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Abstract— This paper presents a constrained Model Pre-
dictive Control (MPC) strategy enriched with soft-control
techniques as neural networks and fuzzy logic, to incorporate
self-tuning capabilities and reliability aspects for drinking water
transport network management. The system is a multilevel
controller with three hierarchical layers: neural level, fuzzy
level, MPC level. Results in the Barcelona Water Network have
shown that the quasi-explicit nature of the proposed predictive
controller leads to improve the computational time, especially
when the complexity of the problem structure can vary while
tuning the receding horizons.

I. INTRODUCTION

Drinking Water Networks (DWNs) are large-scale multi-
source/multi-node flow systems which must be reliable and
resilient while being subjected to constraints and continu-
ously varying conditions with both deterministic and proba-
bilistic nature [1]. Optimal management of these systems isa
complex task and has become an increasingly environmental
and socio-economic research subject worldwide [2]-[8], with
special attention to efficient handling of energetic and natural
resources in dense urban areas, such as Barcelona city.

Nowadays, due its systematic and practical formulation,
Model Predictive Control (MPC) is becoming a strong ap-
proach to deal with challenging multi-criteria problems of
real chain supply dynamic systems [9]-[17]. Nevertheless,
the ever growing complexity of mathematical models (di-
mensionality, information structure constraints, uncertainty),
turns these kind of problems costly to solve in practice, es-
pecially when controlling large-scale interconnected systems
seeking the best operational policies as in transport water
networks, where current MPC algorithms are not prepared
enough to face the important computational burden when
design aspects (i.e., set-points, prediction horizons, weights,
and system topology size) have to be continually redefined.

These design issues are mitigated in this work by using
soft computing techniques (i.e., neural networks and fuzzy
logic). Here, MPC controllers are improved by using a priori
knowledge and by exploiting the structural properties of
the plant to achieve a flexible and reliable controller as a
decision-support tool for the management of the DWN of
Barcelona as case study.
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The main contribution of this paper is a Multilevel Neuro-
Fuzzy MPC (NF-MPC) with auto-tuning capabilities to
assure service reliability of the network while optimizing
resources, and with less computational burden on-line due
its quasi-explicit nature. The proposed architecture includes
modules for demand forecasting and safety tank volumes
on-line computation. The desired control specifications are
expressed through performance indices associated to man-
agement policies such as assurance of water supply and
reductions in control and economic costs.

II. DWN CONTROL PROBLEM

A. DWN Linear Discrete-Time Model

The control-oriented model of a water transport system
is a simplified but representative model of the non-linear
dynamic behavior, which allows predicting the effect of
control actions on the entire network. Modeling principles
of DWNs have been reported in the literature [18]-[19].
Considering the aforementioned references, the model of a
DWN in discrete-time state space may be written as

xk+1 = Axk +Buk +Bpdk, (1a)

E1uk +E2dk = 0, (1b)

x
min ≤ xk ≤ x

max, (1c)

u
min ≤ uk ≤ u

max, (1d)

wherex ∈ R
n is the measurable state vector of water stock

levels in m3 corresponding to then buffer tanks at time
k ∈ Z

+, subject to physical constraintsxmin and x
max;

u ∈ R
m is the vector of manipulated flows in m3/s through

them actuators subject to operational constraintsu
min and

u
max; d ∈ R

p corresponds to the vector of thep water
demands (sectors of consume) in m3/s; A, B and Bp are
state-space system matrices of suitable dimensions; andE1

andE2 are matrices of suitable dimensions dictated by the
network topology.

B. DWN Operational Control

The main goal of the operational control of water transport
networks is to satisfy the demands at consumer sectors, but
optimizing at the same time, management policies expressed
as a multi-objective control problem. Hence, MPC is a
suitable technique to control a DWN because its capability
to deal efficiently with multivariable dynamic constrained
systems and predict the proper actions to achieve the optimal
performance according to a user defined cost function.



Specifically, the interest is to minimize the following objec-
tives [7]:
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(2)
whereHp andHu are the prediction and control horizons,
respectively; indexk represents the current time instant while
index i represents the predicted time along the horizons;
f1(k) = ‖ (α1 +α2(k))u(k)∆t‖1

We
minimizes the eco-

nomic cost of network operation taking into account water
production costs (α1) and water pumping electric costs
(α2); f2(k) = ‖ε(k)‖2

Wx
is a performance index which

penalizes the amount of volumeε that goes down from
a safety volume value;f3(k) = ‖∆u(k)‖2

Wu
minimizes

control signal variations to extend actuators life and assure a
smooth operation;We, Wx, andWu are diagonal weighting
matrices included to prioritize the objectives.

With the above information, the MPC design follows a
systematic procedure [20]-[21], which generates the control
input signals to the plant by combining a prediction model
and a receding-horizon control strategy. The cost function
(2) subject to (1) represents the desired system performance
over a future horizon. Once the minimization is performed,
only the first computed control action is implemented and
the system operates with this constant input until the next
sampling instant. Then, the optimization is solved again with
new feedback measurements to compensate for unmeasured
disturbances and model inaccuracies. This scheme is re-
peated at each future sampling period.

Receding horizon control strategy is a very easy and
intuitive formulation, but on-line tuning of an MPC controller
is not trivial or systematic. The MPC tuning parameters for
a given cost function are usually: prediction and control
horizons, set-points, and weighting matrices. The general
approach is to define these parameters as constants for all the
system operation but this could lead to an increase of the sub-
optimality due to maneuverability reduction. Other common
method is to generate the complete Pareto front and select the
best solution according to an extra criterion, but this method
is computationally prohibited in fast dynamic or large-scale
systems as the one considered in this paper. Therefore, next
sections present a self-tunable MPC controller enhanced with
soft computing techniques such as neural networks and fuzzy
logic.

C. Safety Volumes and Service Reliability

There is the need to guarantee a safety water stock in each
tank of the network in order to decrease the probability of
shortages (when a tank or a node has not sufficient water
to satisfy external demands or the transfer request coming
from other tank/node) due uncertain events. To determine the
amount of safety water stocks, an inventory planning strategy
is addressed here to enrich previous control approaches [4],
[7], [23], with replenishment policies [24]. The goal is to
dynamically allocate the minimal volume in each storage
unit to avoid stockouts.

An economic optimization layer with short-term prediction
is implemented to virtually decouple each tank with three
main purposes: (i) to estimate tanks net outflows, (ii) to
compute ideal safety stocks based on demand forecasting
error deviation and a given service level, and (iii) to set
each base-stock introduced in the MPC problem as a soft
constraint. The last purpose lets the system employ safety
volumes on demand to face uncertainties. The aforesaid is
expressed in the following equations:

xs(k) = DL(k) + SS(k), (3a)

SS(k) = F−1
s (CSL)σ(k), (3b)

σ(k) =
√

σ
2
D(k)L(k) + σ

2
L(k)DL(k), (3c)

and
x(k) ≥ xs(k)− ε(k) ≥ 0, (4)

wherexs ∈ R
n is the vector of base-stocks in m3, DL ∈ R

n

is the vector of net lead-time forecasted demands in m3;
SS ∈ R

n is the vector of safety stocks in m3; σ ∈ R
n is

the forecast error standard deviation;L ∈ R
n is the vector

of lead-times;σD,σL ∈ R
n are the standard deviations of

demands, and lead-times respectively;F−1
s is the inverse

cumulative normal distribution,CSL is the desired customer
service level (percentage of customers that do not experience
a stockout) andε is the vector of slack variables introduced
to relax the state constraintx(k) ≥ xs(k), i.e., ε represents
the amount of volume that goes down from the desired
base-stock per each tank andε = 0 if no violation of this
constraint occurs.

III. A UTO-TUNED MULTILEVEL NEURO-FUZZY MPC

In order to achieve a flexible and reliable controller as
a decision-support tool for the management of DWNs, a
Multilevel Neuro-Fuzzy MPC (NF-MPC) with auto-tuning
capabilities and less on-line computational burden is pro-
posed in this section. NF-MPC is a quasi-explicit controller
that combines the advantages of conventional MPC and
knowledge-based soft control.

The proposed controller is based on a three-level hierarchi-
cal control architecture (see Fig. 1). The first level is a Neural
Level for strategic determination of variable set-points and
demand forecasting, the second level consists in a Fuzzy
rule-based auto-tuning of the MPC and the third level is the
closed-loop control system with receding horizon approach
flexible to be constrained or unconstrained.

A. Neural Network for Demand Forecasting

This module focuses on the problem of water demand
forecasting for real time operation of the DWN. An hourly
consumption data analysis is proposed here for training
an artificial neural network multilayer perceptron (MLP)
with Bayesian regulation backpropagation, which updates the
weights and bias values according to Levenberg-Marquardt
optimization. It minimizes a combination of squared errors
and weights, and then determines the correct combination so
as to produce a network that generalizes well. The inputs



Fig. 1. Three-level hierarchical control architecture. Neuro-Fuzzy MPC

to the forecasting models are chosen based on literature re-
view [22], and correlation analysis, considering consumption
data and meteorological variables such as temperature and
air relative humidity. Principal component analysis (PCA)
preprocessing is applied to the training patterns.

B. Neural Network for Dynamical Safety Volumes

A Backpropagation MLP is proposed here to be trained
with patterns that are generated using historical data of mea-
sured demands, forecasted demands and forecasting errors
as inputs, while using safety inventories as targets calculated
for a 95% service level and four hours lead-time demand
by stock management methodologies [24]. The goal with
this neural modeling is to avoid on-line optimizations which
are required to virtually decouple the tanks for safety stock
calculations in section II-C, and to use the non-linear explicit
model of the trained MLP to set dynamically the safety
reference volumes.

C. Neural Network for Optimal Economic Trajectory

The optimal economic trajectory of water volume in each
tank is the one obtained considering only the first objective
in the MPC problem related to a DWN solving an LP
constrained optimization problem on-line. With the intention
to reduce computational effort, an MLP is trained offline
with the economic optimizer minimizingf1 in (2). A non-
linear explicit model of the optimal operation of the network
is obtained taking into account the hourly electric tariff and
the measured demand pattern as inputs.

D. Fuzzy rule-based Tuner for DWN-MPC Controller

Self-tuning on-line algorithms for MPC of large-scale
networked systems is not a widely reported topic in literature.
Most of the tuning strategies in multi-objective optimization
problems [25] take into account the exploration of the
complete Pareto front to choose a non-dominated solution
in line with the management objectives. The aim behind the
Pareto frontier applied to MPC of a DWN is to find a direct
relation between the weights of the solution points and the
water demands [7].

Fig. 2. Fuzzy system for automatic tuning of MPC controller

In this work, a knowledge-based soft control technique is
presented. A fuzzy inference system (FIS) interacts with the
MPC Level by automatically adjusting the tuning parameters
of the controller based on the output feedback and the
measured disturbances. For more detailed explanation on
fuzzy inference reasoning, the reader could refer to [26].

1) Fuzzy System: This knowledge-based soft tuner for the
MPC has been proposed after experience and understanding
the effect of the tuning parameters on the performance of
the controlled system. It consists of: (i) two inputs fuzzy
setsEc and Es used in the fuzzification of the economic
trajectory tracking error and the safety volume tracking error,
respectively; (ii) four fuzzy setsHp,We,Wx,Wu used in
the defuzzification task to obtain the quantitative value of
the tuned parameters (prediction horizon, weighting matrix
for the economic objective, weighting matrix for safety
storage term penalization and weighting matrix for set-points
stability, respectively); and (iii) a fuzzy inference system
based on sixteen logic rules.

2) Fuzzy Sets: A fuzzy set for every input and output
has been designed in order to perform fuzzy inference
methodology. Gaussian functions are used here for the inputs
because of its smoothness while triangular and trapezoidal
functions are used for the outputs. The universe of discourse
for the inputEc and outputHp is: small(S), medium(M),
large(L); for the inputEs is: large-negative(LN), medium-
negative(MN), small-negative(SM), very-small-negative



TABLE I

FUZZY-LOGIC RULES FOR NF-MPC

1 {Ec = L,Es = LP} ⇒{Hp = L,We = L,Wx = V S,Wu = V S}

2 {Ec = L,Es = MP} ⇒{Hp = L,We = L,Wx = V S,Wu = S}

3 {Ec = L,Es = SP} ⇒{Hp = L,We = M,Wx = V S,Wu = M}

4 {Ec = L,Es = V SP} ⇒{Hp = L,We = S,Wx = S,Wu = L}

5 {Ec = M,Es = LP} ⇒{Hp = M,We = L,Wx = V S,Wu = V S}

6 {Ec = M,Es = MP} ⇒{Hp = M,We = L,Wx = V S,Wu = S}

7 {Ec = M,Es = SP} ⇒{Hp = M,We = M,Wx = V S,Wu = M}

8 {Ec = M,Es = V SP}⇒{Hp = M,We = S,Wx = S,Wu = L}

9 {Ec = S,Es = LP} ⇒{Hp = S,We = L,Wx = V S,Wu = V S}

10 {Ec = S,Es = MP} ⇒{Hp = S,We = M,Wx = V S,Wu = S}

11 {Ec = S,Es = SP} ⇒{Hp = S,We = M,Wx = V S,Wu = M}

12 {Ec = S,Es = V SP} ⇒{Hp = S,We = S,Wx = S,Wu = L}

13 {Es = LN} ⇒{Hp = L,We = V S,Wx = L,Wu = V S}

14 {Es = MN} ⇒{Hp = L,We = V S,Wx = L,Wu = V S}

15 {Es = SN} ⇒{Hp = L,We = V S,Wx = L,Wu = V S}

16 {Es = V SN) ⇒{Hp = L,We = V S,Wx = L,Wu = V S}

(V SN), very-small-positive(V SP ), small-positive(SP ),
medium-positive(MP ), large-positive(LP ); for the outputs
We, Wx, Wu is: very small(V S), small (S), medium(M),
large(L).

3) Fuzzy Rules: The logic statements proposed in this
work are presented in Table I. These rules are setted taking
into account the expert knowledge acquired after several
simulation scenarios for the optimal operation of a water
network.

IV. SIMULATION AND RESULTS

In this section, simulation results are presented. The se-
lected case study is an aggregate model of the DWN of
Barcelona, which consists of 17 tanks, 61 actuators, 25
measured demands and 11 nodes (see Fig. 3). All the
simulations have been done over a time period of four
days (96 hours). The selected sampling time is one hour.
Simulations have been carried out using the TOMLABR© 7.6
optimization package, Fuzzy Logic Toolbox

TM
and Neural

Network Toolbox
TM

for MatlabR© R2010b (64 bits). The
computer used to run the simulations is a PC IntelR© Core

TM

E8600 running both cores at 3.33GHz with 8GB of RAM.

A. Demand Forecasting

Forecasted water demand is calculated based on meteoro-
logical (temperature and air relative humidity) historical data
and predictions available from the Servei de Meteorologia
de Catalunya (www.meteocat.com). Figure 4 shows that the
prediction is nervous in some points but the magnitud of
the forecasting error is not a reason to reject the obtained
model. In fact, these minimal discrepancies are reflected in
an increase of the safety volume.

B. Economic Trajectory and Safety Volumes Modeling

Neural modeling schemes for the economic optimal tra-
jectory and the safety volume trajectory performs with high
accuracy as it could be expected (see Fig. 5), because both
MLPs are trained using optimizers or explicit models instead
of experimental driven data as in the forecasting demand
case. The advantage of using these neural models is that
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Fig. 5. Neural Network results for economic trajectory and safety volumes

the time invested in processing data and training the neural
system will be gained in the on-line solving process once
the neural networks are accurately validated and tested.

C. Auto-Tuning Results

The parameters tuned in the MPC problem are
Hp,We,Wx,Wu, whose histograms are shown in Fig.6. Re-
sults for the NF-MPC with an unmeasured random distur-
bance of at most 20% of the demand pattern are obtained.

In most of the results presented in literature for MPC,
tuning is focused on the weighting matrices and most of
the times with no adaptation schemes. Nevertheless, for
large-scale systems, an efficient selection of the horizons
is also demanded because the size and complexity of the
optimization problem is based mainly in this parameter.

D. NF-MPC Controller for DWN

The proposed Neuro-Fuzzy approach has been imple-
mented for the tuning of a constrained MPC to operate the
aggregate model of the Barcelona DWN. Results have been
compared with two previous strategies. The controllers are
the following ones:

• MPCo: original approach of MPC with fixed prediction
and control horizons (24h), constant safety water stocks
and constant weights for the prioritization of manage-
ment objectives.

• MPCss: a Two-level MPC which implements analyti-
cally the dynamic optimization of safety stocks follow-
ing II-C. It considers fixed horizons (24h) and weights.

• NF-MPC: Neuro-Fuzzy MPC with self-tuning capabi-
lities to adjust the parameters stated in III.



Fig. 3. Case Study: Aggregate model of the DWN of Barcelona
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Table II shows the specific key performance indicators for
the aforementioned controllers. Simulations show that fixed
parameters such as safety stocks, weights and horizons are a
drawback for the management of complex systems. Figure 7
shows the control strategies for the operation of two tanks.
Figure 8 presents the operation of two actuators, showing
the effectiveness of the strategy to decide pumping actions
in periods where electric tariff is lower.

The MPCo controller presents the highest economic cost
due to the static safety volumes strategy that limit the solu-
tion space to achieve economic optimization. This approach
do not guarantee optimal results for any condition because
the safety is fixed heuristically without taking into account
demand variations.

TABLE II

KEY PERFORMANCE INDICATORS FOR THE DIFFERENT APPROACHES

Controller Economic (103) Safety Smoothness Time
[e.u.] [s]

MPCo 183.74 28.8022 0.1318 142.01
MPCss 176.77 5.0295 0.1340 286.17

NF-MPC 178.99 5.2138 0.1172 132.91
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Fig. 8. Control actions for the NF-MPC with adaptive parameters

The MPCss controller is robust to disturbance uncertainty
and presents the best economic performance but the highest
computational effort since it involves more on-line optimiza-
tion problems to set safety stocks.

The NF-MPC controller outperforms the previous strate-
gies. It presents similar results to the MPCss for the eco-
nomic, safety and smoothness indicators but reduces the
computational burden. NF-MPC does not require explicit
formulation of constraints in an optimizer routine and it is
flexible to self-adapt controller parameters if the operational
conditions change. This capability helps managers to deal
with demand uncertainty and prediction errors in an optimal
and economic way.

V. CONCLUDING REMARKS

This paper has presented a Multilevel Neuro-Fuzzy Model
Predictive Controller with self-tuning capabilities for the
efficient management of water transport systems. The resul-
tant controller architecture has been applied to an aggregate
model of the Barcelona DWN obtaining important improve-
ments in the computation time towards on-line implemen-
tation for large scale systems. The selected parameters to
be tuned in the MPC problem were the prediction horizon
and the weighting matrices of the multiojective cost function.
The main advantage of the fuzzy tuner is that it is able to
tune every element independently, which is a difficult task
in analytical approaches due their lack of intuitiveness for
multivariable large-scale systems. The proposed scheme is
a quasi-explicit MPC because most of the heavy computa-
tional tasks are converted into non-linear explicit modules
using neural networks. The controller also tunes the set-
points based on inventory management theory, enriching the
controller design with reliability aspects to assure a customer
service level under disturbances uncertainty. Further research
will be done in reinforcement learning to adapt and to
improve the fuzzy rules-based level.
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