* path. Traversable points are in green, obstacles are
in height-valued gray, and borders are in blue.

Figure 22: Terrain classification on the FME dataset. (a) GP classifier, (b) filtered obstacles, (c) Filtered
obstacles and borders, and in red, the resulting HRA* path. Traversable points are in green, obstacles are
in height-valued gray, and borders are in blue.

to do the online obstacle detection algorithm more robust, are foreseen additions to our algorithm that we
leave for future research.

All our code for this low level module is available for download at http://www.ros.org/wiki/teo apps.
The technique includes acquisition and data processing methods to obtain reliable 3D information of a
section of terrain in front of a mobile robot. The technique has been designed especially to work on outdoor
unstructured environments with a PMD Camcube 3 ToF camera as the main sensing device.

The second method presented is a high-level off-line terrain classification mechanism that processes 3D point
clouds to generate traversability maps for the computation of global paths. The method uses Gaussian
Processes to classify the terrain as traversable or not, and has the advantage that it can be trained purely
from positive samples. These samples can easily be acquired whilst maneuvering the robot in the intended
terrain. Using two variants of supervised learning –GP regression and GP classification– we are able to
classify dense point clouds acquired with Pose SLAM (Ila et al., 2010).

We showed that with only two features, one for local roughness, and one for slope, we can get classification
performance with f-scores better than SVM and naive parametric classification. Collision free regions for
path planning were extracted from the filtered classified points, using border and obstacle detection. Finally,
we show that the resulting traversability maps can be used for 3D path planning. Given that the GP encodes
also the variance of the distribution, we leave also as future work, exploiting such information to also guide
the path planning strategy, making the robot navigate along areas with least classification uncertainty, such
as in (Valencia et al., 2013).
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