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ABSTRACT
The workspace of a Stewart platform is a complex six-

The workspace of the Stewart platform is hard to compute
and visualize. Its large dimension and complex shape, whicl

dimensional volume embedded in the Cartesian space defjned b may encompass several connected components, difficulttany
six pose parameters. Because of its large dimension and com-tempt of computing it exhaustively, due to the curse of dimen

plex shape, such workspace is difficult to compute and reptes
so that comprehension on its structure is being gained byystu
ing its three-dimensional slices. While successful mettade
been given to determine the constant-orientation slice cttm-
putation and appropriate visualization of the constansigion
slice (also known as the orientation workspace) has proeed t
be a challenging task. This paper presents a unified method fo

sionality. In many situations, fortunately, the platfornther
operates with a fixed orientation or rotates about a fixedtpoin
so that it can be assumed that three of the six pose param
ters are held constant, leading to three-dimensional vpaites
that are easier to obtain and represent. The constanttatitm
workspace, in particular, is clearly understood, and fasi-g
metric algorithms exist for computing its boundary [9], Bve

computing both of such slices, and any other ones defined byin the presence of joint limits in the passive joints, or pete

fixing three pose parameters, on general Stewart platforms i
volving mechanical limits on the active and passive joitd-
ditional advantages over previous methods include thetghbd
determine all connected components of the workspace, and an
motion barriers present in its interior.

INTRODUCTION
Due to their advantages in terms of dynamic properties,

load-carrying capacity, high accuracy, and stiffnessy8teplat-
forms are widely used as flight simulators, high-precisiosip
tioning devices, mining machines, or surgical robots [19He
assembly constraints imposed by their kinematic desigm- ho
ever, substantially reduce the set of poses that such ptafo
can attain, leading to highly-constrained workspaces istrob
the cases. The availability of proper tools to accurateinpote
and represent such workspaces is thus of utmost importaate,
only to assist the robot designer during the conceptioneoptat-
form, but also to be able to implement trajectory plannersemo

efficiently [8], once an adequate design has been chosen for a

particular application.

tial link-link interferences [10]. Interval analysis metfs have
been given too, to compute the interior of such workspacg [11
The constant-position workspace, also known as the otienta
workspace, has also been studied, but its computation o vi
alization turn out to be more problematic, due to the coniplex
of the intervening equations, and to the difficulty of reming
orientations in an intuitive way. Previous methods eitrssuane
one of the orientation angles held fixed [12, 13], thus preduc
ing two-dimensional sections of the workspace only, or et t
three angles vary [14, 15], but all methods rely on some dort o
discretization, which leads to incomplete or less accuratput

in some situations. Recently, a fast method providing apmmea
visualizations of the orientation workspace has been dit6h

but mechanical limits in the passive joints are neglectedhat
the computed workspace is, actually, an overestimatiorhef t
real workspace. Some of the methods, finally, are only ddvise
to compute the connected component of the workspace that
achievable from a pre-defined configuration [16—18], whict |

its the ability to characterize the movement of the platformder
alternative assembly modes.

Despite the literature on the topic is rich, three important
quirements are not fully met by previous approaches. Firall,0



a method should ideally mompletei.e., it should be able to ob-
tainall connected components of the workspace, rather than just
one achievable from a given configuration. Such ability sfuls

to the robot designer, to choose the appropriate component o
which to assemble the manipulator, according to the operati
volume desired, or to motion restrictions imposed by thdieap

tion environment. Moreover, the method shouldoeurate not

only providing a precise representation of the workspabeme,

but also of any motion barriers interior to the volume. Suah b
riers constitute true obstacles within the workspace, aay bbe
encountered on Stewart platforms of special geometry, @srsh

in the paper. Finally, the method should begeseralas possi-

ble, allowing to determine the constant-orientation anustant-
position workspaces, and any other of the twenty workspihieds
can be defined by fixing three of the six pose parameters of the
platform, in order to understand the motion capability &f phat-
form under any of the corresponding working modes.

The continuation approach in [17] and references therein is
perhaps the closest to satisfy the previous requirememtsl-si
taneously. This approach uses ray-shooting techniquesrin c
junction with continuation methods to track the configurasiin
which the moving platform loses some of its instantaneous de
grees of freedom, which yield the boundary of the workspace
and its interior barriers when properly analyzed. While gahe
and accurate in favorable situations, however, this amprizses
boundary segments in several situations, as noted by theraut
themselves in [19], and therefore it is not complete.

A unified method satisfying all previous requirements is
given in this paper, valid for Stewart platforms of arbiyraye-
ometry, involving mechanical limits both on the active arsdp
sive joints. The method entails formulating a system of equa
tions defining the boundary of the workspace (Section “Fermu
lation”), and then using an iterative procedure based ozalin
relaxations to isolate slices of such boundary exhaugtethe
required resolution (Section “Boundary Isolation”). Itvigrth
noting that while no consensus has been reached as to holdshou
platform orientations be parameterized in order to yield-in
itive workspace representations, the method we proposerdie
adopt any particular choice on this respect, and can obi&n t
orientation workspace under any possible parameterizaiio
cluding those based on conventional Euler angles [16]atit-
torsion angles [14, 20], or Euler-Rodrigues parameterg [ae

FIGURE 1. A Stewart platform.

eral version of such platform follows the so-called 6-6 URS d
sign, where the leg anchor points are all different (Figtligugh
not necessarily coplanar [21]. The six prismatic jointsartve,
i.e. actuated, allowing to control the six degrees of freedd
the platform, and the remaining joints are passive.

Let OXYZ and PX'Y’Z" be fixed and moving reference
frames attached to the base and the platform, respectivel
(Fig. 1). Any pose of the platform can be uniquely represghte
a 3x 3 rotation matrixR that provides the orientation 8X'Y’Z’
relative toOXY Z and the position vectop = [x,y,Z" of point
P in the absolute frame. Not all values fBrand p are allowed,
however, because the mechanical limits present in theeaatid
passive joints constrain the possible poses of the platfafva
next define the equations modelling these constraints, $o as
obtain a system of equations describing the workspéoaf the
manipulator. This system is then extended with an additiona
constraint, in order to select only the points that lie onltbend-
ary of 7.

approach has been implemented and validated succesfully onVVorkspace Equations

several test cases (Section “lllustrative Examples”) andtp re-
quiring further attention have also been identified (Sect@on-
clusion”).

FORMULATION

A Stewart platform consists of a body (the platform) which
is linked to the ground (the base) by means of six legs, where
each leg is a universal-prismatic-spherical chain. Thetmes-

Leta; andb; denote the position vectors of the anchor points
A andB; of theith leg, expressed in the fixed and moving frames,
respectively. The leg lengths can then be written as

17 = g2, (1)

fori=1,...,6, whereq, = p+ Rby — & is a vector aligned with
theith leg expressed in the fixed frame.



Although the entries oR are assumed to be variables here, inequalities can be transformed into equalities by intcaly a
note that they are not independent, as they must define asgerth  new variabld; and writing
onal matrix of positive determinant. Such a constraint cadd>
fined in a variety of ways, e.g. by establishing appropriate d
and cross-product equations on the columnR,dfut more intu-
itive representations of the orientation are obtained wheze-
parameter expressions fBrare introduced. For ease of compar- fori=1,...,6. Note thatj, g, > li cosa is satisfied if, and only

in G —licosaj = t? (6)

ison with [16], we will here adopt the parametrization poad if, Eq. (6) is satisfied for some value gf Similarly, for each
by roll (¢), pitch (6) and yaw () angles, for which passive joint on the platform we define a new variajlend
impose

R=R:(¥)Rv(6)Rx(9), . ,
Jg (R'q;) —licosB = gf, (7)
or, in columnwise form,

wherejg, is a unit vector along the axis of symmetry of the joint
at B;, expressed in the moving frame, afidis the maximum

:1”‘ B igigg?:w @ allowed misalignment in this joint.
Wy = ; LK In conclusion, the workspacg” of the platform is the set of
rz —sin@ )
L" 5 L ) all possible tuples
rax singsinB cosy — cospsiny
roy | = | singsin@siny 4 cospcosy | , 3)
_r27z_ i Sin(pcose | (X7ya Z7 (pa97w)
[r3x] [ cospsinBcosy + singsiny | ,
rsy | = | cosgsin@siny —singcosy | , 4) that satisfy Egs. (1)-(7) for some value of
| 3z i cospcoso |
(Ila cee |67r1,X7 ce- 7r3.25d1; oo 7d65t17 [ 7t6>gla (XX ag6>-
but the presented method is applicable to other paramgriza
as wgll, including those based on tilt-and-torsion angtésuter- Since Egs. (1)-(7) form a system of 33 equations in 39 vagimbl
Rodrigues paramaters. # will be a six-dimensional set in general, which is in agreetme

To see the constraints introduced by the mechanical limits with the fact that the Stewart platform has six degrees eifoen.
on all joints, note first that the prismatic joints have a &g
actuation that force the lengthsto take values within some in-
tervals[I™" 1M These constraints can be modelled as equal-
ities by definingmy = (IM&4 1M /2 andhy = (IM&— |miny /2,
and imposing

Boundary Equations

While we could try to find# by solving Eqgs. (1)-(7) di-
rectly, it is preferable to compute the boundary#finstead, be-
cause such boundary is a set of lower dimension. A point lies o
the boundary of#” whenever any of the active or passive joints

(li— m)2 + di2 = hiz’ ®) reaches a mechanical limit.

In order to select only the points on the boundary, note tha
for i = 1,...,6, where thed; are newly-defined auxiliary vari- theith leg reaches its maximal or minimal length, or a limit angle
ables. The passive joints on the base and on the platform also©n its passive joints, whenewdr t;, org; vanish. Thus, a solution
have mechanical limits constraining the allowable posiiof to Egs. (1)-(7) corresponds to a boundary point if, and dily i

each leg. To describe these constraints jjetoe a unit vector

given in the base frame, aligned with the axis of symmetref t 6

joint at A;. The constraint imposed by a base joint can then be .l_lditigi =0. (8)
expressed as =

In sum, the boundary of#" is formed by the points
(X,y,z,0,0, ) that satisfy Eqgs. (1)-(8) for some value of the
remaining variables. Such points will form a five-dimensibn
which simply restricts the maximum allowed misalignment be set in general because just one equation, and no extra kgriab
tween the axis of the joint and the leg to be of angle These have been added to Eqgs. (1)-(7). Despite the boundary of

ja G > licosai,



has one dimension less th#f, it is still hard to compute it ex-
haustively using the current hardware technology. Howewer
setting three pose variables to a constant value, one camobt
two-dimensional slices of the boundary, which are muchezasi
compute and yet provide useful representations. Typicdigse
slices are those of the constant-orientation or constasitipn
workspaces, but any other slice of interest, obtained bydixi
any three of the six pose parameters, should also be awailabl
to the designer. The system characterizing such slices, thu
formed by Egs. (1)-(8) with the corresponding three posé var

is introduced for allyjy; and yi2 monomials intervening in the
equations, in order to allow transforming the system inwéek-
panded form

(12)

wherex is anny-dimensional vector including the originglari-
ables and the newly-introduceg andby ones A(x) =0 is a col-

ables held constant. The case of a planar workspace, where th lection of linear equations ix, andQ(x) = 0 is a collection of

platform moves on a plane and is only free to rotate about an an
gle, as well as the constant-orientation and the constasitipn
workspaces will be given later as examples of such slices.

BOUNDARY ISOLATION

A numerical method able to solve the system of equations
just described is next provided, based on the linear rataxat
paradigm proposed in [22]. The approach entails algelmgizi
the equations into a canonical form, then computing an ini-
tial box that contains all solutions, and finally using a lofan
and-prune method exploiting such canonical form to isoédite
boundary points at the desired resolution.

Equation algebraization

In order to algebraize the system of equations, two differen
changes of variables need to be introduced. First, all tiggo
metric terms of Eqgs. (2)-(4) are eliminated by introducihg t
changes of variables

Cr = COST,
S; = SsinT,

for T € {@, 6, Y}. Since the new variables ands; represent the
cosine and sine af, they must satisfy the circle equations

ctst=1, ©)

which thus need to be introduced into the system for
Te{p.0,y}.

After applying such changes, note that the system formed by

Egs. (1)-(9) is already polynomial. Lgtbe a vector containing
all of the variables of this system, and igtandy; refer to any
two of such variables. A second change of variables

PkZYiZ,

bk = iy,

(10)
(11)

guadratic equations, each of which adopts one of the twoform

2
X=X,

X = XiXj,

which correspond to the variable changes of Egs. (10) and (11
respectively. Note that in some cases, as in Eq. (8), thegehan
relative to Eq. (11) needs to be applied recursively in otder
arrive at the form assumed in Eq. (12).

Initial Bounding Box

It can be seen that each varialgjef x can only take values
within a prescribed interval, so that from the Cartesiardpob of
all such intervals one can define the initigddimensional boxz
that bounds all solutions of Eq. (12). Some intervals caniie-a
matically computed from the intervals of other variablesnely,
those of the variablepy or by that appear due to the change of
Egs. (10) and (11). Thus, only the intervals of the variabies
need to be determined.

The lenghts of the legs are bound within maximal and mini-
mal values, so that

li e 1M, 1,

fori=1,...,6. Since the columns d&® are orthonormal vectors,
its entries must satisfy

Fix. Ty Tjz€[—11],
for j =1,2,3. Similarly, fort € {¢, 6, '}, it must be
CTaST S [_111]7

since these variables refer to the cosine and sire of

For the variablesl; we note that Eq. (5) simply constrains
such variables to take values jrh;,hj]. Similarly, Egs. (6)
and (7) constrain the left-hand side of the equation and;the



andg; variables to take values on a parabola of vertical axis with two linear programs:
its minimum point at the origin. Note that, in any case, theima
mum value that the left-hand side of these equations caeahi
is " — MXcosa; or IM&*— |M&cosf3;, respectively. In sum, we
obtain the following bounds far=1,...,6:

LP1: Minimizex;,

subject to:A(X) = 0,X € A,
LP2: Maximizex;,

subject to:A(X) = 0,x € H.

di € [—hi7hi]7
tie [* VImaX— maXcosq;, /1M — hmaXCOSGi] ; However, observe tha#. can be further reduced, because the
solutions must also satisfy all equatiogs= xi2 andx, = xxj in
gi € {—\/Iimax— |"®cosf;, \/Iimax— Iimaxcosﬁi] . Q(x) = 0. These equations can be taken into account by notin
that, if [vj, uj] denotes the interval a®; along dimensior;, then:
1. The portion of the parabolgq = xi2 lying inside #. is bound
Finally, it only remains to find the ranges for they, and by the triang|eA1A2A3, where A; and A, are the points
z components ofp. While tight bounds could be computed to where the parabola intercepts the lings= v andx = u;,
accurately confine these variables, this is not necessalsr tine andAg is the point where the tangent linesfatandA, meet
presented approach. The method is not significantly seedi (Fig. 2a).
the volume of the initial box because parts with no solutiom a 2. The portion of the hyperbolic paraboloig = xx; lying
rapidly discarded by the numerical procedure. Thus, we ean u inside 4. is bound by the tetrahedroB;B,BsB,, where
any easy-to-compute upper bound to establish the rangees# t the pointsBy, ..., B4 are obtained by lifting the corners of
position variables. Here, we shall use the fact that, foraiigl the rectanglgvi, ui] x [vj,u;] vertically to the paraboloid
configuration of the platform, poir®® will always lie inside a (Fig. 2b).

sphere of radiu§"®+- |b;| centered a#;, which is valid for any
legi=1,...,6. By choosing any leg, for instance leg one, we can

take the ranges of the smallest box containing the spheaeisth @) Xk
Az

xe[aLX—I'l“aX—|b1\,a1,x+linax+|b1|], :

y € [agy — 17"~ |br|, a1y + 1'% [by], I

ze [z — 17— |byf,a1 2+ 17+ [by ] :

Al |

. . A [
Numerical Solution | 8 : %

The algorithm for solving Eq. (12) recursively applies two Vi Ui

operations orZ: box shrinkingand boxsplitting. Using box
shrinking, portions of# containing no solution are eliminated
by narrowing some of the box intervals. This process is riggea
until either the box is reduced to an empty set, in which case i
contains no solution, or the box is “sufficiently” small, irhigh (b)
case it is consideredsmlutionbox, or the box cannot be “signif-
icantly” reduced, in which case it is bisected into two suxés
via box splitting (which simply bisects its largest intejvaTo
converge to all solutions, the whole process is recursiapptied
to the new sub-boxes, until one obtains a collection of smhut
boxes whose side lengths are below a given threstiold
The crucial operation in this scheme is box shrinking, which
is implemented as follows. Note first that the solutiondriglin
some sub-boxs. C % must lie in the linear variety defined by
A(X) = 0. Thus, we may shrinkg to the smallest possible box
bounding this variety insided.. The limits of the shrunk box
along, say, dimensior can be found by solving the following FIGURE 2. Polytope bounds within boséc.




Thus, linear inequalities corresponding to these boundsbea TABLE 1. Stewart platform parameters.

added toLP1 andLP2, which usually produces a much larger i 1 2 3 4 5 6

reduction ofZ%,, or its complete elimination if one of the linear aix 0 0 07598 07598 -0.7598 -0.7598

programs is found unfeaS|b_Ie. _ _ ay 0 0 13161 18161 18161 13161
As it turns out, the previous algorithm explores a binargtre

of boxes whose internal nodes correspond to boxes that haveg Gz 0 0 0 0 0 0

been split at some time, and whose leaves are either solotion & bix —04559 04559 04599 0 0 -0.4559

empty boxes. The collectioB of all solution boxes, which is by -02632 —02632 —0.2632 05264 05264 —0.2632
returned as output upon termination, is said to fortoa ap-

proximationof the solution set of Eq. (12), because the boxes
in B form a discrete envelop of such set, whose accuracy can be ~ %x 08165 —04082 —04082 08165 -0.4082 —0.4082
adjusted through the parameter. Notice that the algorithm is ay 0 07071 -0.7071 0 07071 -0.7071

bi 2 0 0 0 0 0 0

complete, in the sense that it will succeed in isolating@lison g ais 0 0 0 0 0 0
points of Eq. (12) accurately, provided that a small-enotajhe g’:) bi’x 0 0 0 08165 —04082 —0.4082
for o is used. Detailed properties of the algorithm, including an '

analysis of its completeness, correctness, and convesgeder, Biy 0 0 0 0 Q7071 -07071
are given in [22]. bi , 0 0 0 05774 05774 05774

ILLUSTRATIVE EXAMPLES

We next illustrate the performance of the method by comput-
ing the boundaries of several workspaces of the Stewafophat
To emphasize the generality of the method, we first obtain the
boundaries corresponding to the constant-orientationstemt-
position and planar workspaces of a standard platform. \&fe th
analyze a special platform to show that the method perforetls w
on situations that hinder the application of previous mesho
The method is able to completely determine the boundaries of
the workspace in all situations.

The geometric parameters of the analyzed platforms are in-
dicated in Table 1, and the ranges fprare assumed to be
[1.2,1.8] for all legs. All results reported have been obtained
by using a parallelized version of the method, implemented i
C using the libraries of the CUIK platform [22], and executed
on a grid computer with four PC units equipped with two Intel
Quadcore Xeon E5310 processors and 4 Gb of RAM each one.
Table 2 provides, for each experiment, the amount of CPU time 7
required to solve itt§) and the number of solution boxes returned
(ng) usingo =0.1.

A Standard Platform FIGURE 3. Boundaries of the constant-position workspace.

The standard platform analyzed here corresponds to the one

studied in [16], where the authors compute the constaritipos  describe the one accessible from the origin (the lowertign-
workspace obtained by fixing to a constant value, but neglect-  ponent in Fig. 3). Detecting all connected components igsec
ing the mechanical limits on the paSSive jOintS. To see that sary though, to let the designer choose the most apprOFB'ate 3
such limits really reduce the workspace, we have computeld su  sembly mode for the platform, depending on the specific tasl

workspace twice, first neglecting the limits on the passiwet$, (o be performed. Now, by taking into account the limit angles
and then taking them into account. Fig. 3 shows the o?tamed a; = 3 = 50° on all passive joints, some of the components are
results for the roll-pitch-yaw angles, assumime- [O,% /3, %] . no longer accessible and the workspace reduces to just ore cc

As it can be seen, the workspace contains three different con nected component that corresponds to the one around tha orig
nected components, while in [16] the authors are only able to in Fig. 3. As expected, the enclosed volume is much smaber, a

6
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FIGURE 4. Only the lower-right component in Fig. 3 is partially achievable after takimggive joint limits into account.

noted in Fig. 4, where such component (right) is compareddg¢ot rotation about th&’ axis is allowed. As shown in Fig. 6, when
original one (left). passive joint constraints are considered, both the atibnzosi-

Instead of fixingp, we can fix the orientation of the plat-  tions of the platform and its orientational capability gebstan-
form, and hence obtain the constant-orientation worksp@ee tially reduced.
ting @ = 8 = ¢ = 0, which is equivalent to lettindqR =1, we
obtain the workspace shown in Fig. 5. The figure compares the p Special Platform
resulting workspaces taking into account only active q@ists We next show results on computing the constant-positior
(left) or active and passive constraints with = 5 = 47.16” workspace of a special platform that yields interior bagim
(right). As before, the enclosed volume is smaller in theosdc  sych workspace. Its geometric parameters are shown in Table
case, meaning that the attainable positions of the platéoeme- and correspond to a design where three of the legs are anichor
duced because some of the passive joints achieve their mecha gzt 53 same poin® on the platform, with the base joints coincin-
cal limit. In fact, in both cases, the workspace has an aafthti dent in pairs. This design may seem difficult to constructjfi
connected component symmetric to the one shown, whichcorre s the point we keep fixed when computing the constant-awsiti
sponds to the assembly mode of the platform where P sweeps ayorkspace, then the platform is equivalent to the 3-UPS#Ryde
similar volume forz < 0. shown in Fig. 7, which allows orientational capability griyd

In general, previous methods in the literature only com- is in fact equivalent to thAgile Eyedesign [20].
pute the constant-position or the constant-orientaticesiof the While in general platforms the constant-position workspace
complete six-dimensional workspace, i.e., those showiasmf has a two-dimensional boundary, such boundary degenéntdes
Figs. 3-5. But the method herein described can also be used toone-dimensional sets in this case, as shown in Fig. 8, arse the
derive any other slice. As an example, Fig. 6 presents thessli  sets are impossible to obtain by previous numerical method:
obtained when fixing = % and@ = 6 = 0, before and afterthe =~ The method in [17], for example, would proceed by first in-
introduction of the passive joint limits withj = 5 = 41.41°. tersecting the boundaries through planes, and then congputi
Note that in this case the platform is equivalent to a plamar p  the portion of the boundaries on such planes using ray-stgpot
sitioning device, wheré& moves on the = % plane, and only technigues combined with continuation. However, note theat



FIGURE 5. Boundaries of the constant-orientation workspace for0.

planes would only contain isolated points in this case, tvhic
would be hit by ray-shooting with probability zero, as expéal

in [23]. Similarly, the method in [16] would perform a distiza-
tion on angled and then on angle in order to find the boundary
points corresponding to such angles. Nevertheless, th@por
of a slice lying on a constar@-plane is again formed by iso-
lated points, and a discretization on anglevould almost never
encounter such points. Slices of the boundary curves in&ig.
in fact, can only be obtained by analytical methods speaific f
such platforms [20], since other methods based on disataiiz
exhibit similar drawbacks [13—15]. The presented techajqun
the contrary, is robust to such situations. If the same éousmt
considered for the standard platform are now used for déerm
ing the constant-position workspace of the special platfave
obtain the results shown in Fig. 8. This workspace occupies t
whole range of the roll-pitch-yaw angles in this case, bet th
curves represent true motion impediments to be avoided when
planning trajectories for the platform.

CONCLUSIONS
This paper has introduced a new approach for computing

three-dimensional slices of the workspace on Stewartqrtat

of arbitrary geometry. A distinguishing feature of the aygrh

is that it unifies, under a single method, the obtention offzos¢
sible slice of the workspace, while previous approacheglynos
concentrate on particular slices, like the constant-ositr the
constant-orientation slice. In fact, a total of twenty eficcan

TABLE 2. Performance data at=0.1.
Platform Workspace Joint limits Ng ts (sec)
" Active 6526 66
Const. position
Active and passive 3196 69
. . Active 1306 4
Standard Const. orientation
Active and passive 1621 21
Active 1849 6
Planar mode
Active and passive 1391 14
Special Const. position Active 8448 252

be obtained by fixing three pose parameters, and computing ar
of them might be necessary depending on the specific task t
be performed with the platform. Additional advantages & th
method have been discussed and illustrated with examjites, |
the ability to compute all connected components of a slcdet
tect motion barriers present in its interior, and the paksilio
take passive joint limits into account.

Clearly, the primary application of the method is in the con-
text of robot design, as it allows studying the motion calitgbi
of a particular platform relatively fast, before its actaahstruc-
tion. However, the method might also be helpful in the con-
text of collision-free trajectory planning, where a maisus is
how to sample the workspace efficiently and with good cover-
age, in order to compute proper roadmaps of the workspace |
short times [8]. While fast in favorable situations, currplan-



FIGURE 7. A 3-UPS/S platform.

ners draw samples from conservative estimates of the wacksp
which makes them less efficient and possibly incomplete on
highly-constrained situations. The performance of suahipérs
would notably increase in such cases, however, if samples we
drawn from accurate representations like those providethéy
proposed method.

Finally, it is worth noting that the method shows potential o
being able to cope with additional constraints, like leg-delli-

]
y
| \
- fng 0 ;

FIGURE 8. Degenerate boundaries of the constant-position
workspace of the special platform.

sions or singularity-avoidance constraints. These caimé#r can

in principle be formulated in the form assumed by the progose
approach, but further work needs to be done in order to aehiev
a mild formulation, leading to an acceptable computatidmat
den.
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