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Abstract Biologically inspired homing methods, such as the Average Landmark Vec-

tor, are an interesting solution for local navigation due to its simplicity. However,

usually they require a modification of the environment by placing artificial landmarks

in order to work reliably. In this paper we combine the Average Landmark Vector

with invariant feature points automatically detected in panoramic images to overcome

this limitation. The proposed approach has been evaluated first in simulation and,

as promising results are found, also in two data sets of panoramas from real world

environments.
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1 Introduction

The interest in visual navigation systems based on local methods is increasing in the

field of mobile robotics: the path between two different location is specified as a suc-

cession of intermediate targets to be reached. Hence, the complex navigation problem
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is divided into smaller tractable sub-problems that can be readily solved by simple

algorithms with low computational requeriments. Besides, in topological environment

representations like in Ramisa et al (2009) a global metric representation is not avail-

able. Therefore, the most efficient way of traveling between different locations consists

in using a local navigation method. This approach is convenient for navigation in large

scale environments, since it is not necessary to estimate a global, geometrically correct,

metric map of the environment. In such scenario, the navigation between two different

places can be defined as a succession of homing steps.

In robot homing research, many methods solve the perception problem by using

trivial to detect artificial landmarks (Möller 2000; Lambrinos et al 2000; Busquets

et al 2003; Usher et al 2003). Although these methods often give good results on

the experiments, its deployment in practice is limited, as they require setting up the

environment beforehand.

Another technique commonly used in local homing is named image warping, and

consists in computing a distance between the destination panoramic images and a

simulation of the current image that would be introduced by a certain movement of

the robot (Möller et al 2009; Vardy 2005). This type of methods provide good results in

general, but are more demanding in terms of memory and computation, and are very

sensitive to projective distortions introduced by camera movement. Furthermore, using

all the image instead of a landmark-based representation makes this type of approaches

more sensitive to environment changes.

Methods like that of Goedemé et al (2007), Pons et al (2007) or López-Nicolis et al

(2010) use local feature matching techniques to estimate the parameters to navigate

to the home position. Although very good results are obtained with these techniques,

they require storing all the local descriptor for the origin and destination positions, as

well as a computationally expensive step to establish the correspondences between the

panoramic images. In contrast, in this work we focus on methods that do not require a

feature matching stage. In our work the goal is to create a simple homing method that

can be used without having to rely on artificial landmarks or an expensive matching

stage. For this we propose the combination of the Average Landmark Vector (ALV)

homing technique with visual invariant feature detectors, like the ones described by

Mikolajczyk et al (2005), in panoramic images. These local detectors are robust to

noise in the image, and its local nature minimizes the effect of viewpoint changes. To

the best of our knowledge no other work has addressed the combination of the ALV

homing method with invariant feature points such as the MSER or the DoG.

The Average Landmark Vector or ALV Lambrinos et al (1998, 2000) is a biologi-

cally inspired approach to navigation that assumes that the animal stores an average

landmark vector instead of a snapshot. Landmarks can be (simple) features like edges.

The direction to the destination is the difference of the ALV at the destination and

the ALV at the current location. Advantages of this model are its simplicity, that only

the average landmark vector at the destination location needs to be stored, and that

no expensive matching between local descriptors needs to be performed.

The main contribution of this paper is an ALV-based homing method that uses

as input information visual invariant features instead of artificial landmarks, and can

therefore be used directly in unprepared environments.

In order to evaluate the proposed method, we conducted a series of experiments

with the ALV homing method combined with invariant visual feature detectors. First,

experiments were done in a simulated environment (Goldhoorn et al 2007a,b) and

because the results were promising, experiments were also done with a real robot
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(Goldhoorn 2008) in several rooms of an office-type environment. We also conducted

experiments with our baseline method (ALV with artificial landmarks) in order to

quantify the loss in performance introduced by using the selected invariant visual fea-

tures as natural landmarks. The obtained results show that the proposed method is

suitable for homing in the evaluated environment, and that its performance is only

slightly inferior to that of artificial landmarks.

This paper is divided in the following sections: first, related work is discussed, after

this we present our method along with some background on the techniques we use,

which include the panorama acquisition technique, the local features and the Average

Landmark Vector homing method; next, the proposed method is explained; then the

experiments performed to evaluate the method are presented followed by a discussion

of the results and finally the conclusions and future work are described.

2 Related Work

There is significant research in robotic navigation using methods based on animal

navigation techniques. For instance, Carwright and Collet (1983) studied how the hon-

eybees learned and used landmarks to navigate. From this research they created the

snapshot model. The idea of this model is to calculate the home vector, which is the

vector pointing to the home position. A panoramic image of the target location is cre-

ated and stored by the animal. Then, when the insect wants to go back to the stored

position it uses a matching mechanism to compare the current retinal image to the

stored panorama. Another example is the work on robotic navigation of (Lambrinos

et al 1998, 2000) where the ALV was initially proposed, that took inspiration from

the different navigation techniques of the ant species Cataglyphis described by Wehner

(1987). These techniques have the advantage of being computationally cheap.

So far, in most works that studied the ALV homing method, artificial landmarks

have been used. For example Lambrinos et al (2000) used as landmarks four black

vertical cylinders, and in (Möller 2000) experiments were done inside of a white box

with several wide black vertical stripes on the walls. Möller et al (2001) did extensive

experiments in a desert type outdoor scenario with four black cylinders as landmarks. In

this same work an experiment was attempted in an indoor scenario. Natural landmarks

where found by vertically averaging a certain area of the image and finding edges (i.e.

intensity jumps) in the unidimensional graylevel profile.

Hafner and Möller (2001) investigated if a Multi-Layer Perceptron with backprop-

agation and a Perceptron with Delta Rule were able to learn a homing strategy both

in simulation and in real world experiments. For the real-world experiments panoramic

images acquired by the robot camera were reduced to a single line by vertically averag-

ing (similarly to what Möller et al (2001) did), thus the input of the neural networks is

a unidimensional image. Both neural networks successfully learned a homing strategy

with the same characteristics as ALV.

Usher et al (2003) used a version of ALV augmented with depth information to guide

a car-like vehicle in an outdoor experiment. Landmarks were salient color blobs and

the depth information was acquired directly from the distance of the landmark to the

center of the omnidirectional image (no unwrapping is performed) using a flat-world as-

sumption. The authors performed real-world experiments using red traffic cones (witch

hat model) as landmarks.
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Vardy (2005) did an extensive study for a variety of biologically plausible visual

homing methods in his PhD thesis, both for local and associative methods, in a real

office environment. Among the methods evaluated in his work, there is the one proposed

in Hafner and Möller (2001), referred to as Center of Mass ALV. In the experiments

it performed similarly to other local homing methods, although it was found that an

extra learning phase was necessary to determine which area of the panoramic image

should be used to generate the unidimensional image in certain environments.

Labrosse (2007) proposes an image warping method to compute a homing vector

from a pair of raw two-dimensional images, which avoids relying on types of landmarks

that may be nonexistent or sub-optimal for a given environment. Nevertheless, the

performance of this method depends on the parameters of the warping procedure,

whose optimal value is also environment-dependent. In this work, a compromise value

for these parameters was obtained as the average between the optimal value for a large

number of image pairs separated by a 25 cm displacement. The constant orientation

problem is addressed by calculating column shifts between the consecutive panoramas,

bounding the accumulated estimation error at 5◦ in short trajectories. Finally, in order

to gain robustness to large occlusions between the current and the destination image,

the route is divided in multiple, manageable, sub-problems.

Another homing by image warping method has recently been proposed in (Möller

2009; Möller et al 2009). These methods build on the work of Franz et al (2008) and

improve if by using two-dimensional instead of one-dimensional images. They showed

experimentally (in their own datasets and also in standard, pre-existing ones) that their

2D method worked better, especially with multiple scale panes, and that the additional

computational time needed was small.

Chaudhari (2010) uses the ALV algorithm with single 180◦ FOV camera, from

which he extracts predefined landmarks using color. Since in order to navigate using

the ALV all the landmarks have to be detected, a ring of sonar sensors is used to

maintain a map of the landmarks. Experiments were done both in simulation and with

a Pioneer robot.

3 Proposed Method

In this section we describe the different concepts and techniques that we have used:

First the panorama acquisition technique, next the local feature detectors, an finally

the foundations of the ALV homing technique.

3.1 Panorama

The panorama acquisition technique used in this work consists in stitching images

taken with a conventional camera rotating around a fixed point of view until the full

360◦ have been covered. The images should be projected onto a smooth surface such

as a cylinder to avoid discontinuities or inhomogeneous sampling. A cylindrical repre-

sentation offers some advantages. In the first place it can be created relatively easily,

and also, in contrast with other plenoptic representations such as a sphere, can be

unrolled and stored in an efficient way as a conventional rectangular image (McMillan

and Bishop 1995). Using this panorama acquisition technique, it is important to have a

fixed optical center to avoid introducing motion parallax. However, small translations
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can be tolerated when the objects are far enough from the camera. We used the same

approach for panorama construction that was used in (Ramisa 2006). First the coordi-

nates have to be transformed from the Cartesian system of the images to a cylindrical

coordinate system:

θ = tan−1

(
x

f

)
, v =

y√
x2 + f2

(1)

Where (x,y) is the pixel position in the image, f the focal distance (in pixels), θ the

angular position and v the height on the cylinder. The radius of the cylinder is equal

to the focal length of the camera to optimize the aspect ratio of the image (Shum and

Szeliski 1997). The next step is to stitch the images, but for this the displacement

Fig. 1 The projection from the image sequence to a cylinder.

vectors ∆t = (tx, ty) have to be calculated for each succeeding image pair. In theory

tx can be deduced from the panning angle and ty = 0, however in reality this is not

true due to camera twist and not perfect panning.

Local features (see section 3.2) can be used to estimate the translation between two

images. The advantage of using local features instead of the more conventional iterative

maximization of the normalized correlation (McMillan and Bishop 1995; Szeliski and

Shum 1997) is its lower computational complexity (provided that the local features will

have to be computed anyway) and higher robustness to several image transformations

such as illumination changes, noise and zoom. However, in the case of few texture in

the image it is not possible to use the feature-based approach and the iterative method

is used. When the translations have been calculated, the images can be stitched to

produce the whole panorama.

An example of such a panorama created by stitching is shown in Figure 2. As

can be seen there are still small distortions due to not perfect shifting of the images.

The difference in intensity is because of the automatic camera gain. To avoid artifacts

created in the stitching process, the features from the original images are used. Features

from overlapping regions are only added to the constellation once. Another way to

acquire panoramas is by using an omnidirectional camera. There are two approaches

to do this: by using a fish-eye lens and by using a conventional camera pointed to a

hyperbolic mirror above it. These methods have some clear advantages such as the

speed of creation and that no images have to be stitched, and therefore no artifacts

will be introduced. A disadvantage is the lower resolution of the acquired images.

Finally, another alternative to acquire panoramas is using a camera ring of syn-

chronized cameras, which offers a high speed of acquisition without sacrificing the high

resolution. A disadvantage of this method is the high price of the whole system.
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Fig. 2 Part of a panorama image created by stitching several images together. The image is
made in the robot laboratory.

3.2 Local Visual Features

Local visual features can be points or regions of an image which correspond to a local

extrema function over it. The main interest of these features is that are detectable

under several transformations and illumination changes. This robustness makes them

very suitable for the purpose of matching and recognition. Moreover, representations

made with such local features are robust to partial occlusions and background clutter.

Extracting features from an image reduces the dimensionality of the information and

adds robustness against noise, aliasing and acquisition conditions.

The feature region detectors Maximally Stable Extremal Regions (MSER) and

Differences of Gaussians (DoG) are used in this work to test the homing method

because they are fast to compute and yet robust. Here follows a brief description of

these detectors.

3.2.1 Differences of Gaussians

The Scale-Invariant Feature Transform (SIFT) algorithm proposed in (Lowe 1999,

2004) is based on a biologically inspired model of complex neurons in the primary

visual cortex proposed by Edelman et al (1997). These neurons are activated by a

gradient in a particular orientation if it appears within a small range of positions in

the retina. Although the SIFT algorithm includes both an interest region detector and

a descriptor, we are only interested in the detector part for this work: the extrema of

the differences of Gaussians. The standalone version of this detector is known in the

computer vision literature as Differences of Gaussians or simply DoG. Differences of

Gaussians D are produced subtracting every two neighbour levels of the scale-space of

the image, separated by a factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (2)

where G(x, y, σ) is a Gaussian kernel with standard deviation σ and I(x, y) is the input

image. Figure 3 shows an efficient approach to construct D. To avoid detecting multiple

times the same feature at different scales, they are only detected at their characteristic

scale (Lindeberg and G̊arding 1997).

Local extrema of D are detected by comparing each sample point to its eight

neighbours in the current image and the nine neighbours in the above and below

scales of the DoG. The point is selected only if it is the maximum or minimum in

its neighbourhood. Finally unstable feature points are rejected. These correspond, for

example, to feature points localised along an edge or feature points with low contrast.
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Fig. 3 At the left the initial image is incrementally convolved with Gaussians. The adjacent
image scales are subtracted to produce the DoGs, which are shown at the right. After each
octave, the Gaussian image is down-sampled by a factor of 2, and the process repeated.

3.2.2 MSER

The Maximally Stable Extremal Regions (MSER) proposed by Matas et al (2002)

can be defined informally as image regions in which the pixels have an intensity value

much higher or lower than neighboring pixels. Although apparently very simple, MSER

feature points are very stable to change of viewpoint (they are perspective-invariant)

and to affine illumination changes. Furthermore, the algorithm proposed by Matas et al

(2002) to compute the MSER feature points has a near linear complexity. The algorithm

works as follows: First the pixels are sorted by intensity, then the pixels are placed in

the image (in decreasing or increasing order) and the list of connected components

and their areas are maintained using an efficient union find algorithm. Each connected

component is stored as a function of intensity. By doing intensity thresholds we find

the parts of the function where no changes in the area of connected components occur,

i.e. they are not merged with others. These parts are the maximally stable extremal

regions. Murphy-Chutorian and Trivedi (2006) propose an even more efficient version

of the algorithm to compute MSER feature points using a N-Tree Disjoint-Set Forests

structure.

The MSER detector was tested by Mikolajczyk et al (2005) and found to be one of

the best in their repeatability experiments. A notable advantage of this method over

DoG is that the regions found are much more robust and faster to compute. On the

negative side, MSER feature points are usually scarce, which makes this type of feature

points unsuitable (at least when used without complementary features) for applications

such as object localization and recognition (Vinyals et al 2007).
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Fig. 4 The calculation of the home vector. Both ALVs (A1 and A2) point to the average
feature position, which is drawn as a gray block. The home vector (H) is calculated by sub-
tracting the ALV at the destination location (A2) from the ALV at the current location (A1).
This subtraction is shown, by the addition of the reverse vector, A′2, to A1. The robots are
aligned in this example.

3.3 Average Landmark Vector (ALV)

In this section we describe the biologically inspired homing technique Average Land-

mark Vector by Lambrinos et al (1998, 2000). The ALV is defined as the average of

the landmark (or feature) position vectors:

ALV(F,−→x ) =
1

n

n∑
i=0

−→
fi (3)

Where F = {−→f1,
−→
f2, . . . ,

−→
fn} is the collection of features that define the signature taken

at the current position −→x , and fi are the coordinates of the ith landmark position

vector. In this equation F contains the global feature positions to explain and proof

the homing technique. This is the robot centered version, but it is made world centred

by subtracting the current position −→x of the robot in the world to easily proof that

the homing technique works:

ALV(F,−→x ) =
1

n

i=n∑
i=0

−→
fi −−→x (4)

The home vector is defined as follows:

homing(F,−→x ,−→d ) = ALV(F,−→x )−ALV(F,
−→
d ) (5)

Where −→x is the current location of the robot and
−→
d the destination. When the ALV

functions are substituted by Eqn. 5 then
−→
d − −→x remains, which is exactly the home

vector. Figure 4 shows an example of the calculation of the home vector. To simplify

the image only the average landmark (the gray square) is shown. In this example it is

also assumed that the depth of the landmarks is known. The ALVs are calculated for

the current (C) and the Home position, these are A1 and A2 respectively. The home

vector (H) is calculated by subtracting the ALV at the destination position (A2) from

the ALV at the current position (A1). This results in the home vector H which points

to the destination location.
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One important prerequisite of the ALV is that it is necessary to have the panoramic

images aligned to an external compass reference before computing the homing direction.

The Sahara ant Cataglyphis, for example, uses the polarization patterns of the blue sky

to obtain the compass direction (Wehner 1994).

ALV homing does not work when the ALV at the current location and at the

goal location are the same (after correction for orientation differences), because this

results in a zero vector. An exceptional theoretical case in which this could happen is

when the ALV point, the current location and the goal location are aligned, in practice

however this is very unlikely. To let the robot move anyway in such situations a random

vector could be used to move the robot a small distance, and then continue the homing

procedure.

As a way to solve the constant orientation prerequisite, in our work all test panora-

mic images have been acquired with the robot facing a constant direction as is common

practice in similar works (Möller et al 2001; Hafner and Möller 2001). In order to apply

the ALV method in a navigation experiment a magnetic compass, or another system

to acquire the global orientation, is required to align the panoramas.

4 Experiments Performed and Results Obtained

4.1 Simulation

To evaluate how well the ALV homing method works with our type of visual features,

a series of simulation experiments were performed first. Here we report the most im-

portant findings of these experiments. A more detailed explanation and discussion of

the simulation experiments can be found in (Goldhoorn et al 2007b; Goldhoorn 2008).

The experiments were done in a simulated environment (see Fig. 5) with different

distributions of feature points. The environment is a room composed of a flat floor, in

which the robot moves, and up to four visible walls made of simulated feature points

and projected to a virtual camera located in the robot position, that closely simulates

the field of view of the panoramic images acquired with our real robot. A simulated

robot run was said to be successful if it found the destination point within the following

three limitations:

1. The robot is not allowed to use more than 2000 steps (iterations)

2. The projection of the world should not be empty more than five times in a row (in

that case either the previous home vector or a vector with random orientation and

length was used)

3. The robot should travel at most a distance ten times the Euclidean distance between

the start and destination position.

Although the feature points used are robust to most image variations, there are almost

always changes due to noise in the localization or occlusions. Adding Gaussian noise to

the positions of the feature points with a standard deviation of 0.001 m or less resulted

in a 90% successful runs, and a standard deviation of 0.05 m or more resulted in only

5% or less of successful runs.

Occlusions were simulated by removing randomly chosen feature points before every

projection. Removing 50% of the feature points resulted in a mean success rate of 85%.

The method was also robust to adding randomly placed feature points, which can be

thought of as reappearing previously occluded objects.
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Fig. 5 a) The simulated environment with uniformly randomly spread feature points. b)
Panoramic projection of the world used as input for the robot homing system.

Having more reliable feature points present in the world increases the performance

of the robot (higher success rate, less iterations and a smaller difference with the

Euclidean distance). For the simulation, the range for the number of feature points

is between 500 and 1000 for a success rate of 100%. Although having only 20 feature

points in the world still resulted in 50% to 80% successful runs. However it has to

be taken into account that these runs were without any noise and without any other

disturbances.

Because no depth is used, the ALV method implies an equal distance assumption

of the landmarks. Franz et al (1998) also mentions the isotropic feature distribution,

which can explain why results in a world with only one wall were worse than in the

other configurations.

From these experiments we concluded that visual feature points are suitable for

visual homing with the ALV and, consequently, the next step was to try this method

on a real robot.

4.2 IIIA Panoramas Database

This section shows the experiments conducted with the IIIA panoramas database1.

First the experimental setup is explained, and then the results are presented and dis-

cussed.

4.2.1 Experimental Setup

As it is common in related literature, in these experiments several panorama were

acquired at a grid of known points in the rooms. The orientation of the robot was kept

constant for each panorama so no alignment step is necessary between them.

1 The IIIA Panoramas database can be downloaded from http://www.iiia.csic.es/

~aramisa/datasets/iiia_alv.html
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Three types of landmarks/feature points were used: 1) DoG feature points; 2)

MSER feature points; and, only in the robot laboratory, 3) artificial landmarks. The

experiments were done in three rooms of different sizes: the robot laboratory, the square

room and the corridor. A scaled map of the rooms can be seen in Figures 7, 9 and 10.

The locations where the panoramas were created are marked as circles with its

identifying number and a line starting at the center of the circle and pointing to

the direction of the estimated home vector. The home location is shown as a red

circle without line and is also indicated in the figures captions. The biggest objects

in the rooms, such as desks, are also shown in the maps to give a rough idea of the

environment. Finally, the squares in Figure 7 show the landmarks positions and its ID

number.

Like in the simulation, only the direction of a feature is known and not its distance,

therefore the home vector will not contain distance information either. The home angle

calculated by the homing method is compared to the ground truth home angle which

is calculated by geometry.

θdiff(hh, hc) = min (|hc − hh|; 360− |hc − hh|) (6)

All angles are in degrees and counter-clockwise; hc is the correct homing direction cal-

culated by using the positions (geometry), and hh is computed by the homing method.

To find out how well the method works for each room and each type of feature, all

the panorama positions per data set are used. For each data set (the square room,

the robot laboratory and the corridor) all the locations where a panorama was created

are used to calculate the home vector to each of the other locations. From the error

calculated with Eqn. 6 for each possible panorama pairings in one room, the mean,

median, standard deviation and a score are calculated. The score is calculated by using

the proportion of the maximum error and ranges between 0 and 1 where 1 is best.

Namely:

s = 1−

∑n
i=1

∑n
j=1;i 6=j θdiff(hh(Pi, Pj), hc(Pi, Pj))

180n(n− 1)
(7)

where n is the number of panoramas in the set and P the set of panoramas. The

numerator is the sum of the difference of the home angle estimated by the ALV homing

method and by geometry. This error measure is calculated for each panorama pair,

which in total are n(n − 1) pairs. The sum of errors is divided by that factor to get

an average and, to normalize the score between 0 and 1, it is also divided by 180◦, the

maximum possible error.

4.2.2 Robot

A Pioneer 2AT robot (Figure 6.a) is used with a pan tilt unit (Directed Perception

PTU 46-70) mounted on it and on top of this PTU, a Sony DFW-VL500 camera with

a resolution of 640 × 480 pixels. The robot is controlled from an on-board laptop (Acer

Travelmate C110).

The experiments were done in the three mentioned different areas of the IIIA-

CSIC research center. The room in which most experiments were done is the robotics

laboratory. The panorama in Fig. 2 shows this room as seen from the robot and in

Figure 7, a map can be seen.
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(a) (b)

Fig. 6 (a) The Pioneer 2AT robot as used in the experiments. A pan tilt unit is mounted on
the robot with a camera on top. (b) An example of a landmark in the robotics laboratory.

4.2.3 Landmarks

In order to compare our proposed approach to an artificial landmark based one, extra

experiments were done using six artificial landmarks in the robotics laboratory (see

Figure 6.b) available from previous experiments (Busquets 2003; Busquets et al 2003).

The landmarks contain a bar code from which an ID number can be extracted and,

since the size of the bars is known, the distance to the landmark can be calculated. In

order to make the artificial landmark approach comparable to the feature based one,

neither the landmark number (for matching) nor the distance information was used in

our experiments.

4.2.4 Results

When calculating the home vector between two points, for example a and b, the home

vector from a to b will obviously always point in opposite direction of the home vector

from b to a. This means that these are dependent values and therefore only one of them

was used in the analysis. Next we discuss the results for the three different areas.

Robotics laboratory: Most panoramas, 38 in total, were acquired in the robotics labo-

ratory, a room of 10.5 m × 11.2 m. Only the half of the room is really used for this

experiment because the other part is filled with working places and the robot soccer

field as can be seen in Figure 7. The behaviour of the proposed method in this envi-

ronment was satisfactory: Home vectors with an error equal or lower than 10◦ (direct

approach to target) were obtained in 22.6% of the cases for the DoG detector, 32.7% for

the MSER detector and 64.3% for landmarks. An error lower or equal to 90◦ (suitable

for a zig-zag approach to destination) was obtained in 89.3% of the cases when the

DoG detector was used, 92.6% for the MSER detector and 99.6% when the landmarks

were used. Table 1 shows the results for each type of detector used. The homing errors

for the three methods are all significantly different (p < 0.001) according to the rank

sum test, and the t-test after bootstrapping (n = 1000). From this can be concluded
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(a)

(b)

(c)

Fig. 7 Homing to panorama 110 in the robotics laboratory using DoG feature points (a),
MSER feature points (b) and the landmarks (c). All measures are in cm.
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DoG MSER Landmarks
Mean error 35.60◦ 27.84◦ 14.88◦

Median error 22.85◦ 16.03◦ 10.17◦

Standard deviation 36.67◦ 35.51◦ 14.86◦

Score (s) 0.8022 0.8454 0.9173
Best home 117 117 110

Table 1 The homing error using the panoramas from the robotics laboratory. The best home
field shows the number of the panorama (see Figure 7 for the numbers in the robotics labora-
tory), which when chosen as home, resulted in the lowest average error.

Fig. 8 Part of the panorama 137 from the square room.

DoG MSER
Mean error 13.78◦ 9.65◦

Median error 12.00◦ 12.03◦

Standard deviation 11.31◦ 7.84◦

Score (s) 0.9234 0.9464
Best home 138 138

Table 2 The error of the homing method using the panoramas which were made in the square
room.

that the homing method worked best with the artificial landmarks, as expected, and

worst with the DoG detector.

Square room: In Figure 8 a panorama from the square room (actually its size is 4.0 m

× 3.4 m) can be seen. Figure 9 shows the map of the room and the home vectors to

panorama 137. As in the case of the robotics laboratory, MSER feature points achieved

lower error rates than DoG feature points, but this is not significant (confirmed by the

rank sum test and the t-test) and it must be noted that only three panoramas were

created in this room. Table 2 shows the statistics of the homing method using both

feature types.

Corridor: Although the simulation showed that the ALV homing method works better

in square rooms, we wanted to find out what the impact of a very long and very narrow

room in a real environment would have on the method. A corridor was chosen for that

reason as last experiment environment. The part of the corridor in which the robot

moved is 2.2 m wide and about 22.5 m long. In Figure 10 the map of the corridor with

the homing vectors to panorama 203 can be seen, and in Figure 11 the panoramas

acquired in the corridor.

As expected, the performance in this dataset was much lower than in the previous

tests: An error of 90◦ or less was obtained only in 73.3% of the cases for both feature

types, and an error of 10◦ or less was only obtained in one case (6.7%). Table 3 shows

the average error of this data set; the differences between the results with DoG and
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(a)

(b)

Fig. 9 Homing to panorama 137 in the square room (a) using DoG points and (b) MSER
points. All measures are in cm.

DoG MSER
Mean error 56.26◦ 52.67◦

Median error 44.58◦ 35.71◦

Standard deviation 43.64◦ 44.90◦

Score (s) 0.6874 0.7074
Best home 203 200

Table 3 The average error of the homing method in the corridor for the different feature
types.
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(a)

(b)

Fig. 10 Homing to panorama 203 in the corridor using (a) DoG feature points and (b) MSER
feature points. All measures are in cm.

Fig. 11 All the panoramas made in the corridor. The dots are MSER feature points.

MSER are not statistically significant. The panoramas acquired in the corridor (Figure

11) show that there are several disturbing factors on which numerous feature points

were found but that were only visible from one or a few of the panoramas. For example,

panorama 198 is the only panorama taken at a corridor intersection, and therefore the

feature detectors find a large number of feature points than are not visible in the other

panoramas. In panoramas 200 and 201 a door with blinds is visible, but since it is very

close to the robot, its size rapidly changes, and with it the amount of feature points

found. Finally, in panoramas 199 and 200 the robotics laboratory is visible through an

open door which again has many feature points. The deviations in the home direction

in Figures 10.a and 10.b show how the extra features pull the home vector in their

direction. In Table 4 (see Annex), can be seen that the best corridor of the IIIA data

sets is at rank 25, which is below the best of the data sets robot lab and square room.
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As is clear the results at the different rooms, the ALV homing method works bet-

ter in both the square room and the robotics laboratory than in the corridor. This

difference is explained by the previously found conclusion, in the simulated experi-

ment (Section 4.1), that the method works better in approximately square rooms that

have an isotropic landmark distribution. This problem is well known in the homing

community and an active area of research (Möller et al 2007).

Upper and lower part: Limiting the view of the robot to only the lower half of the

panorama displays only the objects which are closer to the robot and therefore decrease

the size of the visible world, making the perceived room more square.

In the robotics laboratory, using only the lower half of the panorama resulted in

a lower error than using all feature points (p < 0.001 with the t-test and the rank

sum test for both DoG and MSER). For the other rooms, no significant difference in

performance was found. The use of only the upper half part of the panorama was also

tested, but these results were significantly worse than using the whole panorama for

the robotics laboratory (p < 0.001, t-test and rank sum test). Again, there was no

significant difference in the square room and corridor.

4.3 Vardy’s Panorama Database

A second database (Vardy 2005)2 was used to evaluate the proposed method in images

obtained with an omnidirectional camera. Vardy’s image database consists of pano-

ramic images acquired over a grid of equally separated points from the hall and the

robotics laboratory of the Bielefeld University. He created six data sets of the labora-

tory and two of the hall, all under slightly different conditions, such as the amount of

light and added objects. In the robotic laboratory the data set consisted of a 10 × 17

image grid with 30 cm separation between each image (horizontally and vertically);

in the hall 10 × 21 images in a grid were created per data set with 50 cm separation

between images. In contrast to the IIIA database, Vardy’s database was acquired with

an ImagingSource DFK 4303 camera pointing towards an hyperbolic mirror, which

directly acquires omnidirectional images, and therefore spares the panorama creation

step. Nevertheless, it suffers from a much lower resolution. Figure 12 shows a panorama

from the hall1 data set. In our experiments, first all the feature points are extracted

from the images. As can be seen in Figure 12, the image also contains non relevant

parts which lay outside the mirror. To focus on the informative area of the image, the

field of view is reduced to a limited number of degrees above and below the horizon,

which is the line between the centre of the spherical mirror and the outer circle of the

mirror. Only feature points which fall in this area are used for the homing method.

The vector of a feature has its origin in the image center (shown as the red dot in

Figure 12) and points to the feature point. These vectors have to be normalized to 1

before calculating the ALV, because the length of the vectors only shows the distance

in pixels on the image. After this, the ALVs and the home vector can be calculated as

described in section 3.3.

2 Vardy’s Panoramic Image Database is available at
http://www.ti.uni-bielefeld.de/html/research/avardy/index.html.
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Fig. 12 A panorama from Vardy’s image database. The outer red circle shows the border
of the parabolic mirror, the two inner yellow circles show the 20◦ line above and below the
horizon. The points show the location of the MSER feature points; the filtered feature points
are the ones between the yellow circles (best viewed in color).

4.3.1 Results

As can be seen from Table 4 (see Annex), the scores for the Vardy data set vary from

0.85 to 0.3 and the home angle error from 28.2◦±27.6 to 126.0◦±43.3. The results are

worse than the results with the previously discussed data sets, but it must be noticed

that this data sets contain more samples.

For all feature types, a view angle of 15◦ (above and below the horizon) worked

significantly better than a smaller view angle (p < 0.001, t-test and rank sum test)

in the majority of the sets, and a view angle of 20◦ was best for all sets except for

doorlit and hall1 when MSER feature points were used, and hall2 and screen when

DoG points were used. For the DoG feature points case, using a view angle of 5◦ had

the best results in the sets hall2 (p < 0.001, rank sum test) and screen (p < 0.05, rank

sum test).

It is also clear from Table 4 (see Annex) that again the performance of the MSER

detector is better than that of the DoG detector. This difference is significant for all

data sets with a view of more than 5◦ above and below the horizon (using the t-test

and rank sum test; p < 0.001). It can also be seen from the table that the best of the

IIIA sets are all above the data sets of Vardy, however this is only significant for the

robotics laboratory. Finally, although the rooms could be assumed to be quite similar

between the IIIA and the Vardy data sets as they both are flat ”office like” with several

desks, chairs and computers, the environments have some significant differences (e.g.

the landmarks present in the robotics laboratory are not present in Vardy’s rooms) so

results comparing the two databases have to be taken with a grain of salt.
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Fig. 13 Where ci are the acquired panoramas, fj the features in the world, and pi(fj) their
projection in the images. The position where points are projected in different panoramas varies
less (and therefore are less informative) if the points are far away. This is a problem for narrow
and long corridors with most texture at the extremes.

4.4 Overall Discussion of Experimental Results

The ALV homing method combined with the proposed local feature detectors gave very

positive results in the experiments with a real robot. The best results were obtained

with the panoramas from the square room, while the results from the corridor were the

worst, as expected. Already in the simulation it was found that the performance of the

homing method is better in square rooms than in rooms with big differences in width

and length, since the projections of the feature points onto a panorama are closer to

each other the further away they are from the robot (see Figure 13).

An attempt to improve the results was done by trying to make the rooms, such as

the corridor, more square by only using the lower half of the panorama, because then

the closer objects are more prominent. This however had no significant improvement

in the corridor, and neither in the square room. Only in the robotics laboratory there

was a significant lower error (p < 0.001).

Looking at the difference in performance using DoG and MSER feature points it

can be concluded that the use of MSER feature points significantly outperforms the

use of DoG feature points. The artificial landmarks in the robotics laboratory were used

to find out how well the method worked in comparison with invariant feature points.

The results with the artificial landmarks were significantly better than using invariant

feature points, but the error was only about 7◦ less than using MSER feature points

(with only the lower half of the panorama).

Normally one should expect the homing method to work worse when the distance

between the current location and the home is lower, but this relation could not be

found. This might be because the room is too small or because objects occlude a big

part of the field. Further work would be needed to find out if there is any relation

between the distance and error.

The images of Vardy (2005) data sets were also used to test the ALV homing

method. Although the different panorama acquisition system, in practice the perfor-

mance of these sets was not much worse than the results of the IIIA ones. From these

images also SIFT and MSER feature points were extracted and used to calculate the

ALV. It was found that using almost the whole image (20◦ above and below the hori-

zon) resulted in the best performance.

The scores (with 1 being best and 0 begin worst) of the IIIA data sets varied from

0.67 to 0.96, whereas the results of Vardy’s data sets varied from 0.30 to 0.85 (see Table
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4 in the Annex). Looking at the best parameters however, such as using the lower half

of the panorama for the IIIA data sets and using a view angle of 20◦ above and below

the horizon of Vardy’s data, the scores of the IIIA data sets vary from 0.73 to 0.96 and

the scores of Vardy’s data sets from 0.67 to 0.85. This shows that the method performs

almost as well in the different rooms and with the different types of panoramas.

Finally some comparison to other work can be made, however in most works other

error measurements are used such as the distance at which it stops from home. In

this work however no such experiments have been done yet. Hafner (2001) also did

experiments in an office environment in a grid. After off-line learning the average error

was smaller than 90◦ in 92% of the cases and smaller than 45◦ in more than 69%. This

is comparable to the results in the robotics laboratory for the DoG feature points, and

our results for using MSER feature points were even better.

The experiments by Franz et al (1998) were done in a 118 cm × 110 cm environment

but the catchment area was relatively smaller than the catchment area of the IIIA data

sets. Their algorithm performed robustly up to an average distance of 15 cm. They also

mention experiments done in an office environment in which the algorithm performed

robustly until about 2 m.

5 Conclusion and Future Work

In this work we propose a method for homing that, contrarily to previous works,

relies only in natural landmarks detected using invariant visual feature detectors in

panoramic images. This method is suitable, for example, for directing the robot from

one of the nodes of a topological map to the next with the minimal cost (i.e. no

matches have to be established between visual feature points of the images). Two

types of invariant feature detectors were tested: the Difference of Gaussians extrema

(DoG) of Lowe (2004) and the Maximally Stable Extremal Regions (MSER) of Matas

et al (2002).

Although there are several methods to do homing, such as the 1D method of Hong

et al (1991), warping (Franz et al 1998; Möller et al 2009) or snapshots (Lambrinos et al

2000), the ALV homing method (Lambrinos et al 1998, 2000) has been used mainly

because of its simplicity and low computational complexity.

In order to evaluate the proposed method, initial experiments using a simulated

environment were conducted and later it was tested in a real world scenario. The real

world experiments were done with panoramas acquired in three different rooms at the

IIIA research center using a conventional camera mounted in a pan-tilt unit, and with

the panorama dataset proposed by Vardy (2005), acquired using an omnidirectional

camera.

The ALV homing was found to be a good working method, however the method

performed worse in rooms with very different width and length. This has been explained

by the way the feature points are projected on the panorama and by the equal distance

assumption (Franz et al 1998).

We found that the results in the IIIA data sets were slightly better than those of

obtained with Vardy’s data sets, but this difference is not significant, and in practice

does not compensate the increased acquisition time of the rotating camera.

Regarding the feature types, in our experiments MSER significantly outperformed

SIFT, and was only 7◦ worse than using the artificial landmarks in the robotics labo-

ratory. This difference seems low enough to justify the applicability of the presented
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homing method, since it does not require setting up the environment by placing arti-

ficial landmarks.

Clearly, the next step is the evaluation of the method in complex navigation ex-

periments combined with a topological localization method like the one proposed by

Ramisa et al (2009). For the homing method to work in real-time the panoramas should

be created faster, so the use of a camera and parabolic mirror is a good option. Further-

more, conducting real navigation experiments will require the robot to have a means

to obtain its global orientation. A digital magnetic compass connected to the robot can

be used for this task; however, Hafner (2001) mentioned that a magnetic compass does

not work very well inside buildings, therefore she used camera information to compen-

sate for that. Extra experiments should be done to verify the stability of the compass

orientation. Other options to recover orientation from the visual sensors include that

of Lambrinos et al (2000), who used a polarized-light compass which worked good, but

needed sunlight from all directions above it and glass windows depolarize the light,

therefore it cannot be used inside buildings. Vardy (2005) proposed to use the coher-

ence of flow fields as an indicator of correct orientation, and finally Zeil et al (2003)

suggested to use the difference between images to align them by using one-dimensional

gradient descent.

Another possible improvement could be using a machine learning method to discard

spurious feature points, for example by tracking feature points in a training sequence

and modeling those with a low repeatability rate. These feature points are a source

of noise for the homing method, and discarding them could improve significantly the

results.
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Busquets D, Sierra C, de Mantaras RL (2003) A multiagent approach to qualitative landmark-
based navigation. Autonomous Robots 15(2):129–154

Carwright BA, Collet TS (1983) Landmark learning in bees: Experiments and models. Journal
of Comparative Physiology 151:521–543

Chaudhari P (2010) Localization using Average Landmark Vector in the presence of clutter.
In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on,
IEEE, pp 1592–1595

Csurka G, Bray C, Dance C, Fan L (2004) Visual categorization with bags of keypoints.
Workshop on Statistical Learning in Computer Vision, ECCV pp 1–22

Edelman S, Intrator N, Poggio T (1997) Complex cells and object recognition, unpublished
manuscript, University of Cornell
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Annex

type detector mean median std.
dev.

score best
home

n

1 square
room

upper
half

MSER 6,83 4,10 5,33 0,9621 138 3

2 square
room

not fil-
tered

MSER 9,65 12,03 7,84 0,9464 138 3

3 square
room

not fil-
tered

DoG 13,78 12,00 11,31 0,9234 138 3

4 robot
lab

not fil-
tered

Land-
marks

14,88 10,16 14,86 0,9173 110 38

5 square
room

lower
half

DoG 14,94 14,52 10,75 0,9170 138 3

6 square
room

lower
half

MSER 20,62 25,27 8,49 0,8855 138 3

7 square
room

upper
half

DoG 20,91 18,96 6,64 0,8838 138 3

8 robot
lab

lower
half

MSER 21,96 11,09 30,05 0,8780 117 38

9 day 20 MSER 26,18 18,73 27,62 0,8545 17 170
10 robot

lab
lower
half

DoG 26,90 13,05 34,74 0,8506 117 38

11 robot
lab

not fil-
tered

MSER 27,84 16,03 35,51 0,8454 117 38

12 screen 20 MSER 28,64 18,42 31,04 0,8409 95 170
13 doorlit 15 MSER 30,69 19,35 33,38 0,8295 15 170
14 arboreal 20 MSER 34,89 23,39 35,49 0,8061 50 170
15 doorlit 20 MSER 35,41 21,27 38,52 0,8033 50 170
16 robot

lab
not fil-
tered

DoG 35,60 22,85 38,67 0,8022 117 38

17 arboreal 15 MSER 37,83 25,31 37,20 0,7898 17 170
18 day 15 MSER 39,78 29,30 36,49 0,7790 17 170
19 hall1 15 MSER 42,61 31,55 38,32 0,7633 159 200
20 original 20 MSER 43,18 32,23 38,49 0,7601 50 170
21 screen 15 MSER 45,71 33,75 40,43 0,7461 0 170
22 hall1 10 MSER 45,81 35,12 39,05 0,7455 41 200
23 twilight 20 MSER 46,21 34,90 39,72 0,7433 50 170
24 doorlit 10 MSER 48,45 33,95 43,90 0,7308 14 170
25 hall lower

half
MSER 48,83 39,02 41,63 0,7287 203 6

26 arboreal 10 MSER 49,97 35,14 44,80 0,7224 153 170
27 robot

lab
upper
half

MSER 50,62 39,33 42,47 0,7188 117 38

28 winlit 20 MSER 52,39 39,58 44,07 0,7089 50 170
29 corridor not fil-

tered
MSER 52,66 35,71 44,89 0,7074 200 6

30 robot
lab

upper
half

DoG 56,14 45,77 43,84 0,6881 117 38

31 corridor not fil-
tered

DoG 56,26 44,58 43,64 0,6874 203 6

32 corridor lower
half

DoG 56,45 49,69 42,39 0,6864 203 6

Continued
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dataset type detector mean median std.
dev.

score best
home

n

33 corridor upper
half

DoG 57,08 38,19 45,65 0,6829 203 6

34 twilight 15 MSER 57,63 44,59 46,70 0,6798 153 170
35 hall1 20 MSER 58,49 48,71 44,53 0,6751 99 200
36 original 15 MSER 58,53 45,11 47,56 0,6748 17 170
37 chairs 20 MSER 58,92 45,23 47,55 0,6726 84 170
38 corridor upper

half
MSER 59,15 42,56 46,02 0,6714 199 6

39 hall2 20 MSER 59,51 49,20 43,09 0,6694 18 200
40 hall2 15 MSER 61,00 50,90 45,30 0,6611 18 200
41 day 10 MSER 62,50 51,30 47,17 0,6528 17 170
42 hall1 5 MSER 62,69 53,82 44,78 0,6517 39 200
43 screen 10 MSER 63,43 54,30 45,02 0,6476 153 170
44 screen 5 MSER 66,71 52,61 50,03 0,6294 102 170
45 hall2 5 MSER 68,57 57,22 49,19 0,6190 19 200
46 original 10 MSER 72,09 62,67 50,85 0,5995 14 170
47 winlit 15 MSER 72,39 63,58 50,84 0,5978 50 170
48 day 5 MSER 72,67 62,94 50,31 0,5963 169 170
49 hall2 10 MSER 72,72 62,01 50,68 0,5960 19 200
50 twilight 10 MSER 73,55 65,58 51,23 0,5914 18 170
51 hall1 20 DoG 77,16 71,90 45,43 0,5713 0 200
52 winlit 10 MSER 78,69 72,12 51,96 0,5628 16 170
53 chairs 15 MSER 79,61 72,79 51,91 0,5577 16 170
54 doorlit 5 DoG 80,15 75,59 52,15 0,5547 169 170
55 doorlit 20 DoG 83,07 80,38 49,17 0,5385 151 170
56 doorlit 10 DoG 83,79 81,13 50,27 0,5345 169 170
57 chairs 10 MSER 84,42 82,22 50,74 0,5310 14 170
58 doorlit 15 DoG 84,44 81,34 49,75 0,5309 152 170
59 chairs 20 DoG 86,15 82,29 49,48 0,5214 3 170
60 screen 5 DoG 86,87 85,63 51,82 0,5174 135 170
61 screen 15 DoG 88,42 85,67 51,75 0,5088 135 170
62 screen 10 DoG 88,76 88,36 52,02 0,5069 135 170
63 screen 20 DoG 89,25 86,89 51,88 0,5041 3 170
64 hall1 15 DoG 89,27 85,64 45,78 0,5041 0 200
65 chairs 15 DoG 90,33 87,09 51,16 0,4981 4 170
66 arboreal 20 DoG 90,33 88,88 50,27 0,4981 4 170
67 original 20 DoG 91,36 88,78 49,70 0,4924 3 170
68 twilight 20 DoG 91,66 89,34 49,59 0,4908 5 170
69 day 10 DoG 92,99 94,81 51,31 0,4834 152 170
70 day 15 DoG 93,00 94,20 50,95 0,4833 135 170
71 day 20 DoG 93,05 93,13 50,42 0,4830 135 170
72 day 5 DoG 93,10 94,15 51,72 0,4828 152 170
73 chairs 10 DoG 93,46 92,24 51,88 0,4808 4 170
74 chairs 5 DoG 93,51 92,00 50,99 0,4805 5 170
75 arboreal 15 DoG 95,20 95,05 51,65 0,4711 4 170
76 twilight 15 DoG 96,44 96,35 50,29 0,4642 5 170
77 winlit 5 MSER 97,11 103,58 54,36 0,4605 136 170
78 original 15 DoG 97,93 97,66 49,81 0,4559 4 170
79 winlit 20 DoG 98,86 99,65 44,11 0,4508 0 170
80 arboreal 10 DoG 99,07 101,86 51,64 0,4496 135 170
81 arboreal 5 DoG 100,55 104,77 51,59 0,4414 135 170
82 twilight 10 DoG 101,25 102,97 50,17 0,4375 6 170
83 hall1 10 DoG 101,86 99,59 44,55 0,4341 40 200

Continued
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dataset type detector mean median std.
dev.

score best
home

n

84 original 10 DoG 101,98 105,32 50,19 0,4335 4 170
85 twilight 5 DoG 102,16 105,37 49,95 0,4324 6 170
86 doorlit 5 MSER 102,79 110,41 51,90 0,4290 14 170
87 winlit 5 DoG 103,01 109,13 46,78 0,4277 134 170
88 original 5 DoG 103,19 108,47 50,36 0,4267 50 170
89 winlit 15 DoG 103,28 105,54 45,33 0,4262 34 170
90 winlit 10 DoG 104,93 109,14 46,08 0,4171 135 170
91 hall1 5 DoG 108,85 109,20 46,09 0,3953 80 200
92 arboreal 5 MSER 112,73 122,76 48,51 0,3737 14 170
93 chairs 5 MSER 116,47 126,06 46,16 0,3529 14 170
94 hall2 5 DoG 116,47 130,14 49,96 0,3529 198 200
95 original 5 MSER 118,50 128,27 44,93 0,3416 153 170
96 hall2 20 DoG 122,09 132,21 44,38 0,3217 20 200
97 twilight 5 MSER 122,21 133,26 44,17 0,3211 136 170
98 hall2 10 DoG 124,42 137,90 45,31 0,3088 199 200
99 hall2 15 DoG 125,99 137,57 43,33 0,3000 61 200

Table 4 This table shows the results of all real world experiments (IIIA in white and Vardy
in light gray) sorted by score. For the IIIA data set, the type column shows which part of the
panorama has been used: all feature points (not filtered), only the feature points at the lower
half of the panorama or only at the upper half (see Section 4.2.4). For Vardy data set, the type
column shows the number of degrees above and below the horizon of the image which were
used. The detector column shows which feature detector has been used to perform homing:
DoG, MSER or artificial landmarks which were only available in the robot laboratory. The
next three columns: mean, median and std. dev. (standard deviation) show information about
the direction error of the home vector in degrees. The calculation of the score is shown in Eqn.
7; 1 being best and 0 being worst. The best home column shows the ID of the location of the
home where to the mean error is smallest. Finally the n column shows the number of samples,
i.e. different panoramas, for the data set.


