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Abstract— This paper presents a constrained Model Pre-
dictive Control (MPC) strategy enriched with soft-control
techniques as neural networks and fuzzy logic, to incorpore
self-tuning capabilities and reliability aspects for drinking water
transport network management. The system is a multilevel
controller with three hierarchical layers: neural level, fuzzy
level, MPC level. Results in the Barcelona Water Network hag
shown that the quasi-explicit nature of the proposed preditive
controller leads to improve the computational time, espeeily
when the complexity of the problem structure can vary while
tuning the receding horizons.

. INTRODUCTION

The main contribution of this paper is a Multilevel Neuro-
Fuzzy MPC (NF-MPC) with auto-tuning capabilities to
assure service reliability of the network while optimizing
resources, and with less computational burden on-line due
its quasi-explicit nature. The proposed architectureuides
modules for demand forecasting and safety tank volumes
on-line computation. The desired control specificatiores ar
expressed through performance indices associated to man-
agement policies such as assurance of water supply and
reductions in control and economic costs.

II. DWN CONTROL PROBLEM
A. DWN Linear Discrete-Time Model

Drinking Water Networks (DWNSs) are large-scale multi-
source/multi-node flow systems which must be reliable and The control-oriented model of a water transport system
resilient while being subjected to constraints and continds @ simplified but representative model of the non-linear
ously varying conditions with both deterministic and prebadynamic behavior, which allows predicting the effect of
bilistic nature [1]. Optimal management of these systenas iscontrol actions on the entire network. Modeling principles
complex task and has become an increasingly environmen@il DWNs have been reported in the literature [18]-[19].
and socio-economic research subject worldwide [2]-[8thwi Considering the aforementioned references, the model of a
special attention to efficient handling of energetic andirsit DWN in discrete-time state space may be written as
resources in dense urban areas, such as Barcelona city.

Nowadays, due its systematic and practical formulation, Xp+1 = Axy + Bug, + Bpdy, (1a)
Model Predictive Control (MPC) is becoming a strong ap- Eiu; + Eody = 0, (1b)
proach to deal with challenging multi-criteria problems of ‘
real chain supply dynamic systems [9]-[17]. Nevertheless, x" < xy < XM (1c)
the ever growing complexity of mathematical models (di- .

umzn S uk; S umam7 (1d)

mensionality, information structure constraints, uraiaty),

turns these kind of problems costly to solve in practice, e§yherex c R™ is the measurable state vector of water stock
pecially when controlling large-scale interconnected®ys |avels in nd corresponding to the: buffer tanks at time
seeking the best operational policies as in transport watgr - 7+ subject to physical constrainte™” and x™%;
networks, where curr_ent MPC algorithm_s are not prepargd - r™ is the vector of manipulated flows in%s through
enough to face the important computational burden whefe ,,;, actuators subject to operational constraint&” and
design aspects (i.e., sgt-pomts, prediction honzonange,. w™e*: d € RP corresponds to the vector of the water
and system t_opolpgy size) haye_ to be .cont!nually redef'”?ﬁemands (sectors of consume) if/m A, B and B, are
These design issues are mitigated in this work by usingtate-space system matrices of suitable dimensionsEand

soft computing techniques (i.e., neural networks and fuzzy,q g, are matrices of suitable dimensions dictated by the
logic). Here, MPC controllers are improved by using a priorjenyork topology.

knowledge and by exploiting the structural properties of
the plant to achieve a flexible and reliable controller as B. DWN Operational Control

decision-support tool for the management of the DWN of the main goal of the operational control of water transport
Barcelona as case study. networks is to satisfy the demands at consumer sectors, but
optimizing at the same time, management policies expressed
as a multi-objective control problem. Hence, MPC is a
suitable technique to control a DWN because its capability
to deal efficiently with multivariable dynamic constrained
systems and predict the proper actions to achieve the dptima
performance according to a user defined cost function.
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Specifically, the interest is to minimize the following obje ~ An economic optimization layer with short-term prediction

tives [7]: is implemented to virtually decouple each tank with three
o1 H, o1 main purposes: (i) to estimate tanks net outflows, (ii) to

min ki)t ki) 4 k4|, compute _|d¢al safety st_ocks basgd on demand _f_precastlng

Au,e ; Al ) ;ﬁ( ) ; Ja( ) error deviation and a given service level, and (iii) to set

(2) each base-stock introduced in the MPC problem as a soft

where H, and H,, are the prediction and control horizons,constraint. The last purpose lets the system employ safety
respectively; index represents the current time instant whilevolumes on demand to face uncertainties. The aforesaid is

index i represents the predicted time along the horizon§XPressed in the following equations:

fi(k) = | (a1 + aa(k)) u(k)At||  minimizes the eco-

nomic cost of network operation taking into account water xs(k) = Dr(k) + SS(k), (3a)
production costs «¢;) and water pumping electric costs SS(k) = F-Y(CSL)a (k), (3b)
(a2); fa(k) = |le(k)|3y, is a performance index which °

penalizes the amount of volume that goes down from o(k) = \/UQD(k)L(k) + 02 (k)Dyp(k), (3¢)
a safety volume valuefs(k) = [Au(k)|3y, minimizes

control signal variations to extend actuators life and essu and
smooth operatioriW., W, andW,, are diagonal weighting x(k) = x(k) — (k) 2 0, (4)
matrices included to prioritize the objectives. wherex, € R is the vector of base-stocks i ; € R”
With the above information, the MPC design follows &js the vector of net lead-time forecasted demands # m
systematic procedure [20]-[21], which generates the ebntrgg < R~ is the vector of safety stocks in‘mo € R” is
input signals to the plant by combining a prediction modejhe forecast error standard deviatidn;c R” is the vector
and a receding-horizon control strategy. The cost functiog lead-times;op, o, € R™ are the standard deviations of
(2) subject to (1) represents the desired system perforenargemands, and lead-times respectiveli;! is the inverse
over a future horizon. Once the minimization is performedsymulative normal distributior('SL is the desired customer
only the first computed control action is implemented andervice level (percentage of customers that do not expegien
the system operates with this constant input until the next stockout) ane is the vector of slack variables introduced
sampling instant. Then, the optimization is solved agaifwi g relax the state constraist( k) > x,(k), i.e., e represents
new feedback measurements to compensate for unmeasugsl amount of volume that goes down from the desired
disturbances and model inaccuracies. This scheme is §gse-stock per each tank aad= 0 if no violation of this

peated at each future sampling period. constraint occurs.
Receding horizon control strategy is a very easy and
intuitive formulation, but on-line tuning of an MPC contiex I1l. AUTO-TUNED MULTILEVEL NEURO-FUzZY MPC

is not trivial or systematic. The MPC tuning parameters for In order to achieve a flexible and reliable controller as
a given cost function are usually: prediction and controh decision-support tool for the management of DWNs, a
horizons, set-points, and weighting matrices. The generilultiievel Neuro-Fuzzy MPC (NF-MPC) with auto-tuning
approach is to define these parameters as constants foe all ttapabilities and less on-line computational burden is pro-
system operation but this could lead to an increase of the sytosed in this section. NF-MPC is a quasi-explicit controlle
optimality due to maneuverability reduction. Other commothat combines the advantages of conventional MPC and
method is to generate the complete Pareto front and sekect ftmowledge-based soft control.

best solution according to an extra criterion, but this mdth  The proposed controller is based on a three-level hierarchi
is computationally prohibited in fast dynamic or largedeca cal control architecture (see Fig. 1). The first level is afdéu
systems as the one considered in this paper. Therefore, nertel for strategic determination of variable set-pointsl a
sections present a self-tunable MPC controller enhancttd widemand forecasting, the second level consists in a Fuzzy
soft computing techniques such as neural networks and fuzeyle-based auto-tuning of the MPC and the third level is the
logic. closed-loop control system with receding horizon approach

C. Safety Volumes and Service Reliability flexible to be constrained or unconstrained.

There is the need to guarantee a safety water stock in eath Neural Network for Demand Forecasting

tank of the network in order to decrease the probability of This module focuses on the problem of water demand
shortages (when a tank or a node has not sufficient watfrecasting for real time operation of the DWN. An hourly
to satisfy external demands or the transfer request comicgnsumption data analysis is proposed here for training
from other tank/node) due uncertain events. To determige tlan artificial neural network multilayer perceptron (MLP)
amount of safety water stocks, an inventory planning gsate with Bayesian regulation backpropagation, which updates t

is addressed here to enrich previous control approaches [4jeights and bias values according to Levenberg-Marquardt
[7], [23], with replenishment policies [24]. The goal is tooptimization. It minimizes a combination of squared errors
dynamically allocate the minimal volume in each storagand weights, and then determines the correct combination so
unit to avoid stockouts. as to produce a network that generalizes well. The inputs
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Fig. 1. Three-level hierarchical control architecture.uneFuzzy MPC

to the forecasting models are chosen based on literature
view [22], and correlation analysis, considering consuampt
data and meteorological variables such as temperature &
air relative humidity. Principal component analysis (PCA
preprocessing is applied to the training patterns.
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B. Neural Network for Dynamical Safety Volumes

A Backpropagation MLP is proposed here to be traine
with patterns that are generated using historical data @Fme o
sured demands, forecasted demands and forecasting ertuis Wa
as inputs, while using safety inventories as targets catled|
for a 95% service level and four hours lead-time demand
by stock management methodologies [24]. The goal with

this neural modeling is to avoid on-line optimizations whic | this work, a knowledge-based soft control technique is
are required to virtually decouple the tanks for safety lstocpresented. A fuzzy inference system (FIS) interacts with th
calculations in section ”'C, and to use the non-linear B]{pl MPC Level by automatica”y adjusting the tuning parameters
model of the trained MLP to set dynamically the safetysf the controller based on the output feedback and the
reference volumes. measured disturbances. For more detailed explanation on
fuzzy inference reasoning, the reader could refer to [26].

1) Fuzzy System: This knowledge-based soft tuner for the

The optimal economic trajectory of water volume in eaclMPC has been proposed after experience and understanding
tank is the one obtained considering only the first objectivehe effect of the tuning parameters on the performance of
in the MPC problem related to a DWN solving an LPthe controlled system. It consists of: (i) two inputs fuzzy
constrained optimization problem on-line. With the intent sets E. and E, used in the fuzzification of the economic
to reduce computational effort, an MLP is trained offlinerajectory tracking error and the safety volume trackinger
with the economic optimizer minimizing; in (2). A non-  respectively; (i) four fuzzy setdd,,W.,W,,W, used in
linear explicit model of the optimal operation of the networ the defuzzification task to obtain the quantitative value of
is obtained taking into account the hourly electric tarifda the tuned parameters (prediction horizon, weighting matri
the measured demand pattern as inputs. for the economic objective, weighting matrix for safety

storage term penalization and weighting matrix for setifoi

D. Fuzzy rule-based Tuner for DWN-MPC Controller stability, respectively); and (iii) a fuzzy inference syst

Self-tuning on-line algorithms for MPC of large-scalebased on sixteen logic rules.
networked systems is not a widely reported topic in litematu  2) Fuzzy Sets: A fuzzy set for every input and output
Most of the tuning strategies in multi-objective optimipat has been designed in order to perform fuzzy inference
problems [25] take into account the exploration of themethodology. Gaussian functions are used here for thesnput
complete Pareto front to choose a non-dominated solutidrecause of its smoothness while triangular and trapezoidal
in line with the management objectives. The aim behind thieinctions are used for the outputs. The universe of diseours
Pareto frontier applied to MPC of a DWN is to find a directfor the inputE. and outputH,, is: small(S), medium(}),
relation between the weights of the solution points and tHarge(L); for the inputFE; is: large-negativé LN ), medium-
water demands [7]. negative(M N), small-negative(SM ), very-small-negative
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Fig. 2. Fuzzy system for automatic tuning of MPC controller

C. Neural Network for Optimal Economic Trajectory



TABLE | Demand Forecasting
FUZzY-LOGIC RULES FOR NFMPC

1 {E.=L,E;=LP} ={H,=L,W=L,W,=VS W, =VS} z 0012

2 {Ec=L,E;=MP} ={H,=L,We=L,W,=VS, W, =S5} mé 001

3 {E.=L,E, =8P} ={H,=LW.=MW,=VS, W, =M} 2

4 {E,=L,E;=VSP} ={H, =L W, =8 W, =5W, =L} S 0008 I

5 {E.=M,E, = LP} = {H,=MW.=L,W,=VS, W, =VS} o000

6 {Ec=M, E,=MP} ={H,=MW.=L,W, =VS, W, =5}

7 {Ec=M,E;=SP} ={H,=M,W.=MW,=VS, W, =M} 00045 20 20 T‘meg[h] 80 100 120
8 =

{Ec=M,Es =VSP}={H,=M,W,=8W, =5 W, =L}
9 {E.=8,Es=LP} ={H,=8W.=LW,=VS,W,=VS}
10{E. =S,E, =MP} ={H,=SWe=MW,=VS, W, =5}

Real demand _ * _Forecasted demand|]

1{E.=S,E.,=5SP} ={H,=SWe=MW,=VS W, =M} Fig. 4. Demand forecasting for c125PAL consumer sector.| ft#ae),
12{E.=S,E, =VSP} ={H,=S,W,=8W,=8SW, =L} Forecasted (red)
13{E; = LN} ={H,=L,W,=VS,W, =L,W, =VS}
14 {Es = I\{N} = {Hp = L7 Wc = V57 Wz = L-, Wu = VS} d125PAL Economic Trajectory Training d125PAL Safety Volume Trajectory Training
15 {E, = SN} = {H, = L,W. = VS,W, = L,W, = VS} o ”
16 {E. = VSN) = {H,=L,We.=VS,W, =L, W, =VS} 400 7
350

o & 60

< 300 =

£ g s0

e .. % 250 _g
(VSN), very-small-positive(V SP), small-positive (SP), ~ 200 s
medium-positive M P), large-positivg L P); for the outputs 150 o
We, Wy, W, is: very Sma”(VS), small (S), medium(M), 1005 24 48 N 72 9% 2% 24 8 N 72 96
Time Time

|arge (L) \ Desired target NN estimation|

3) Fuzzy Rules: The logic statements proposed in this
work are presented in Table I. These rules are setted takipg 5. Neural Network results for economic trajectory aatéty volumes
into account the expert knowledge acquired after several
simulation scenarios for the optimal operation of a water
network. the time invested in processing data and training the neural
system will be gained in the on-line solving process once
IV. SIMULATION AND RESULTS the neural networks are accurately validated and tested.
In this section, simulation results are presented. The se-
lected case study is an aggregate model of the DWN @&. Auto-Tuning Results
Barcelona, which consists of 17 tanks, 61 actuators, 25

. The parameters tuned in the MPC problem are
n?easur_ed demands and 11 nodes (s_ee F'g'_ 3). Al tr)%,,WE,WI,WU, whose histograms are shown in Fig.6. Re-
simulations have been done over a time period of foug

days (96 hours). The selected sampling time is one hOLH’U|tS for the NF-MPC with an unmeasured random distur-
. . : ) " ance of at most 20% of the demand pattern are obtained.
Simulations have been carried out using the TOMI®ARB.6 > P !

L . ™ In most of the results presented in literature for MPC,
optimization pachfnage, Fuzzy Logic Toolboxand_ Neural tuning is focused on the weighting matrices and most of
Network Toolbox™ for Mat_lab® RZOJTOb (64 bits). Imhe the times with no adaptation schemes. Nevertheless, for
computer us_ed to run the simulations is a PC ffitelore large-scale systems, an efficient selection of the horizons
E8600 running both cores at 3.33GHz with 8GB of RAM. is also demanded because the size and complexity of the

A. Demand Forecasting optimization problem is based mainly in this parameter.

F_orecasted water dema_nd is c_aIcuIate_d_basgd on meteo- NE-MPC Controller for DWN
logical (temperature and air relative humidity) histolidata )
and predictions available from the Servei de Meteorologia The Proposed Neuro-Fuzzy approach has been imple-
de Catalunya (www.meteocat.com). Figure 4 shows that tfaented for the tuning of a constrained MPC to operate the
prediction is nervous in some points but the magnitud gtggregate model of the Barcelona DWN. Results have been
the forecasting error is not a reason to reject the obtainé@mpared with two previous strategies. The controllers are

model. In fact, these minimal discrepancies are reflected fR€ following ones:

an increase of the safety volume. « MPCo: original approach of MPC with fixed prediction
) _ _ and control horizons (24h), constant safety water stocks
B. Economic Trajectory and Safety Volumes Modeling and constant weights for the prioritization of manage-

Neural modeling schemes for the economic optimal tra- ment objectives.
jectory and the safety volume trajectory performs with high « MPCss: a Two-level MPC which implements analyti-
accuracy as it could be expected (see Fig. 5), because both cally the dynamic optimization of safety stocks follow-
MLPs are trained using optimizers or explicit models indtea ing II-C. It considers fixed horizons (24h) and weights.
of experimental driven data as in the forecasting demande NF-MPC: Neuro-Fuzzy MPC with self-tuning capabi-
case. The advantage of using these neural models is that lities to adjust the parameters stated in Ill.
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i KEY PERFORMANCE INDICATORS FOR THE DIFFERENT APPROACHES
g 60 g Controller  Economic{0%)  Safety = Smoothness  Time
z = [e.u] [s]
I s MPCo 183.74 28.8022 0.1318 142.01
20 MPCss 176.77 5.0295 0.1340 286.17
NF-MPC 178.99 5.2138 0.1172 132.91
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Table Il shows the specific key performance indicators fc PSRN Ne e
the aforementioned controllers. Simulations show thatdfixe B e
time [h] time [h]

parameters such as safety stocks, weights and horizons ai

drawback for the management of complex systems. Figure 500
shows the control strategies for the operation of two tank 400
Figure 8 presents the operation of two actuators, showir  Eaxo
the effectiveness of the strategy to decide pumping actiol §zoo

MPC-NF - Tank # 1

Volume [mz]

in periods where electric tariff is lower. B VO SRRV e RN

The MPCo controller presents the highest economic co % @ o T 3 S
due to the static safety volumes strategy that limit the -solt et et
tion space to achieve economic optimization. This approac [— %= X == Fain= = ~Feaey ~ ~ Pa — ~ Dicases

do not guarantee optimal results for any condition because
the safety is fixed heuristically without taking into accoun fig. 7. Dynamic variation of tanks volumes for the differ@mproaches
demand variations.
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Fig. 8. Control actions for the NF-MPC with adaptive paraenet

(4]

(5]

(6]

(7]

The MPCss controller is robust to disturbance uncertainty®
and presents the best economic performance but the highest

computational effort since it involves more on-line optias

tion problems to set safety stocks.

El

The NF-MPC controller outperforms the previous strate-
gies. It presents similar results to the MPCss for the ecdt0]
nomic, safety and smoothness indicators but reduces the
computational burden. NF-MPC does not require explicify
formulation of constraints in an optimizer routine and it is

flexible to self-adapt controller parameters if the operzdi
conditions change. This capability helps managers to d

éaf’

with demand uncertainty and prediction errors in an optimal

and economic way.

V. CONCLUDING REMARKS

[13]

This paper has presented a Multilevel Neuro-Fuzzy Modél4]

Predictive Controller with self-tuning capabilities fohet

efficient management of water transport systems. The resul-
tant controller architecture has been applied to an agtgegals]
model of the Barcelona DWN obtaining important improve-
ments in the computation time towards on-line implemen-
tation for large scale systems. The selected parameters to

be tuned in the MPC problem were the prediction horizo
and the weighting matrices of the multiojective cost fuoiati

The main advantage of the fuzzy tuner is that it is able t&.7]
tune every element independently, which is a difficult task

in analytical approaches due their lack of intuitiveness fozis)
multivariable large-scale systems. The proposed scheme is

a quasi-explicit MPC because most of the heavy computg‘-9
tional tasks are converted into non-linear explicit module

using neural networks. The controller also tunes the set-
points based on inventory management theory, enriching 1

controller design with reliability aspects to assure a @ongr
service level under disturbances uncertainty. Furthexareh

[21]

will be done in reinforcement learning to adapt and 1¢?2l

improve the fuzzy rules-based level.
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