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Abstract

Varying illumination is a limiting factor for many
computer vision applications, especially in outdoor set-
tings. Invariant image representations aim to reduce
this effect and provide the following processing steps,
image segmentation, edge detection, object recognition,
etc., with a more stable view, closer to the surface re-
flectances presents in the scene than to the illumina-
tion. In this work we present an invariant image rep-
resentation that integrates several key observations in
a probabilistic way and an associated probabilistic dis-
tance measure. Used together, they can be used as a
measure of similarity between the surfaces represented
by a given pair of pixels, even under illumination color
changes.

1. Introduction and related work

The log-chromaticity [2] space has some interesting
properties regarding illumination color changes. Un-
der the assumption of Planckian illumination, Lamber-
tian surfaces and narrow band camera sensors, it can
be shown that illumination color changes translate into
shifts along a camera-dependent direction for all sur-
faces. This particular property was first pointed out by
Finlayson et al. [2], where they used it to create an in-
variant image representation

Several works have studied the variation of natural
light and showed that typical range, expressed in the
temperature of an equivalent blackbody radiator or cor-
related color temperature, lies approximattely between
5000 to 15000 K. In [7] we took into consideration
the limited variation of natural light to improve upon
the results obtained with Finlayson’s intrinsic image for
tracking in an outdoor setting. The feature space used

for tracking was the log-chromaticity space, and the ini-
tial model was enlarged in the direction of illumination
color change by smoothing with an anisotropic Gaus-
sian filter. The results suggests that the method retained
the invariant properties while at the same time increas-
ing the discriminative power when compared to Fin-
layson’s intrinsic image. In this work, in addition to
the shifting effect and the limited variation of natural il-
lumination described above, we also include the effect
of sensor noise, which translates into uncertainties be-
ing dependent on intensity due to the non-linear nature
of the log-chromaticity space, and integrate them in a
probabilistic way. The result is a probabilistic model
were knowledge about sensor uncertainty and plausible
variations of illumination color are integrated into the
log-chromaticity space and combined with a probabilis-
tic distance measure.

The paper is organized as follows: In Section ??,
we review the log-chromaticity space. In Section ??,
we model the illumination color variation. In Section
??, we propagate sensor noise into the log-chromaticity
space and then in Section ??, we describe the proposed
model. The probabilistic distance measure is introduced
in Section ??.

2. Log-chromaticity space

Forming the 3-vector chromaticities by dividing each
band by the geometric mean, 3

√
RGB, and then calcu-

lating their logarithm, we arrive at

ρk = ln(
Rk

(
∏3
i=1Ri)

1/3
), k = 1, 2, 3 (1)

where Rk denote the sensor responses. It can be
shown [3] that under the assumptions of Plackian illu-
minants, Lambertian surfaces and narrow band camera



sensitivities, ρ has the form

ρ = ln s+
1

T
e (2)

where s depends on the surface and the camera, e is
independent of the surface, but which again depends
on the camera, and T is the illuminant color temper-
ature. All 3-vector ρ lie on a plane orthogonal to
u = 1/

√
3(1, 1, 1)T. The redundant dimension is re-

moved by transforming 3-vectors ρ into a coordinate
system in the plane using a 2 × 3 matrix U , (see [3]
for details)

χ ≡ Uρ, χ is 2× 1 (3)

Equation (2) is the parametric form of a line. Given
that e is independent of the surface, the lines defined
by all surfaces have the same slope. Illumination color
changes, affecting T , shift points along the lines de-
fined by each surface. This behavior is retained in (3).
Athough this conclusion is based on restrictive assump-
tions, it has been shown [3] to be a good approximation
in real situations.

3. Illumination color variation

We model natural illumination by a black body ra-
diator, and more precisely by Wien’s approximation to
Planck’s law for the spectral radiance of a black body.
Wien’s approximation has the form

E(λ,M) =
2hc2

λ5
exp

(
−hcM

λk

)
(4)

where, by convenience, we express T in reciprocal
mega-Kelvin, M ≡ 106

T . k is Boltzmann’s constant, c
is the speed of light, h is Planck’s constant, and M has
units MK−1. The spectral power distribution, that is the
color, of the illumination is determined by the parame-
ter M . We model M as having a normal distribution,

M ∼ N (µM , σ
2
M ) (5)

This assumption is a simplification of the observed dis-
tribution in experimental data (see, for example, [4], but
reduces the complexity of our model.

4. Propagation of sensor noise into the log-
chromaticity space

Models for the noise in CCD cameras [9] include
a term related to thermal noise, independent of the
amount of light arriving at the sensor, and another, shot
noise, dependent on it. Thermal noise is more impor-
tant at low light levels, while shot noise dominates at

higher intensities. Then, noise statistics will vary across
the image, depending on the local intensity level. For
simplicity, we assume that sensor noise is normally dis-
tributed, n(x, y) ∼ N (0, σx,y).

It can be shown [8] that if q is a function of sev-
eral quantities x, . . . , z measured with uncertainties
σx, . . . , σz , then

σq =

√(
∂q

∂x
σx

)2

+ · · ·+
(
∂q

∂z
σz

)2

(6)

Assume now that we have determined the standard devi-
ation of the sensor responses, σR, σG and σB , for each
pixel of the image. The two components of χ, can be
expressed in terms of R, G and B, after some algebraic
manipulations, as

χ1 =

√
2

2
(lnR− lnB) (7)

χ2 =

√
6

6
(− lnR+ 2 lnG− lnB) (8)

Substituting (7) and (8) into (6) we arrive at the expres-
sions for the standard deviation of the two components
of the log-chromaticity space, σχ1

and σχ2
we get

σχ1 =

√
σB2

2B2
+
σR2

2R2
(9)

σχ2
=

√
σB2

6B2
+

2σG2

3G2
+
σR2

6R2
(10)

Lower intensity levels in the RGB image result
in higher standard deviations in the log-chromaticity
space.

5. Probabilistic model and distance measure

The components of Equation (2) are

χi1 = k1 ln(s1) +Me1 (11)

χi2 = k2 ln(s2) +Me2 (12)

where k1 and k2 are constants, and the sk depend on the
surface and the camera, the ek depend on the camera,
and M is the illumination color temperature in mired,
and we use the superscript in χik denotes that these
are ideal values. As stated in the previous section, we
model M as a Gaussian random variable. For a given
camera the ek terms are constant, and for a given sur-
face and camera the sk terms are also constant. This
means that χi1 and χi2 are linear transformations of M .
The family of normal distributions is closed under lin-
ear transformations [6]. IfX is a Gaussian random vari-
able with mean µX and variance σX and if Y is a linear



transformation of X , such that Y = aX + b, for some
real numbers a and b, then Y is normally distributed,
and its mean and variance are aµX + b and a2σ2

X , re-
spectively. Coming back to χi1 and χi2, their distribu-
tions are

χi1 ∼ N
(
e1µM + ln (s1)) , e

2
1σ

2
M

)
(13)

χi2 ∼ N
(
e2µM + ln (s2)) , e

2
2σ

2
M

)
(14)

For simplicity, we refer to the means and variances in
Equations (13) and (14) as µik and σik, with k ∈ {1, 2}
denoting the kth component of χi. We now incorporate
the effect of a non-ideal sensor. As stated in Section 4,
sensor noise is modelled as a being normally distributed
and it is propagated to the log-chromaticity space. Non-
ideal sensor responses, in the log-chromaticity space,
will have the form

χ1 = χi1 + n1 (15)

χ2 = χi2 + n2 (16)

where the nk, k ∈ {1, 2} represent sensor noise
after being propagated to each component of
the log-chromaticity space, n1 ∼ N (0, σχ1

2) and
n2 ∼ N (0, σχ2

2). Because the χik and nk are nor-
mally distributed, then the χk will also be normally
distributed. Moreover, the means and variances are
easily calculated [6] from the respective parameters of
χik and nk

χ1 ∼ N
(
µi1, σ

i
1

2
+ σχ1

2
)

(17)

χ2 ∼ N
(
µi2, σ

i
2

2
+ σχ2

2
)

(18)

Note that each pixel defines a random variable, and be-
cause differences in intensity and the surface imaged
affect both the mean and variance of its associated ran-
dom variable, we have now a set of Gaussian random
variables with possibly differing means and variances.

We have thus far expanded the definition of the log-
chromaticity space to include two major effects that in-
troduce variability using a probabilistic approach. To
actually make use of this new definition, we need to
be able to compare pixel values including this extra in-
formation. The Kullback-Leibler (KL) divergence is a
widely used measure for comparing distributions. It can
be interpreted as measuring the dissimilarity between
two distributions. For distributions P andQ of a contin-
uous random variable, the KL divergence is most com-
monly presented [1] as

DKL′(P‖Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx (19)

where p and q denote the probability density func-
tions of P and Q, respectively. It can be shown that

DKL′(P‖Q) ≥ 0, with the equality holding if and only
if P = Q. The KL divergence as defined above is not
symmetric, that is,DKL′(P‖Q) 6≡ DKL′(Q‖P ), but one
can use

DKL(P‖Q) =
1

2
(DKL′(P‖Q) +DKL′(Q‖P )) (20)

instead, as initially proposed by Kullback and Leibler
[5] themselves. This form is the one adopted from now
on.

The random variables representing the pixels in the
log-chromaticity space are by definition Gaussian. In
this particular case, the KL divergence can be calcu-
lated in a closed form from the parameters of the distri-
butions. In the univariate case, where P ∼ N (µp, σ

2
p)

and Q ∼ N (µq, σ
2
q ), we have that

DKL′(P‖Q) =
1

2

(
ln
σ2
q

σ2
p

+
µ2
p + µ2

q + σ2
p − 2µpµq

σ2
q

− 1

) (21)

and for the normal multivariate case

DKL′(P‖Q) =
1

2

(
ln
|Σq|
|Σp|

+ Tr(Σ−1q Σp)

+ (µp − µq)TΣ−1q (µp − µq)− d
)
(22)

where P ∼ N (µp,Σp) and Q ∼ N (µq,Σq), and d is
the dimension. Substituting the parameters of the dis-
tributions into (21) or (22) we then use (20) to get the
symmetric version of the KL divergence.

6. Experiments

Each pixel in the proposed model is a Gaussian ran-
dom variable and we selected a measure for compar-
ing them in a probabilistic way. We need now to de-
termine the parameters, means and variances, in Equa-
tions (17) and (18). We will assume sensor noise
and illumination color temperature variations have al-
ready been characterized and thus we know σR(x, y),
σG(x, y), and σG(x, y) for the camera in use. Given
an input image, the first step consists in transforming
from RGB to the log-chromaticity space using Equa-
tions (7) and (8). For the means in Equations (17) and
(18) we resort to the measured values, that is, we set
µik(x, y) = χmk (x, y), k ∈ {1, 2}, where the χmk are ob-
tained from the input image using Equations (7) and
(8). We proceed in this manner because the mean of



Figure 1. Example images with their asso-
ciated distance image. The reference pixel
for all images is at (x, y) = (100, 60)

the ideal responses’ distribution includes a term depen-
dent on the surface, which is unknown. The variances
associated with each random variable are the sum of
the variances of the illumination color change, σM , and
the variances due to sensor noise after being propagated
into the log-chromaticity space, σχ1 and σχ2 , that we
determine from the σk, k ∈ {R,G,B} and each pixel’s
R, G, and B values using Equations (9) and (10). In
the case of M , we do not follow the model directly be-
cause for the distribution of M to be usefull, we would
need to determine also the parameters in Equations (13)
and (14) related to the camera, that is e1 and e2. De-
termining these parameters involves a calibration of the
camera, but in return there is no need to characterize
ekσ

2
M for each different camera. In our case we deter-

mined empirically the variance ekσ2
M by imaging a set

of surfaces over a wide range of illumination conditions.
To determine the validity of this approach, we acquired
images with a fixed camera over an extended period of
time to ensure that we have a wide range of illumina-
tions. We then calculate the distance from one pixel to
the rest of the image for each image, obtaining a dis-
tance image. Figure ?? shows some of the images and
their associated distance image. Note that the particular
scene chosen is a worst case scenario for the method,
as the chromaticities of the blue recycle bin are colinear

with those of the brick floor. Using Finalyson’s intrinsic
image in this scene would have shown one of its short-
comings, which is its reduce discriminative power.

7. Conclusions

We proposed a method integrating several features
based on our experience using the log-chromaticity
space. The key aspects exploited by our model are:
the invariant properties of the log-chromaticity space,
the efect of sensor noise, the limited variation of natu-
ral light, and the integration of these into a probabilistic
model together with a distance measure. Even if fur-
ther validation is needed, and especially with real world
applications, these preliminary results are encouraging
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