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Abstract

This paper presents an efficient approach for asymptotically-optimal path planning on implicitly-defined configuration
spaces. Recently, several asymptotically-optimal path planners have been introduced, but they typically exhibit slow
convergence rates. Moreover, these planners can not operate on the configuration spaces that appear in the presence
of kinematic or contact constraints, such as when manipulating an object with two arms or with a multifingered hand.
In these cases, the configuration space usually becomes an implicit manifold embedded in a higher-dimensional joint
ambient space. Existing sampling-based path planners on manifolds focus on finding a feasible solution, but they do
not optimize the quality of the path in any sense and, thus, the returned solution is usually not adequate for direct
execution. In this paper, we adapt several techniques to accelerate the convergence of the asymptotically-optimal
planners and we use higher-dimensional continuation tools to deal with the case of implicitly-defined configuration
spaces. The performance of the proposed approach is evaluated through various experiments.

Keywords: Asymptotically-optimal Path Planning, Kinematic Constraints, Bi-directional Search, RRT*, LPA*,
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1. Introduction

The determination of the feasible motions between
configurations that optimize a given cost function is
a fundamental task in Robotics. This problem is ex-
tremely hard but, due to its relevance, it has been a
subject of active research for decades [1, 2]. In or-
der to reduce the complexity of the problem, most of
the existing approaches focus on finding feasible paths
within parametrizable spaces, which is still a challeng-
ing case. In this line of work, sampling-based path
planners [3, 4] can efficiently find feasible paths even
in high-dimensional spaces and nowadays they are the
standard for industry-level solutions [5]. Unfortunately,
standard sampling-based approaches do not take into
account the cost of the path and, therefore, the re-
turned paths tend to be unsuitable for direct execution,
as shown in Fig. 1. To address this issue, the so-called
asymptotically-optimal sampling-based path planners

∗Correspondence to: Llorens i Artigas 4-6, 08028, Barcelona,
Spain. Tel: +(34)934015751. Fax: +(34)934015750.

Email addresses: ljaillet@iri.upc.edu (L. Jaillet),
porta@iri.upc.edu (J. M. Porta)

Figure 1: Two paths connecting the same query configurations for
a small ball moving on a torus while avoiding obstacles. Left A
jerky path obtained with a standard sampling-based path planner.
Right A close-to-optimal solution when optimizing the path length.

received a particular amount of attention over the past
few years. The seminal work of Karaman and Fraz-
zoli [6] focused more on the theoretical properties of the
proposed algorithms than on their efficiency and, thus,
they are slow in finding a first feasible solution, and
exhibit low convergence rates in practice. Moreover,
these planners, as most of the existing sampling-based
approaches, rely on an explicit, global parametrization
of the configuration space. While this parametrization
can be trivially obtained for open chain robots, it is not
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available in more complex situations such as when ma-
nipulating an object with two arms [7] or with a multi-
fingered hand [8]. In these cases, the kinematic or con-
tact constraints convert the configuration space into a
non-parametric, implicitly-defined manifold embedded
in the ambient space of the variables representing the
degrees of freedom of the system.

This paper addresses the principal shortcomings of
asymptotically-optimal sampling-based path planners
introducing the AtlasBiRRT*, an efficient planner that
can operate on implicitly-defined manifolds. The ef-
ficiency is achieved resorting to a bidirectional search
strategy that rapidly determines feasible paths, and us-
ing tools taken from the Lifelong Planning A* (LPA*)
algorithm [9] that fully exploit the cost improvements,
whenever found. Moreover, to operate on manifolds,
the proposed planner relies on the higher-dimensional
continuation techniques recently introduced in the con-
text of path planning [10–12].

After Section 2, which describes the related work,
Section 3 introduces the AtlasBiRRT* planner at an ab-
stract level, independent of the characteristics of the un-
derlying configuration space. Next, Section 4 particu-
larizes the basic operations of this algorithm to operate
on implicitly-defined manifolds. Section 5 experimen-
tally evaluates the new planner and, compares it with
existing approaches. Finally, Section 6 summarizes the
contributions of this paper and suggests points that de-
serve further attention.

2. Related Work

One of the first popular approaches to deal with the
path planning problem relied on a decomposition of the
configuration space in cells. Assuming that the decom-
position is available, the optimal path can be obtained
using standard graph-based search techniques [13] on a
graph where the nodes represent the cells and the edges
correspond to the possible collision-free transitions be-
tween them [14]. These approaches are resolution com-
plete, i.e., they guarantee to find the optimal solution, if
it exists up to the resolution of the cells. However, im-
proving the path by increasing the resolution leads to an
exponential increment in the computational cost, even if
adaptive approaches are used [15]. Moreover, the com-
putational cost also increases exponentially when the di-
mensionality of the configuration space grows.

Sampling-based path planners were proposed with
the aim of dealing with high-dimensional spaces. The
Probabilistic Roadmap (PRM) method [3] defines a
graph that approximates the collision-free regions of
the configuration space. In this graph, the nodes are

randomly-sampled, collision-free configurations and
the edges are simple local collision-free paths between
these configurations. The graphs generated by the PRM
method can be reused to solve many path planning
queries. In contrast, Rapidly-exploring Random Trees
(RRTs) [4] efficiently solve a particular query, using the
initial configuration as a root node to grow a tree ex-
ploring the collision-free regions, until the goal config-
uration is reached. Both PRMs and RRTs are proba-
bilistically complete meaning that when the number of
samples approaches infinity, they guarantee to find a so-
lution, if it exists. While the RRT-based approaches
provide only one path connecting the query configura-
tions, the PRM-based techniques typically lead to sev-
eral paths and the one with the lowest cost can be re-
trieved using graph-based search techniques [16]. How-
ever, this process does not necessarily converge to an
optimal path as the sample density is increased [6].

Solution paths generated by sampling-based methods
can be post-processed to improve their quality. The ran-
dom shortcut method [17] is simple, but the result is
only locally optimal and only particular optimization
criteria such as the path length can be taken into ac-
count. More general criteria can be used in smoothing
techniques [18–20], although the optimization is still
local. Globally-optimal paths can be approximated in
particular problems using variational methods [21] or in
general problems combining the construction of an RRT
with stochastic optimization [22]. However, in the latter
case, the difference between the obtained solution and
the optimal path can be large in some cases, and it is not
reduced over time. More recently, different sampling-
based path planners that progressively converge to the
globally-optimal solution have been introduced [6]. De-
spite their theoretical guaranties, these planners tend
to be slow and, consequently, several heuristics have
been proposed to improve their convergence rate. These
heuristics rely, for instance, on bidirectional trees [23],
on rejecting samples that can not be part of the optimal
path [23], on delaying the optimization until a feasible
path is found [24], on propagating the cost improve-
ments over the graph [25], or on reducing the size of the
tree/graph [26], even at the cost of somehow sacrificing
the optimality [27].

All the mentioned sampling-based approaches rely
on a global parametrization of the configuration
space, which, except for particular families of mech-
anisms [28], is not available when the problem in-
cludes kinematic constraints. In this case, the configura-
tion space is a non-parametrizable manifold implicitly-
defined by the constraints. Due to the relevance of the
applications in and beyond Robotics [29–35], several
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approaches have addressed the problem of path plan-
ning on manifolds. When minimizing the length of
the path, this problem is related to the computation of
geodesic distances. This is an active field of research in
Computer Graphics where the problem is addressed for
triangulated meshes using variants of the fast marching
method [36]. Even though some exceptions exist [37],
these approaches are limited to surfaces in 3D and they
cannot be directly applied to the configuration spaces
arising in path planning. In Robotics, methods based on
simplicial decompositions [38] or on dense sets of sam-
ples [39] have been proposed. However, these meth-
ods do not gently scale to high-dimensional problems.
A more promising approach is to adapt the success-
ful sampling-based path planning algorithms. In this
line of work, most of the existing algorithms gener-
ate samples on the manifold configuration space from
samples in the parametrizable joint ambient space us-
ing inverse kinematic functions [40], or iterative tech-
niques [41–43]. Although being probabilistically com-
plete [42], these methods cannot guarantee a regular dis-
tribution of samples on the manifold, which may hinder
its efficient exploration. This issue is addressed by re-
cent approaches [10–12] based on higher-dimensional
continuation [44]. However, none of these sampling-
based planners for manifolds considers a cost function
for paths and, thus, the returned paths are not optimal in
any particular sense.

To obtain an asymptotically-optimal planner on man-
ifolds, in a previous work we proposed the AtlasRRT*
algorithm [45] that combines the use of higher-
dimensional continuation tools to operate on mani-
folds [44] with the RRT* planner by Karaman and Fraz-
zoli [6]. However the AtlasRRT* planner shares some
of the limitations of RRT*: it may be slow in find-
ing a first feasible path and in converging to the opti-
mal one. Herein, we present the AtlasBiRRT* planner
that addresses these issues by adapting several ingredi-
ents from the Literature. First, the new planner uses a
bidirectional search to rapidly determine a first feasible
solution. Moreover, to improve the convergence rate,
it incorporates elements from the LPA* algorithm [9],
which efficiently propagates the cost improvements to
the portion of the search space that may include the op-
timal path. To this end, the new planner has to keep all
the neighboring relations for each sample. This gener-
ates a storage overhead with respect to the AtlasRRT*
planner which only maintains a tree, but this overhead
is balanced by a strong gain in efficiency.

Algorithm 1: AtlasBiRRT* path planner
input : The initial percolation threshold, γ∗ and a pair of

samples to connect, xs and xg.
output: A minimum-cost path P, connecting the two

samples, if any.

A← InitAtlas(xs, xg)1
V ← {xs, xg}2
E ← ∅3
P(xs)← None4
P(xg)← None5
C(xs)← 06
C(xg)← 07
P ← ∅8
l← ∞9
for i← 1 to N do10

xr ← SampleConf(A)11
xc ← NearestNode(V, xr)12
xn ← Steer(A, xc, xr)13
if xn , xc then14

γ ← γ∗(log|V|/|V|)1/k15
X ← Near(V, xn, γ)16
V ← V ∪ {xn}17
xm ← xc18
cm ← C(xc) + Cost(Path(A, xc, xn))19
for x ∈ X do20

ce ← Cost(Path(A, x, xn))21
if ce , ∞ then22
E ← E ∪ {(x, xn, ce), (xn, x, ce)}23
if C(x) + ce < cm then24

xm ← x25
cm ← C(x) + ce26

P(xn)← xm27
C(xn)← cm28
(P,C,P, l)← Rewire(V,E, P,C,P, l, xs, xg, xn)29

Return P30

3. The AtlasBiRRT* Algorithm

Algorithm 1 gives the pseudo-code of the
AtlasBiRRT* planner. The algorithm takes as in-
put the initial percolation threshold, γ∗, used to
determine the local neighborhood of the new samples
and a pair of configurations, xs, xg ∈ Rn, and attempts
to connect these configurations with a minimum-cost,
collision-free path in N iterations building two trees,
respectively rooted at xs and xg. The algorithm operates
under the same assumptions as previous asymptotically-
optimal path planning approaches [6]. In particular,
the cost function evaluating the paths will be assumed
to be monotonic, non-negative, additive, and somehow
bounded by the path length. To simplify the presenta-
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tion, we will further assume that it is symmetric, which
is typically the case when considering only kinematic
constraints. This last assumption, though, can be easily
dropped, if necessary.

The standard bidirectional RRT strategy [46] is de-
signed to rapidly establish a connection between the
two maintained RRTs, i.e., a feasible path between the
two query configurations. As soon as this connection is
established, the search is stopped. In asymptotically-
optimal path planning, though, the trees need to be
continuously extended, with the aim of progressively
improving the solution path. Thus, the direct use of
the standard bidirectional strategy would generate two
overlapping trees loosing the benefit of such approach.
To avoid this issue, herein we propose an alternative
bidirectional search strategy. The two query nodes, xs

and xg, implicitly induce a Voronoi decomposition of
the configuration space where this space is virtually di-
vided into two regions, depending on which of the two
given configurations is closer. Therefore, an RRT* can
be defined in each one of these regions, which avoid any
branch crossing. For instance, Fig. 2 shows the two trees
generated applying this strategy on a torus-like config-
uration space with obstacles in N = 10000 iterations.
In this set up, feasible paths are identified when the two
trees meet and the optimal path is the one that crosses
the two trees with the lowest accumulated cost. When
a new sample is generated, the usual RRT* strategy is
used, checking the connection with a set of neighbor-
ing nodes within a given radius. In this way, we can
determine the closest sample and, thus, the tree to ini-
tially contain the new sample. When the search radius
is large, the set of neighbors typically includes nodes of
both trees, which increases the probability of finding a
feasible solution. If the set of neighbors only includes
nodes in one of the trees, an extra step can be added at-
tempting to connect the new node to the closest one in
the other tree. This can accelerate the convergence in
some cases, without compromising the asymptotic op-
timality. This procedure is not detailed in Algorithm 1
for the sake of brevity.

The algorithm starts by initializing an atlas (Line 1),
which will provide a parametrization of the space to ex-
plore and whose role will be detailed in Section 4. Next,
the set of nodes maintained by the AtlasBiRRT*, V, is
initialized with the two query configurations (Line 2)
and an initially empty set of edges, E, is defined (line 3).
The two maintained trees are represented using the par-
ent relations, P, initialized in Lines 4 and 5. Moreover,
each node in the tree has an associated value, C, indi-
cating the cost of the best path to the root of the tree
including the node (Lines 6 and 7). Finally, the opti-

Figure 2: A bidirectional RRT* constructed on a torus-like manifold.
The two RRT trees are shown in red and green, respectively.

mal path, P is initially empty (Line 8) and its cost is
set to infinity (Line 9), which by convention is the cost
of unfeasible paths. At each iteration (Lines 10 to 29),
AtlasBiRRT* generates a random sample (Line 11),
extends the graph towards this sample creating a new
node xn (Line 13) and connects xn to the graph with
the collision-free edges to neighboring nodes (Lines 15
to 23), identifying the lowest-cost one (Lines 24 to 26)
to define the parent relation (Lines 27 and 28).

The new nodes and their associated edges might be
used to improve the cost of many nodes already in the
graph. A similar situation occurs in heuristic search.
Consider, for instance, a 2D grid with blocked and free
cells where the objective is to find the best path from a
start to a given goal cell. If one of the blocked cells be-
comes free, the cost-to-goal for many cells might need
to be updated, possibly affecting cells that are not in
contact to the changed cell. The updates, though, can
be limited to the cells that are likely to be part of the
optimal path, i.e., changes in cells far from the optimal
path might have no effect at all. The grid can be associ-
ated to a graph where the valid transitions between cells
define the edges and, then, heuristic search algorithms
such as LPA* [9] can be used to efficiently update the
costs when there are changes in some of the edges. Ac-
tually, in asymptotic-optimally path planning, adding a
new node has the same affect as unblocking a cell in
the grid example. Based on this idea, the AtlasBiRRT*
planner uses the iterative rewire procedure detailed in
Algorithm 2. The core of this procedure (Lines 6 to 10)
is the same as the rewiring procedure originally pro-
posed in the RRT* [6] and also used in [45]. How-
ever, here this core is applied not just for the immediate
neighbors of the last node added to the graph, but for all
the connected nodes for which the estimated total cost is
lower than the cost of the best path found so far. The es-
timated total cost for a node is a lower bound of the cost
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Algorithm 2: The Rewire procedure
input : The graph given by the nodesV, and the

edges E, the parent relations P and the cost C for
each node, the best path up to now P, and its
cost l, the query configurations xs and xg, and the
last added node, xn.

output: The possibly updated parent P and cost C for
each node, and the new optimal path P and its
length l.

c← C(xn) + Heuristic(xn,Goal(xn))1
Q ← {(xn, c)}2
while Q , ∅ and MinCost(Q) < l do3

xn ← MinNode(Q)4
RemoveFromQueue(Q, xn)5
for x ∈ Neighbours(xn) do6

ce ← CostOfEdge(E, xn, x)7
if C(xn) + ce < C(x) then8

C(x)← C(xn) + ce9
P(x)← xn10
c← C(x) + Heuristic(x,Goal(x))11
if x ∈ Q then12

UpdateInQueue(Q, x, c)13

else14
Q ← Q ∪ {(x, c)}15

else16
if Goal(x) , Goal(xn) then17

c← C(x) + ce + C(xn)18
if c < l then19
P ← PathInGraph(V, P, x, xn)20
l← c21

of the path connecting xs and xg via that node. For this
estimation, we take into account that the cost associated
with each node only provides accurate information of
the cost either to xs or to xg. The cost to the other con-
figuration is estimated using a given heuristic function
that provides a lower bound of the cost between any pair
of configurations (Lines 1 and 11). The function Goal
appearing in Lines 1, 11, and 17 identifies the goal con-
figuration for a given node, i.e., the query configuration
that is not the root of the tree containing the node.

Adapting the LPA* strategy, the nodes potentially af-
fected by the rewiring procedure are stored in a priority
queue, Q. Each element in the queue is a pair includ-
ing a node and its associated priority, which is given by
the total estimated cost for the node (Line 1). This pri-
ority allows processing the most promising nodes first
and discarding nodes that can not be part of the optimal
path. Here, we take into account that the space to ex-

plore is continuous and, thus, with probability one, two
randomly-sampled nodes will never have the same esti-
mated total cost. This allows the use of a single-valued
priority instead of the twofold used in LPA*. The adap-
tation is further simplified taking into account that the
cost of the nodes can only decrease and that only a sin-
gle node is added at each iteration. For each node in
the queue with priority lower than l — the cost of the
best path up to the moment— the algorithm checks if
the neighboring nodes can improve their cost using it
(Lines 6 to 11). If this is the case, the improved node
is added to the queue to propagate the rewire from it in
subsequent iterations (Lines 12 to 15). Note that the tree
containing a node might change if the node is rewired.
In this way the trees progressively adapt to their respec-
tive Voronoi regions, avoiding any overlap. Each edge
connecting a pair of nodes, x and xn, in different trees
gives a new path connecting the query configurations.
Lines 17 to 21 check if this new path has to replace the
best one found up to this point. Here, the PathInGraph
procedure determines the best path from xs to xg via x
and xn, which can be readily determined using the trees
maintained by the planner.

The asymptotic optimality of AtlasBiRRT* planner
is given by the fact that each of the two generated trees
is an RRT* and, thus, they are guaranteed to asymptoti-
cally generate optimal paths to any configuration in the
corresponding Voronoi region. Moreover, by storing the
neighborhood relations between nodes, the graph gener-
ated in the AtlasBiRRT* planner is the same as that gen-
erated by the RRG algorithm [6] and, thus, the worst-
case time and space complexity of both algorithms is
the same, O(|V| log |V|).

4. Dealing with Manifolds

The AtlasBiRRT* planner presented in the previous
section can be used in parametric spaces and it would
provide solution paths more efficiently than the stan-
dard RRT* planner. However, it would not be able
to deal with the constrained configuration spaces aris-
ing in many relevant applications. To devise a ver-
sion of the planner for such spaces, its basic functions
(SampleConf, NearestNode, Near, Steer, and Path)
must be properly particularized. Next, we detail the is-
sues that have to be considered for each function.

Function SampleConf (Line 11) generates a sequence
of random samples in the configuration space. The dis-
tribution of these samples is relevant to fix the percola-
tion threshold γ∗, a fundamental parameter that deter-
mines the span of the connections at each iteration.
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Figure 3: Top A generic approximation of the exponential map is ob-
tained by orthogonally projecting to F a point xi

j on the tangent space
at xi. Bottom When a new chart is defined at x j, the applicability
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Functions NearestNode (Line 12) and Near
(Line 16) rely on the ability to compute distances
between configurations. When operating on a manifold,
these distances should correspond to geodesic curves.
However, a reasonable solution, that will be adopted
herein, is to resort to the ambient space metric as an
approximation of the geodesic one. Such metric allows
the use of efficient search algorithm, like KD-trees [47].
When selecting the nearest node, this approximation
may lead to few inadequate graph extensions, but when
finding the set of nodes within a neighborhood, the
ambient space metric is conservative, i.e., the returned
set of nodes necessarily includes all the geodesic neigh-
bors, although some of the returned elements might be
actually farther than expected. Note that algorithms
with sub-lineal computational complexity like KD-trees
can not be used to determine the k-nearest nodes of
a given configuration on the manifold. This makes
impractical the use of planners such as the k-nearest
RRT* [6], which have the advantage of not requiring a
perlocation threshold.

Finally, functions Steer (Line 4) and Path (Lines 19)
operate on collision-free, optimal paths. The determi-

nation of the lowest-cost path between configurations
on the manifold can be arbitrarily difficult and, thus,
the AtlasBiRRT* algorithm considers the geodesic path.
Since the cost is bounded by the scaled path length,
any optimal path can be piecewise approximated by
geodesic segments with a bounded error, that in the limit
vanishes.

Summarizing, the main challenges to operate on
manifolds are the need to characterize the distribution
of samples on such spaces, which is used when de-
termining the percolation threshold, and the necessity
to follow geodesic paths. These issues would be eas-
ily solved if a global isometric parametrization of the
manifold was available, but these parametrizations do
not exist for general manifolds. However, from Differ-
ential Geometry, it is well known that a manifold can
be described by a collection of local parametrizations
called charts, which can be coordinated forming an at-
las [48]. Higher-dimensional continuation techniques
provide principled numerical tools to compute the at-
las for an implicitly-defined manifold reachable from a
given point [44]. In this paper, we rely on such tools to
define the basic operations of the AtlasBiRRT* planner.

4.1. Local Parametrization of a Manifold

Let us consider a n-dimensional joint ambient space
and a k-dimensional configuration space, F , implicitly
defined by a set of constraints

F = {x ∈ Rn : F(x) = 0}, (1)

with F : Rn → Rn−k, n > k > 0 and where we as-
sume that the configuration space is a smooth manifold
everywhere.

A chart, Ci, locally parametrizes the k-dimensional
manifold around a given point, xi, with a bijective
map between parameters ui

j in Rk and n-dimensional
points x j on the manifold. The map from the param-
eter space to the manifold, x j = ψi(ui

j), is known as the
exponential map and the inverse, ui

j = ψ−1
i (x j), is the

logarithmic map. A generic approximation of the expo-
nential map valid for any manifold can be implemented
using TxiF , the k-dimensional linear space tangent at xi

(see Fig. 3-top). An orthonormal basis for this tangent
space is given by the n × k matrix, Φi, satisfying[

J(xi)
Φ>i

]
Φi =

[
0
I

]
, (2)

with J(xi) the Jacobian of F evaluated at xi, and I, the
k × k identity matrix. Using Φi, the mapping ψi is de-
fined by first computing the mapping φi from parame-
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ters in the tangent space to coordinates in the joint am-
bient space,

xi
j = φi(ui

j) = xi +Φi ui
j , (3)

and then, orthogonally projecting this point on the man-
ifold to obtain x j. This projection can be carried out by
solving the system

F(x j) = 0,
Φ>i (x j − xi

j) = 0,

}
(4)

using a Newton procedure [49]. The logarithmic map
can be approximated as the projection of a point on the
tangent subspace,

ui
j = Φ>i (x j − xi). (5)

Using the exponential and logarithmic maps, a full at-
las of the manifold can be defined starting from a given
point [44]. In principle, one could rely on such atlas to
determine an optimal path between any two given con-
figurations using a fast marching like algorithm [50].
However, the construction of a full atlas is computation-
ally demanding, specially in high dimensions. There-
fore, we depart from our previous work [12], where the
atlas construction is intertwined with the definition of
an RRT.

Formally, if xc is a configuration on F already
included in any of the two trees maintained by
AtlasBiRRT* (initially xc is xs or xg), Cc is the chart
parametrizing this configuration, and uc are the param-
eters of this configuration in Cc, then a new vector of
parameters un is generated with a small displacement
from uc towards ur, a random vector of parameters
on Cc, and the next point to add to the tree is obtained
as xn = ψc(un). However, the area of the manifold prop-
erly parametrized by a given chart is limited. As the
RRT branch grows, i.e., as the norm of un increases, the
distance and the curvature of the manifold with respect
to the tangent space typically increase too, and the New-
ton process implementing ψc could even diverge. Thus,
a new chart is defined on the last valid sample in the ex-
tended RRT branch whenever the Newton process of the
new sample fails, or when this sample has a large error
with respect to the manifold, i.e., when

‖φc(un) − xn‖ > ε, (6)

or when the curvature of the manifold with respect to Cc

is large, i.e., when

‖uc − un‖
‖xc − xn‖ < cos(α), (7)

Algorithm 3: Sampling on an atlas.
input : An atlas, A.
output: A random point in the tangent space of a given

chart.

repeat1
r ← RandomChartIndex(A)2
ur ← RandomInBall(Rs)3

until ur ∈ Ar4

Return φr(ur)5

for user-defined parameters ε and α. Finally, a new chart
is also added when the tree expands too far away from
the chart center, i.e., when

‖un‖ > R, (8)

for a given R. This maximum span for a chart helps to
obtain a regular covering of the manifold.

To avoid the overlap between the portions of the man-
ifold parametrized by neighboring charts, the area of
applicability Ai of a given chart Ci is bounded by a
set of linear inequalities, as illustrated in Fig. 3-bottom.
These inequalities are defined in the tangent space as-
sociated with each chart and points not fulfilling them
correspond to points on the manifold parametrized by a
neighboring chart. The set of inequalities bounding Ai

is initially empty and enlarged as new charts are created
around chart Ci. If a new chart C j is created on a point x j

then
2 u>ui

j ≤ ‖ui
j‖2 , (9)

is added to the set of inequalities bounding Ai, with
ui

j = ψ−1
i (x j). This inequality bisects the vector ui

j,
keeping the half-space including the origin.

4.2. Sampling and Node Connection on Manifolds

Using the atlas, the SampleConf procedure is imple-
mented as described in Algorithm 3. A chart is selected
at random with uniform distribution (Line 2) and then,
a point, ur is sampled within a ball of radius Rs > R
(Line 3). The process is repeated until ur is inside the
applicability area Ar, i.e., until it fulfills the inequali-
ties created by neighboring charts, if any (Line 4). Fi-
nally (Line 5), the process returns the ambient space co-
ordinates for ur computed using the φr map defined in
Eq. (3).

Algorithm 4 presents the Steer function using the at-
las. This function gets as input the atlas maintained by
AtlasBiRRT* and two points, xn and xr, where xn is a
node in the graph and xr is a random point obtained us-
ing SampleConf. First, the function determines the chart
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Algorithm 4: The Steer procedure.
input : The atlas A, one node in the graph, xn, and one

random node in the tangent space of a given
chart xr.

output: A point on the manifold as close as possible
to xr.

c← ChartIndex(xn)1

un ← ψ−1
c (xn)2

ur ← ψ−1
c (xr)3

d ← ‖xn − xr‖4
ur ← un + (ur − un) d/‖ur − un‖5
xr ← φc(ur)6
Blocked← False7
while not Blocked and d > 0 do8

(x j,u j, c,Blocked,New)← NewConf(A, c, xn,ur)9
if not Blocked then10

if new then11
ur ← ψ−1

c (xr)12
ur ← u j + (ur − u j) d/‖ur − u j‖13
xr ← φc(ur)14

d ← d − ‖xn − x j‖15
xn ← x j16

Return xn17

parametrizing xn (Line 1) and computes the parame-
ters of xn and xr on this chart (Lines 2 and 3) ensuring
that ur is at least at distance d from un (Lines 5 and 6),
with d the original distance between xn and xr (Line 4).
Then, the NewConf procedure is used to generate a new
configuration on the manifold, x j in the direction given
by ur (Line 9). If during this step, a collision is de-
tected, the Steer procedure is stopped. Otherwise, if
NewConf generated a new chart, the random parame-
ters, ur, are recomputed ensuring that the target is far
enough from the previous point (Lines 12 and 13) and
the associated random configuration is set accordingly
(Line 14). Next, to avoid growing an infinite branch,
the distance already travelled is discounted (Line 15)
and the new configuration is set as the point from where
to continue the path (Line 16). Finally, the Steer func-
tion returns the last configuration generated along the
extension (Line 17).

The procedure NewConf that generates a new config-
uration in a given direction is detailed in Algorithm 5.
The function linearly interpolates in parameter space
with small steps of size δ (Line 2) between un (the pa-
rameters of xn in chart c computed in Line 1) and the
target point ur, and projects the resulting parameters to
the manifold (line 3). In the algorithm, function Valid
checks if this projection is actually successful. The

Algorithm 5: The NewConf procedure.
input : The atlas A, a chart, c, and a configuration xn and

a parameter vector ur indicating the advance
direction, both in chart c.

output: A new configuration x j, its parameters u j, the
chart c including u j, and a couple of flags,
Blocked and new, indicating respectively if the
path is blocked by an obstacle and if a new chart
has been created.

un ← ψ−1
c (xn)1

u j ← (ur − un) δ/‖ur − un‖2
x j ← ψc(u j)3
new← False4
if Valid(x j) and Collision(x j) then5

Blocked← True6

else7
Blocked← False8
if not Valid(x j) or ‖φc(u j) − x j‖ > ε or9
‖un − u j‖/‖xn − x j‖ < cos(α) or ‖u j‖ > R then

c← NewChart(A, xn)10
x j ← xn11
new← True12

else13
if u j < Ac then14

c← NeighborChart(c,u j)15
new← True16

if new then17
u j ← ψ−1

c (x j)18

Return (x j,u j, c,Blocked,New)19

value of δ should be small enough so that there are not
undetected collisions nor large curvature changes be-
tween two consecutive configurations along a path. If
the new configuration is not in collision, the algorithm
checks if it triggers the creation of a new chart (Line 9)
or if it is in the applicability area of a neighboring chart
(Line 14). In any of these two cases, u j is recomputed
(Line 18) projecting x j on the new or neighbor chart de-
termined at Lines 10 and 15, respectively.

The function Path detailed in Algorithm 6 is similar
to the Steer function, although in this case the goal is
not a random point on the tangent space of a given chart,
but a node already included in the graph, i.e., a configu-
ration on the manifold. Thus, function Path does not in-
clude the projection and the displacement of the sample,
since the goal configuration is used, whenever necessary
(Lines 2 and 9). At the end of the Path procedure, the
sequence of configurations connecting the query points
is returned (Line 13), unless the goal configuration is
not actually reached (Line 15).
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Algorithm 6: The Path procedure.
input : The atlas A and two nodes in the graph, xn

and xr.
output: A collision-free path connecting the two nodes,

if found.

c← ChartIndex(xn)1

ur ← ψ−1
c (xr)2

Blocked← False3
P ← ∅4
while not Blocked and ‖un − ur‖ > δ do5

(x j,u j, c,Blocked,New)← NewConf(A, c, xn,ur)6
if not Blocked then7

if New then8
ur ← ψ−1

c (xr)9

P ← P ∪ {x j}10
xn ← x j11

if ‖xn − xr‖ < δ then12
Return P13

else14
Return ∅15

The increment of computational complexity in the
AtlasBiRRT* planner caused by the use of the atlas ap-
pears in Algorithm 5 and concentrates on the computa-
tion of the mapping ψc (Line 3) and in the addition of
new charts to the atlas (Line 10). The first operation
scales with O(n3) since it is implemented as a Newton
process with a bounded number of iterations, where at
each iteration a QR decomposition is used. The second
operation, which is executed less often, requires to gen-
erate a new chart and to identify the neighboring charts
in the atlas to avoid the overlaps. The former operation
is O(n3) since it is implemented using a QR decomposi-
tion and the latter can be implemented using hierarchi-
cal structures, with a cost that is logarithmic in the num-
ber of charts in the atlas. Since n is constant and small
compared to |V| and the number of charts in the atlas
is bounded in the long term, the added complexity does
not affect the asymptotic computational performance of
the planner.

4.3. Asymptotic Optimality on Manifolds
As previously mentioned, the asymptotic optimality

of a planner on manifolds relies on the ability to define
the right percolation threshold, and to connect configu-
rations with geodesic paths. Next, we show how these
issues are solved thanks to the atlas structure.

With respect to the percolation threshold, the exist-
ing results for globally-parametrizable spaces can be di-
rectly applied to the local parametrization provided by

a given chart. Using Eq. (7) we have that for any two
points xi and x j parametrized by ui and u j in the same
chart

‖xi − x j‖ ≤ sec(α) ‖ui − u j‖. (10)

Thus, there is a bounded distortion between points in
the tangent space and the associated points on the man-
ifold. Therefore, the volume of the part of the manifold
covered by a given chart is a scaled factor of the volume
of the corresponding applicability area. Adapting The-
orem 38 and algorithm 6 in [6], the critical percolation
value for chart c, γ∗c , and the associated search radius at
each step, γc, are such that

γ∗c >
[
2

(
1 +

1
k

)
µF(Ac)
ζk

sec(α)
]1/k

, (11)

and

γc = γ∗c

[
log |Vc|
|Vc|

]1/k

, (12)

where µF(Ac) is the Lebesgue measure of the appli-
cability area of the chart corresponding to collision
free configurations, ζk is the volume of the unitary
k-dimensional ball andVc the set of nodes in the chart.

However, taking into account only one chart gives a
myopic view of the whole space to explore and, thus,
a too small value for the search radius. Actually, the
underestimation can be analytically derived as follows.
From [6], the global search radius would be

γ =

[
2

(
1 +

1
k

)
µF(F )
ζk

log |V|
|V|

]1/k

. (13)

Now, if rv is the ratio between the volume of the
collision-free region covered by the considered chart
and the full collision-free configuration space, that can
be approximated as

rv =
µF(Ac) sec(α)

µF(F )
, (14)

and rs is the ratio of samples included in this chart,

rs =
|Vc|
|V| , (15)

then, the global search radius can be rewritten as

γ = γc

[
rs

rv

log |V|
log |Vc|

]1/k

(16)

= γc

[
rs

rv

log |V|
log rs + log |V|

]1/k

. (17)
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Figure 4: The five benchmarks used in this paper. (a,f) A ball moving on a torus. (b,g) The cyclooctane molecule. (c,h) The Barrett arm with a peg
escaping a dead-end. (d,i) The PR2 service robot moving a box with the two arms. (e,j) A robot anthropomorphic hand moving a needle among
obstacles. The figures in the top and bottom rows correspond to the start and goal configurations, respectively.

This offers the possibility of using chart-based perloca-
tion thresholds, which only require local uniform distri-
bution of samples. However, the estimation of rv can
be troublesome. If it was feasible to generate a uniform
distribution of samples on the manifold, then rv and rs

would be the same and, therefore, γ∗c and γ∗ would con-
verge to the same value, in the long term.

Fortunately, the atlas allows obtaining a close to uni-
form distribution of samples in the part of the manifold
already explored. To this end, Algorithm 3 selects a
chart at random, samples a vector of parameters u, re-
jecting the samples that are not in the corresponding ap-
plicability area. In this way, the probability of generat-
ing a valid sample in a given chart is proportional to the
size of its applicability area. Therefore, the distribution
of samples will be uniform in the union of the appli-
cability areas for all charts which translates to a close
to uniform distribution on the manifold, with the distor-
sion bounded by Eq. (10). The fact that the atlas is built
together with the exploration trees has an effect on the
distribution of the samples. In the worst case, though,
the distribution will be uniform from the moment the at-
las fully parametrizes the free configuration space, and
thus, this factor has influence on the initial stages of the
search, but not on the long-term optimality.

Finally, the atlas parametrization provides approxi-
mate geodesic paths. In particular, consider a linear in-
terpolation, (u1,u2, . . . ,um), between two points, u1 and
um, in the tangent space of a given chart c and the cor-

responding path on the manifold (x1, x2, . . . , xm) with
xi = ψc(ui), i ∈ {1, . . . ,m}. Then, the length of the path
can be approximated by

p =

m∑
i=2

‖xi−1 − xi‖, (18)

and its length in the parameter space is

l =

m∑
i=2

‖ui−1 − ui‖ = ‖u1 − um‖. (19)

Note that l ≤ p and that, using Eq. (10), p ≤ sec(α) l.
Moreover, assume that p∗ is the length of the geodesic
path connecting the two points and l∗ is its length in
the parameter space. Since paths are defined as straight
lines in this space, we have l < l∗ and, thus

l ≤ l∗ ≤ p∗ ≤ p ≤ sec(α) l ≤ sec(α) l∗. (20)

Then, the relative error of a path generated from a
straight line in the parameter space with respect to the
geodesic path is

p − p∗

p∗
≤ sec(α) l − l

p∗
≤ sec(α) − 1. (21)

In practice, this upper bound is overly confident since
as samples get denser the relative error tends to van-
ish. In any case, α should be always below ±π/2 to get
a bounded error. Geodesic paths can be approximated
beyond the scope of a given chart by generating new
charts, when necessary.
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Figure 5: Path cost versus execution time for the AtlasBiRRT*, AtlasRRT*, and AtlasRRT planners on (a) the torus, (b) the cyclooctane, (c) the
Barrett, (d) the PR2, and (e) the Robot Hand problems averaged over 25 executions. Costs are given once a solution is found in at least 70% of the
repetitions. In the Robot Hand problem the AtlasRRT* planner founds the solution in only one of the 25 repetitions and, thus, it is not shown in the
corresponding plot. In the plots, the vertical bars give the standard deviation.

Benchmark k n Relative Error γ∗

Torus 2 3 0.01 10
Cyclooctane 2 8 0.007 12
Barrett 3 9 0.05 2.5
PR2 4 16 0.14 4
Robot Hand 5 23 0.07 2.5

Table 1: Dimension of the configuration and ambient spaces, and rel-
ative errors respect to the optimal path obtained with AtlasBiRRT*
after 1000 iterations using the given values for γ∗. In these experi-
ments, collisions are not considered.

5. Experiments and Results

Figure 4 shows the five benchmarks used to evalu-
ate the AtlasBiRRT* algorithm. The first one involves
a small ball moving on a implicitly-defined torus with
two obstacles forming a narrow corridor. The simplic-
ity of this benchmark facilitates the interpretation of
the results. The second test case is the cyclooctane, a
molecule that can be modelled with eight revolute joints
forming a kinematic loop that defines a configuration
space with a Klein bottle topology [51]. In this prob-
lem, collisions correspond to steric clashes that appear

whenever two atoms are closer than the sum of their
Van der Waals radii. This example is used to illus-
trate the ability of AtlasBiRRT* to determine the op-
timal path among many feasible ones. In the third ex-
ample, the Barrett arm has to move a peg out of a dead-
end. The task is constrained because the peg can not
rotate about its vertical axis and it must remain orthog-
onal to and in contact with the maze plane. The fourth
test case is the PR2 robot executing a coordinated ma-
nipulation task to move a box from underneath a table
and to place it on the table. Finally, the last test case is a
robotic anthropomorphic hand moving a needle avoid-
ing a U-shaped obstacle that introduces local minima in
the path planning process. The last three problems are
used to test the scalability of the method. In all cases,
the cost to optimize is the path length and the experi-
ments are carried out with δ = 0.05, R = 0.4, Rs = 1,
ε = 0.1, and α = 0.45 rad. With such parameters, the
error factor with respect to geodesic given by Eq. (21)
is below sec(α) − 1 = 0.1, which is reasonably small.
The value of γ∗ depends on the volume of the collision-
free space, which is hard to evaluate. Therefore, the
value for this parameter is determined experimentally
for each case. Finally, the Euclidean distance in the em-
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bedding joint ambient space is used as heuristic, when
necessary. All the experiments were executed on an In-
tel Core i7 at 2.93 Ghz running Mac OS X and averaged
over 25 repetitions. The source code together with the
described benchmarks can be downloaded from [52].

Exceptionally, in the first set of experiments sum-
marized in Table 1, collisions are not considered and,
thus, the constraints only arise from the manifold struc-
ture of the configuration spaces. The table gives the
dimension of the configuration space, k, the dimen-
sion of the ambient space, n, and the average rela-
tive error of AtlasBiRRT* with respect to the optimal
path after N = 1000 iterations using the given values
for γ∗. The optimal path is obtained by smoothing the
best path returned by AtlasBiRRT*. We can see that
AtlasBiRRT* converges to the optimal path in all cases,
within the tolerance given by parameter α.

Next, to assess the performance of the proposed plan-
ner, we compared it with AtlasRRT [12], a sampling-
based path planner that efficiently determines feasible
paths on manifolds, but without optimizing them in any
sense. Moreover, we also compared the results with the
AtlasRRT* planner introduced in [45], which, up to our
knowledge, is the only previous asymptotically-optimal
planner able to deal with manifolds. Figure 5 shows the
cost of the paths obtained with the three planners for the
five benchmarks of Fig. 4, considering collisions and
executing N = 10000 iterations. In the figures, the costs
are plotted when at least 70% of the repetitions are suc-
cessful and, thus, the eventual increments of the cost are
caused by the different data averaged at each iteration.

In all the cases, the path obtained with AtlasRRT has
a high cost and it is not improved once discovered. The
path obtained with AtlasRRT* would eventually con-
verge to the optimal path, but the convergence rate is
slow and the time required to identify a first feasible
solution can be long. In contrast, AtlasBiRRT* iden-
tifies such solution in few iterations and rapidly im-
proves it until the optimal path is determined. Whereas
in simple problems, like the torus one, the difference be-
tween AtlasRRT* and AtlasBiRRT* planners is minor,
in more complex problems the advantage of using the
new planner is remarkable. For instance, in the Robot
Hand example, AtlasRRT* only was successful once
in 25 executions, while AtlasBiRRT* finds the solution
in all cases. In the experiments, the eventual extra time
required by AtlasBiRRT* with respect to AtlasRRT* to
complete the 10000 iterations is due to the management
of the bidirectional trees and, specially, to the iterative
rewiring procedure. However, the results show that the
computational burden of these additional operations is
not significant, specially in complex problems.

Figure 6: The atlas generated in the cyclooctane example (in blue)
where each polygon is a chart, the two RRT* (in green and red), and
the optimal path (in yellow).

Figure 6 shows the typical atlas and RRTs obtained
for the case of the cyclooctane. Here, the configuration
space is only two-dimensional and thus, the atlas and
the trees end up covering all the region accessible from
the root nodes. However, note the presence of charts
not entirely enclosed by other charts. These charts are
in the frontier of the collision regions, which are not
parametrized by the atlas.

Table 2 provides an account of the memory used by
the tree planners compared in this paper. First, we can
note that AtlasRRT uses a significantly small amount
of memory since it stops as soon as a solution is found
and, thus it generates few samples and builds a small at-
las. In contrast, both AtlasRRT* and AtlasBiRRT* re-
fine the path after finding a first solution and, thus, they
generate more samples and charts. Since AtlasBiRRT*
actually maintains a graph and not just a tree, its uses
more memory. This increment, though, is worth taking
into account the performance of this planner.

Finally, as described along this paper, a minimal
value of γ∗ is required to ensure the asymptotic op-
timality. However, an overly conservative value for
this parameter will strongly degrade the performance
of the planner. Figure 7 shows the performance of
AtlasBiRRT* with different values for γ∗ in the torus
example for N = 10000 iterations. Clearly, the larger
the value of this parameter, the better the approxima-
tion of the optimal path path. However, as shown in
Figs. 7 (b) and (c), the execution time and the mem-
ory used increase significantly when γ∗ grows. Thus,
this parameter provides a mechanism to balance the op-
timality and the performance of the planner.
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Figure 7: Path cost, execution time (in seconds), and memory use in megabytes (Mb) for the AtlasBiRRT* planner on the torus example for different
values of γ∗ after 10000 iterations.

Benchmark AtlasRRT AtlasRRT* AtlasBiRRT*

Torus 0.03 0.45 4.51
Cyclooctane 0.09 1.18 2.70
Barrett 0.004 0.25 0.48
PR2 0.007 19.14 21.98
Robot Hand 0.24 4.25 5.41

Table 2: Average memory used in megabytes for the three planners
compared in this paper.

6. Conclusions

In this paper we have introduced an asymptotically-
optimal sampling-based path planner able to efficiently
operate on implicitly-defined configuration spaces. This
is achieved by using a bidirectional search strat-
egy, a full propagation of the eventual improvements
introduced with each new sample, and relying on
higher-dimensional continuation tools to define an atlas
parametrizing the configuration space manifold. Thanks
to the atlas, we can be characterize the distribution of the
samples on the manifold and we can determine close-to-
geodesic paths for generic manifolds.

Several issues arise from the work presented in this
paper. First, it would be necessary to investigate practi-
cal ways to determine an adequate value for the γ∗ pa-
rameter for each problem or to provide mechanisms to
automatically tune it. Moreover, we would like to apply
the proposed planner with cost functions other than the
length of the path. In this sense, we are already work-
ing on singularity-free path planning [53] where the cost
is given by the proximity to the singularities, i.e., the
set of configurations where the kinetostatic performance
of a manipulator gets dramatically altered. Finally, we
would like to explore the possibility of including dy-
namical aspects in the planner so that the resulting paths
are adequate for direct execution, without requiring any
futher post-process.
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