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ABSTRACT
The workspace of a Stewart platform is a complex six-

dimensional volume embedded in the Cartesian space defined by
six pose parameters. Because of its large dimension and com-
plex shape, such workspace is difficult to compute and represent,
so that comprehension on its structure is being gained by study-
ing its three-dimensional slices. While successful methods have
been given to determine the constant-orientation slice, the com-
putation and appropriate visualization of the constant-position
slice (also known as the orientation workspace) has proved to
be a challenging task. This paper presents a unified method for
computing both of such slices, and any other ones defined by
fixing three pose parameters, on general Stewart platforms in-
volving mechanical limits on the active and passive joints.Ad-
ditional advantages over previous methods include the ability to
determine all connected components of the workspace, and any
motion barriers present in its interior.

INTRODUCTION
Due to their advantages in terms of dynamic properties,

load-carrying capacity, high accuracy, and stiffness, Stewart plat-
forms are widely used as flight simulators, high-precision posi-
tioning devices, mining machines, or surgical robots [1–7]. The
assembly constraints imposed by their kinematic design, how-
ever, substantially reduce the set of poses that such platforms
can attain, leading to highly-constrained workspaces in most of
the cases. The availability of proper tools to accurately compute
and represent such workspaces is thus of utmost importance,not
only to assist the robot designer during the conception of the plat-
form, but also to be able to implement trajectory planners more
efficiently [8], once an adequate design has been chosen for a
particular application.

The workspace of the Stewart platform is hard to compute
and visualize. Its large dimension and complex shape, which
may encompass several connected components, difficult any at-
tempt of computing it exhaustively, due to the curse of dimen-
sionality. In many situations, fortunately, the platform either
operates with a fixed orientation or rotates about a fixed point,
so that it can be assumed that three of the six pose parame-
ters are held constant, leading to three-dimensional workspaces
that are easier to obtain and represent. The constant-orientation
workspace, in particular, is clearly understood, and fast geo-
metric algorithms exist for computing its boundary [9], even
in the presence of joint limits in the passive joints, or poten-
tial link-link interferences [10]. Interval analysis methods have
been given too, to compute the interior of such workspace [11].
The constant-position workspace, also known as the orientation
workspace, has also been studied, but its computation and visu-
alization turn out to be more problematic, due to the complexity
of the intervening equations, and to the difficulty of representing
orientations in an intuitive way. Previous methods either assume
one of the orientation angles held fixed [12, 13], thus produc-
ing two-dimensional sections of the workspace only, or let the
three angles vary [14, 15], but all methods rely on some sort of
discretization, which leads to incomplete or less accurateoutput
in some situations. Recently, a fast method providing appealing
visualizations of the orientation workspace has been given[16],
but mechanical limits in the passive joints are neglected, so that
the computed workspace is, actually, an overestimation of the
real workspace. Some of the methods, finally, are only devised
to compute the connected component of the workspace that is
achievable from a pre-defined configuration [16–18], which lim-
its the ability to characterize the movement of the platformunder
alternative assembly modes.

Despite the literature on the topic is rich, three importantre-
quirements are not fully met by previous approaches. First of all,
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a method should ideally becomplete, i.e., it should be able to ob-
tainall connected components of the workspace, rather than just
one achievable from a given configuration. Such ability is useful
to the robot designer, to choose the appropriate component on
which to assemble the manipulator, according to the operational
volume desired, or to motion restrictions imposed by the applica-
tion environment. Moreover, the method should beaccurate, not
only providing a precise representation of the workspace volume,
but also of any motion barriers interior to the volume. Such bar-
riers constitute true obstacles within the workspace, and may be
encountered on Stewart platforms of special geometry, as shown
in the paper. Finally, the method should be asgeneralas possi-
ble, allowing to determine the constant-orientation and constant-
position workspaces, and any other of the twenty workspacesthat
can be defined by fixing three of the six pose parameters of the
platform, in order to understand the motion capability of the plat-
form under any of the corresponding working modes.

The continuation approach in [17] and references therein is
perhaps the closest to satisfy the previous requirements simul-
taneously. This approach uses ray-shooting techniques in con-
junction with continuation methods to track the configurations in
which the moving platform loses some of its instantaneous de-
grees of freedom, which yield the boundary of the workspace
and its interior barriers when properly analyzed. While general
and accurate in favorable situations, however, this approach loses
boundary segments in several situations, as noted by the authors
themselves in [19], and therefore it is not complete.

A unified method satisfying all previous requirements is
given in this paper, valid for Stewart platforms of arbitrary ge-
ometry, involving mechanical limits both on the active and pas-
sive joints. The method entails formulating a system of equa-
tions defining the boundary of the workspace (Section “Formu-
lation”), and then using an iterative procedure based on linear
relaxations to isolate slices of such boundary exhaustively at the
required resolution (Section “Boundary Isolation”). It isworth
noting that while no consensus has been reached as to how should
platform orientations be parameterized in order to yield intu-
itive workspace representations, the method we propose does not
adopt any particular choice on this respect, and can obtain the
orientation workspace under any possible parameterization, in-
cluding those based on conventional Euler angles [16], tilt-and-
torsion angles [14,20], or Euler-Rodrigues parameters [15]. The
approach has been implemented and validated succesfully on
several test cases (Section “Illustrative Examples”) and points re-
quiring further attention have also been identified (Section “Con-
clusion”).

FORMULATION
A Stewart platform consists of a body (the platform) which

is linked to the ground (the base) by means of six legs, where
each leg is a universal-prismatic-spherical chain. The most gen-
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FIGURE 1. A Stewart platform.

eral version of such platform follows the so-called 6-6 UPS de-
sign, where the leg anchor points are all different (Fig. 1),though
not necessarily coplanar [21]. The six prismatic joints areactive,
i.e. actuated, allowing to control the six degrees of freedom of
the platform, and the remaining joints are passive.

Let OXYZ and PX′Y′Z′ be fixed and moving reference
frames attached to the base and the platform, respectively
(Fig. 1). Any pose of the platform can be uniquely represented by
a 3×3 rotation matrixRRR that provides the orientation ofPX′Y′Z′

relative toOXYZ, and the position vectorppp = [x,y,z]T of point
P in the absolute frame. Not all values forRRR andppp are allowed,
however, because the mechanical limits present in the active and
passive joints constrain the possible poses of the platform. We
next define the equations modelling these constraints, so asto
obtain a system of equations describing the workspaceW of the
manipulator. This system is then extended with an additional
constraint, in order to select only the points that lie on thebound-
ary ofW .

Workspace Equations
Let aaai andbbbi denote the position vectors of the anchor points

Ai andBi of theith leg, expressed in the fixed and moving frames,
respectively. The leg lengths can then be written as

l2
i = |qqqi |2, (1)

for i = 1, . . . ,6, whereqqqi = ppp+RRRbbbi −aaai is a vector aligned with
the ith leg expressed in the fixed frame.
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Although the entries ofRRR are assumed to be variables here,
note that they are not independent, as they must define an orthog-
onal matrix of positive determinant. Such a constraint can be de-
fined in a variety of ways, e.g. by establishing appropriate dot-
and cross-product equations on the columns ofRRR, but more intu-
itive representations of the orientation are obtained whenthree-
parameter expressions forRRRare introduced. For ease of compar-
ison with [16], we will here adopt the parametrization provided
by roll (φ ), pitch (θ ) and yaw (ψ) angles, for which

RRR= RRRZ(ψ)RRRY(θ)RRRX(φ),

or, in columnwise form,





r1,x

r1,y

r1,z



=





cosθ cosψ
cosθ sinψ
−sinθ



 , (2)





r2,x

r2,y

r2,z



=





sinφ sinθ cosψ −cosφ sinψ
sinφ sinθ sinψ +cosφ cosψ

sinφ cosθ



 , (3)





r3,x

r3,y

r3,z



=





cosφ sinθ cosψ +sinφ sinψ
cosφ sinθ sinψ −sinφ cosψ

cosφ cosθ



 , (4)

but the presented method is applicable to other parametrizations
as well, including those based on tilt-and-torsion angles or Euler-
Rodrigues paramaters.

To see the constraints introduced by the mechanical limits
on all joints, note first that the prismatic joints have a range of
actuation that force the lengthsl i to take values within some in-
tervals[lmin

i , lmax
i ]. These constraints can be modelled as equal-

ities by definingmi = (lmax
i + lmin

i )/2 andhi = (lmax
i − lmin

i )/2,
and imposing

(l i −mi)
2+d2

i = h2
i , (5)

for i = 1, . . . ,6, where thedi are newly-defined auxiliary vari-
ables. The passive joints on the base and on the platform also
have mechanical limits constraining the allowable positions of
each leg. To describe these constraints, letjjjAi

be a unit vector
given in the base frame, aligned with the axis of symmetry of the
joint at Ai . The constraint imposed by a base joint can then be
expressed as

jjjAi
qqqi ≥ l i cosαi ,

which simply restricts the maximum allowed misalignment be-
tween the axis of the joint and the leg to be of angleαi . These

inequalities can be transformed into equalities by introducing a
new variableti and writing

jjjAi
qqqi − l i cosαi = t2

i (6)

for i = 1, . . . ,6. Note thatjjjAi
qqqi ≥ l i cosαi is satisfied if, and only

if, Eq. (6) is satisfied for some value ofti . Similarly, for each
passive joint on the platform we define a new variablegi and
impose

jjjBi
(RRRTqqqi)− l i cosβi = g2

i , (7)

where jjjBi
is a unit vector along the axis of symmetry of the joint

at Bi , expressed in the moving frame, andβi is the maximum
allowed misalignment in this joint.

In conclusion, the workspaceW of the platform is the set of
all possible tuples

(x,y,z,φ ,θ ,ψ)

that satisfy Eqs. (1)-(7) for some value of

(l1, . . . , l6, r1,x, . . . , r3,z,d1, . . . ,d6, t1, . . . , t6,g1, . . . ,g6).

Since Eqs. (1)-(7) form a system of 33 equations in 39 variables,
W will be a six-dimensional set in general, which is in agreement
with the fact that the Stewart platform has six degrees of freedom.

Boundary Equations
While we could try to findW by solving Eqs. (1)-(7) di-

rectly, it is preferable to compute the boundary ofW instead, be-
cause such boundary is a set of lower dimension. A point lies on
the boundary ofW whenever any of the active or passive joints
reaches a mechanical limit.

In order to select only the points on the boundary, note that
theith leg reaches its maximal or minimal length, or a limit angle
on its passive joints, wheneverdi , ti , orgi vanish. Thus, a solution
to Eqs. (1)-(7) corresponds to a boundary point if, and only if,

6

∏
i=1

ditigi = 0. (8)

In sum, the boundary ofW is formed by the points
(x,y,z,φ ,θ ,ψ) that satisfy Eqs. (1)-(8) for some value of the
remaining variables. Such points will form a five-dimensional
set in general because just one equation, and no extra variable,
have been added to Eqs. (1)-(7). Despite the boundary ofW
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has one dimension less thanW , it is still hard to compute it ex-
haustively using the current hardware technology. However, by
setting three pose variables to a constant value, one can obtain
two-dimensional slices of the boundary, which are much easier to
compute and yet provide useful representations. Typically, these
slices are those of the constant-orientation or constant-position
workspaces, but any other slice of interest, obtained by fixing
any three of the six pose parameters, should also be available
to the designer. The system characterizing such slices, thus, is
formed by Eqs. (1)-(8) with the corresponding three pose vari-
ables held constant. The case of a planar workspace, where the
platform moves on a plane and is only free to rotate about an an-
gle, as well as the constant-orientation and the constant-position
workspaces will be given later as examples of such slices.

BOUNDARY ISOLATION
A numerical method able to solve the system of equations

just described is next provided, based on the linear relaxation
paradigm proposed in [22]. The approach entails algebraizing
the equations into a canonical form, then computing an ini-
tial box that contains all solutions, and finally using a branch-
and-prune method exploiting such canonical form to isolateall
boundary points at the desired resolution.

Equation algebraization
In order to algebraize the system of equations, two different

changes of variables need to be introduced. First, all trigono-
metric terms of Eqs. (2)-(4) are eliminated by introducing the
changes of variables

cτ = cosτ ,
sτ = sinτ ,

for τ ∈ {φ ,θ ,ψ}. Since the new variablescτ andsτ represent the
cosine and sine ofτ, they must satisfy the circle equations

c2
τ +s2

τ = 1, (9)

which thus need to be introduced into the system for
τ ∈ {φ ,θ ,ψ}.

After applying such changes, note that the system formed by
Eqs. (1)-(9) is already polynomial. Letyyy be a vector containing
all of the variables of this system, and letyi andy j refer to any
two of such variables. A second change of variables

pk = y2
i , (10)

bk = yiy j , (11)

is introduced for allyiy j and y2
i monomials intervening in the

equations, in order to allow transforming the system into the ex-
panded form

ΛΛΛ(xxx) = 0
ΩΩΩ(xxx) = 0

}

, (12)

wherexxx is annx-dimensional vector including the originalyyy vari-
ables and the newly-introducedpk andbk ones,ΛΛΛ(xxx) = 0 is a col-
lection of linear equations inxxx, andΩΩΩ(xxx) = 0 is a collection of
quadratic equations, each of which adopts one of the two forms

xk = x2
i ,

xk = xix j ,

which correspond to the variable changes of Eqs. (10) and (11),
respectively. Note that in some cases, as in Eq. (8), the change
relative to Eq. (11) needs to be applied recursively in orderto
arrive at the form assumed in Eq. (12).

Initial Bounding Box
It can be seen that each variablexi of xxx can only take values

within a prescribed interval, so that from the Cartesian product of
all such intervals one can define the initialnx-dimensional boxB
that bounds all solutions of Eq. (12). Some intervals can be auto-
matically computed from the intervals of other variables; namely,
those of the variablespk or bk that appear due to the change of
Eqs. (10) and (11). Thus, only the intervals of the variablesin yyy
need to be determined.

The lenghts of the legs are bound within maximal and mini-
mal values, so that

l i ∈ [lmin
i , lmax

i ],

for i = 1, . . . ,6. Since the columns ofRRRare orthonormal vectors,
its entries must satisfy

r j,x, r j,y, r j,z ∈ [−1,1],

for j = 1,2,3. Similarly, forτ ∈ {φ ,θ ,ψ}, it must be

cτ ,sτ ∈ [−1,1],

since these variables refer to the cosine and sine ofτ.
For the variablesdi we note that Eq. (5) simply constrains

such variables to take values in[−hi ,hi ]. Similarly, Eqs. (6)
and (7) constrain the left-hand side of the equation and theti
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andgi variables to take values on a parabola of vertical axis with
its minimum point at the origin. Note that, in any case, the maxi-
mum value that the left-hand side of these equations can achieve
is lmax

i − lmax
i cosαi or lmax

i − lmax
i cosβi , respectively. In sum, we

obtain the following bounds fori = 1, . . . ,6:

di ∈ [−hi ,hi ],

ti ∈
[

−
√

lmax
i − lmax

i cosαi ,
√

lmax
i − lmax

i cosαi

]

,

gi ∈
[

−
√

lmax
i − lmax

i cosβi ,
√

lmax
i − lmax

i cosβi

]

.

Finally, it only remains to find the ranges for thex, y, and
z components ofppp. While tight bounds could be computed to
accurately confine these variables, this is not necessary under the
presented approach. The method is not significantly sensitive to
the volume of the initial box because parts with no solution are
rapidly discarded by the numerical procedure. Thus, we can use
any easy-to-compute upper bound to establish the ranges of these
position variables. Here, we shall use the fact that, for anyvalid
configuration of the platform, pointP will always lie inside a
sphere of radiuslmax

i + |bbbi | centered atAi , which is valid for any
leg i = 1, . . . ,6. By choosing any leg, for instance leg one, we can
take the ranges of the smallest box containing the sphere, that is

x∈ [a1,x− lmax
1 −|b1|,a1,x+ lmax

1 + |b1|] ,
y∈ [a1,y− lmax

1 −|b1|,a1,y+ lmax
1 + |b1|] ,

z∈ [a1,z− lmax
1 −|b1|,a1,z+ lmax

1 + |b1|] .

Numerical Solution
The algorithm for solving Eq. (12) recursively applies two

operations onB: box shrinkingand boxsplitting. Using box
shrinking, portions ofB containing no solution are eliminated
by narrowing some of the box intervals. This process is repeated
until either the box is reduced to an empty set, in which case it
contains no solution, or the box is “sufficiently” small, in which
case it is considered asolutionbox, or the box cannot be “signif-
icantly” reduced, in which case it is bisected into two sub-boxes
via box splitting (which simply bisects its largest interval). To
converge to all solutions, the whole process is recursivelyapplied
to the new sub-boxes, until one obtains a collection of solution
boxes whose side lengths are below a given thresholdσ .

The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutions falling in
some sub-boxBc ⊆ B must lie in the linear variety defined by
ΛΛΛ(xxx) = 0. Thus, we may shrinkBc to the smallest possible box
bounding this variety insideBc. The limits of the shrunk box
along, say, dimensionxi can be found by solving the following

two linear programs:

LP1: Minimizexi ,

subject to:ΛΛΛ(xxx) = 0,xxx∈ Bc,

LP2: Maximizexi ,

subject to:ΛΛΛ(xxx) = 0,xxx∈ Bc.

However, observe thatBc can be further reduced, because the
solutions must also satisfy all equationsxk = x2

i andxk = xix j in
ΩΩΩ(xxx) = 0. These equations can be taken into account by noting
that, if [vi ,ui ] denotes the interval ofBc along dimensionxi , then:

1. The portion of the parabolaxk = x2
i lying insideBc is bound

by the triangleA1A2A3, whereA1 and A2 are the points
where the parabola intercepts the linesxi = vi andxi = ui ,
andA3 is the point where the tangent lines atA1 andA2 meet
(Fig. 2a).

2. The portion of the hyperbolic paraboloidxk = xix j lying
inside Bc is bound by the tetrahedronB1B2B3B4, where
the pointsB1, . . . ,B4 are obtained by lifting the corners of
the rectangle[vi ,ui ]× [v j ,u j ] vertically to the paraboloid
(Fig. 2b).

(a)

(b)
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B1

B2

B3

B4

xk

xk

x j

xi

xi

ui

ui

vi

vi

u j

v j

FIGURE 2. Polytope bounds within boxBc.
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Thus, linear inequalities corresponding to these bounds can be
added toLP1 andLP2, which usually produces a much larger
reduction ofBc, or its complete elimination if one of the linear
programs is found unfeasible.

As it turns out, the previous algorithm explores a binary tree
of boxes whose internal nodes correspond to boxes that have
been split at some time, and whose leaves are either solutionor
empty boxes. The collectionB of all solution boxes, which is
returned as output upon termination, is said to form abox ap-
proximationof the solution set of Eq. (12), because the boxes
in B form a discrete envelop of such set, whose accuracy can be
adjusted through theσ parameter. Notice that the algorithm is
complete, in the sense that it will succeed in isolating all solution
points of Eq. (12) accurately, provided that a small-enoughvalue
for σ is used. Detailed properties of the algorithm, including an
analysis of its completeness, correctness, and convergence order,
are given in [22].

ILLUSTRATIVE EXAMPLES
We next illustrate the performance of the method by comput-

ing the boundaries of several workspaces of the Stewart platform.
To emphasize the generality of the method, we first obtain the
boundaries corresponding to the constant-orientation, constant-
position and planar workspaces of a standard platform. We then
analyze a special platform to show that the method performs well
on situations that hinder the application of previous methods.
The method is able to completely determine the boundaries of
the workspace in all situations.

The geometric parameters of the analyzed platforms are in-
dicated in Table 1, and the ranges forl i are assumed to be
[1.2,1.8] for all legs. All results reported have been obtained
by using a parallelized version of the method, implemented in
C using the libraries of the CUIK platform [22], and executed
on a grid computer with four PC units equipped with two Intel
Quadcore Xeon E5310 processors and 4 Gb of RAM each one.
Table 2 provides, for each experiment, the amount of CPU time
required to solve it (ts) and the number of solution boxes returned
(ns) usingσ = 0.1.

A Standard Platform
The standard platform analyzed here corresponds to the one

studied in [16], where the authors compute the constant-position
workspace obtained by fixingppp to a constant value, but neglect-
ing the mechanical limits on the passive joints. To see that
such limits really reduce the workspace, we have computed such
workspace twice, first neglecting the limits on the passive joints,
and then taking them into account. Fig. 3 shows the obtained

results for the roll-pitch-yaw angles, assumingppp= [0, 2
3

4
√

3, 5
4]

T

.
As it can be seen, the workspace contains three different con-
nected components, while in [16] the authors are only able to

TABLE 1 . Stewart platform parameters.

i 1 2 3 4 5 6

S
ta

nd
ar

d

ai,x 0 0 0.7598 0.7598 −0.7598 −0.7598

ai,y 0 0 1.3161 1.3161 1.3161 1.3161

ai,z 0 0 0 0 0 0

bi,x −0.4559 0.4559 0.4599 0 0 −0.4559

bi,y −0.2632 −0.2632 −0.2632 0.5264 0.5264 −0.2632

bi,z 0 0 0 0 0 0

S
pe

ci
al

ai,x 0.8165 −0.4082 −0.4082 0.8165 −0.4082 −0.4082

ai,y 0 0.7071 −0.7071 0 0.7071 −0.7071

ai,z 0 0 0 0 0 0

bi,x 0 0 0 0.8165 −0.4082 −0.4082

bi,y 0 0 0 0 0.7071 −0.7071

bi,z 0 0 0 0.5774 0.5774 0.5774

φ
θ

ψ

π
2

− 3π
2

π
2

− π
2

3π
2

− π
2

FIGURE 3. Boundaries of the constant-position workspace.

describe the one accessible from the origin (the lower-right com-
ponent in Fig. 3). Detecting all connected components is neces-
sary though, to let the designer choose the most appropiate as-
sembly mode for the platform, depending on the specific task
to be performed. Now, by taking into account the limit angles
αi = βi = 50◦ on all passive joints, some of the components are
no longer accessible and the workspace reduces to just one con-
nected component that corresponds to the one around the origin
in Fig. 3. As expected, the enclosed volume is much smaller, as
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FIGURE 4. Only the lower-right component in Fig. 3 is partially achievable after takingpassive joint limits into account.

noted in Fig. 4, where such component (right) is compared to the
original one (left).

Instead of fixingppp, we can fix the orientation of the plat-
form, and hence obtain the constant-orientation workspace. Set-
ting φ = θ = ψ = 0, which is equivalent to lettingRRR= III , we
obtain the workspace shown in Fig. 5. The figure compares the
resulting workspaces taking into account only active constraints
(left) or active and passive constraints withαi = βi = 47.16◦

(right). As before, the enclosed volume is smaller in the second
case, meaning that the attainable positions of the platformare re-
duced because some of the passive joints achieve their mechani-
cal limit. In fact, in both cases, the workspace has an additional
connected component symmetric to the one shown, which corre-
sponds to the assembly mode of the platform where P sweeps a
similar volume forz< 0.

In general, previous methods in the literature only com-
pute the constant-position or the constant-orientation slices of the
complete six-dimensional workspace, i.e., those shown so far in
Figs. 3-5. But the method herein described can also be used to
derive any other slice. As an example, Fig. 6 presents the slices
obtained when fixingz= 5

4 andφ = θ = 0, before and after the
introduction of the passive joint limits withαi = βi = 41.41◦.
Note that in this case the platform is equivalent to a planar po-
sitioning device, whereP moves on thez= 5

4 plane, and only

rotation about theZ′ axis is allowed. As shown in Fig. 6, when
passive joint constraints are considered, both the attainable posi-
tions of the platform and its orientational capability get substan-
tially reduced.

A Special Platform
We next show results on computing the constant-position

workspace of a special platform that yields interior barriers in
such workspace. Its geometric parameters are shown in Table1
and correspond to a design where three of the legs are anchored
at a same pointP on the platform, with the base joints coincin-
dent in pairs. This design may seem difficult to construct, but if P
is the point we keep fixed when computing the constant-position
workspace, then the platform is equivalent to the 3-UPS/S design
shown in Fig. 7, which allows orientational capability only, and
is in fact equivalent to theAgile Eyedesign [20].

While in general platforms the constant-position workspace
has a two-dimensional boundary, such boundary degeneratesinto
one-dimensional sets in this case, as shown in Fig. 8, and these
sets are impossible to obtain by previous numerical methods.
The method in [17], for example, would proceed by first in-
tersecting the boundaries through planes, and then computing
the portion of the boundaries on such planes using ray-shooting
techniques combined with continuation. However, note thatthe
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FIGURE 5. Boundaries of the constant-orientation workspace forz> 0.

planes would only contain isolated points in this case, which
would be hit by ray-shooting with probability zero, as explained
in [23]. Similarly, the method in [16] would perform a discretiza-
tion on angleθ and then on angleφ in order to find the boundary
points corresponding to such angles. Nevertheless, the portion
of a slice lying on a constant-θ plane is again formed by iso-
lated points, and a discretization on angleφ would almost never
encounter such points. Slices of the boundary curves in Fig.8,
in fact, can only be obtained by analytical methods specific for
such platforms [20], since other methods based on discretization
exhibit similar drawbacks [13–15]. The presented technique, on
the contrary, is robust to such situations. If the same equations
considered for the standard platform are now used for determin-
ing the constant-position workspace of the special platform, we
obtain the results shown in Fig. 8. This workspace occupies the
whole range of the roll-pitch-yaw angles in this case, but the
curves represent true motion impediments to be avoided when
planning trajectories for the platform.

CONCLUSIONS
This paper has introduced a new approach for computing

three-dimensional slices of the workspace on Stewart platforms
of arbitrary geometry. A distinguishing feature of the approach
is that it unifies, under a single method, the obtention of anypos-
sible slice of the workspace, while previous approaches mostly
concentrate on particular slices, like the constant-position or the
constant-orientation slice. In fact, a total of twenty slices can

TABLE 2 . Performance data atσ = 0.1.
Platform Workspace Joint limits ns ts (sec)

Standard

Const. position
Active 6526 66

Active and passive 3196 69

Const. orientation
Active 1306 4

Active and passive 1621 21

Planar mode
Active 1849 6

Active and passive 1391 14

Special Const. position Active 8448 252

be obtained by fixing three pose parameters, and computing any
of them might be necessary depending on the specific task to
be performed with the platform. Additional advantages of the
method have been discussed and illustrated with examples, like
the ability to compute all connected components of a slice, to de-
tect motion barriers present in its interior, and the possibility to
take passive joint limits into account.

Clearly, the primary application of the method is in the con-
text of robot design, as it allows studying the motion capability
of a particular platform relatively fast, before its actualconstruc-
tion. However, the method might also be helpful in the con-
text of collision-free trajectory planning, where a main issue is
how to sample the workspace efficiently and with good cover-
age, in order to compute proper roadmaps of the workspace in
short times [8]. While fast in favorable situations, currentplan-
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FIGURE 7. A 3-UPS/S platform.

ners draw samples from conservative estimates of the workspace,
which makes them less efficient and possibly incomplete on
highly-constrained situations. The performance of such planners
would notably increase in such cases, however, if samples were
drawn from accurate representations like those provided bythe
proposed method.

Finally, it is worth noting that the method shows potential of
being able to cope with additional constraints, like leg-leg colli-

φ
θ

ψ

π
−π

π
2− π

2

π

−π

FIGURE 8. Degenerate boundaries of the constant-position
workspace of the special platform.

sions or singularity-avoidance constraints. These constraints can
in principle be formulated in the form assumed by the proposed
approach, but further work needs to be done in order to achieve
a mild formulation, leading to an acceptable computationalbur-
den.
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