Analysis of conventionally controlled PEMFC
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Motivation \

Variations in the concentrations of reactants, as well as
temperature, have significant effects on the performance
and durability of PEMFC.

All these variables exhibit spatial dependence along the
channel.

A controlled PEM fuel cell study is done through a
distributed parameter simulation model.

A conventional stoichiometry control objective is
considered in order to analyze the behavior of spatial
profiles of some important variables.

Importance of considering distributed parameter models
in control design is shown.
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Simulation scenarios

Scenario 1: oxygen and hydrogen stoichiometry references
are set at 2 and 1.7, respectively. Voltage is set at 0.8 V and,
at time t = 110 s, system undergoes a series of step changes
in humidification of gasses on cathode side.

Scenario 2: oxygen and hydrogen stoichiometry references
are set at 2 and 1.7, respectively. Voltage is set at 0.8 V and,
at time t = 110 s, the setpoint for hydrogen stoichiometry is
changed down to 1.4.
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System description
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* Single cell of one channel of 0.4 m (area 0.4 x 103 m)
with Nafion 117 membrane.
The model is 1+1D, based on the work by Mangold et al.
[1]. )

Control description I
Two simple Pl feedback controllers are chosen to obtain a
closed-loop system.

The control objectives are to maintain oxygen and
hydrogen stoichiometry at a certain reference value.
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Model structure and implementation I
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* Six submodels that are coupled by internal variables.

* 1. GC module: reactant concentrations, flow velocity, pressure and
temperature in the gas channels.

* 2. GDL module: diffusion in a multicomponent mix of species.

* 3. CLsubmodel: the electrochemical reactions and mass fluxes are
modeled in the.

¢ 4. Membrane module: detailed protonic exchange membrane
model.

* 5. Solid part module: energy balance to determine the solid
part temperature.

* 6. Charge balances module: Cell current and voltage.

¢ The inputs are inlet flows for anode side and cathode side, inlet

flows temperatures, cooling temperature and cell voltage. The

main output is cell current. /

Simulation results: species concentrations (scenario 1)

( Along-the-channel results (steady-state)

Notice how concentrations of reactants have an important variation along the channel. These profiles need to be taken into
account, regarding fuel starvation or membrane humidity, for example. Therefore control design considering spatial profile

seems appropriate.

Differences in behaviour for three points along the channel are appreciated. Results for scenario 1 show how the step changes
have immediate effects at the beginning of the channel, while these effects get attenuated towards channel end due to
different time constants. Different behaviours suggest the interest of designing controllers for specific points along the channel
by means of reduced order models, in order to avoid zones of operating conditions that can be harmful to the membrane,
catalyst layer or other elements of the fuel cell vulnerable to degradation or low performance. The ongoing research is aimed
at finding interesting control objectives that consider spatial variations.
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Simulation results: species concentrations (scenario 2) *»
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Simulation results: membrane water content and current density (scenarios 1 & 2) 7
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