
A Competitive Strategy for Function Approximation in Q-Learning

Alejandro Agostini and Enric Celaya
Institut de Robòtica i Informàtica Industrial (CSIC-UPC)

Barcelona, Spain
{agostini,celaya}@iri.upc.edu

Abstract

In this work we propose an approach for gen-
eralization in continuous domain Reinforcement
Learning that, instead of using a single function ap-
proximator, tries many different function approx-
imators in parallel, each one defined in a differ-
ent region of the domain. Associated with each
approximator is a relevance function that locally
quantifies the quality of its approximation, so that,
at each input point, the approximator with highest
relevance can be selected. The relevance function
is defined using parametric estimations of the vari-
ance of the q-values and the density of samples in
the input space, which are used to quantify the ac-
curacy and the confidence in the approximation, re-
spectively. These parametric estimations are ob-
tained from a probability density distribution rep-
resented as a Gaussian Mixture Model embedded
in the input-output space of each approximator. In
our experiments, the proposed approach required a
lesser number of experiences for learning and pro-
duced more stable convergence profiles than when
using a single function approximator.

1 Introduction
It is known that generalization in Reinforcement Learning
(RL) is mandatory in applications with large domains [Sut-
ton and Barto, 1998]. Generalization usually involves some
kind of Function Approximation (FA) and this is a very chal-
lenging problem in RL since, during the learning process, the
current estimation of the value function, varies not only as a
consequence of the iterative policy evaluation process, where
the value function is estimated for the current policy, but also
as a consequence of the policy improvement process, which
progressively changes the policy towards the optimal one. On
the other hand, in incremental RL, data arrive sequentially,
following trajectories in the domain dictated by the dynam-
ics of the environment and the current action selection strat-
egy. This causes sampling to be very biased to certain regions,
posing a serious difficulty to the FA method to preserve the
estimation at sparsely sampled, though also relevant, regions.
The non-stationarity problem, and the biased sampling prob-
lem usually appear in different degrees at different regions

of the domain, and at different stages of the learning process
[Boyan and Moore, 1995]. All these problems make the se-
lection of the generalization method a fundamental issue for
successful learning.
One way to address the generalization problems is through

fitted value iteration [Gordon, 1995], which consists in ad-
justing the approximation so that the error is minimized on
a finite number of preselected domain points that represent
the problem sufficiently well. Fitted value iteration takes the
data for the given points and tries to fit the function to them
by iteratively processing the whole set in a batch process, so
that all points get uniformly re-sampled, avoiding the biased
sampling problem. Though, in principle, fitted value iteration
cannot be considered as an incremental RL method, on-line
versions have been proposed like the Neural Fitted Q Itera-
tion (NFQ) [Riedmiller, 2005], in which the set of points is
periodically redefined by collecting new samples along tra-
jectories obtained using the policy arrived at so far. Note, in-
deed, that learning will succeed only if the set of points even-
tually cover all the relevant parts of the domain, what may
be hard to achieve when the dynamics of the problem is not
well known. NFQ uses a neural net for function approxima-
tion. Other techniques that fall into the fitted value iteration
class use Gaussian Processes (GP) for function approxima-
tion [Rottmann and Burgard, 2009; Deisenroth et al., 2009;
Engel et al., 2005]. They have the advantage of being non-
parametric, what makes the class of functions that can be rep-
resented much more flexible. In addition, besides providing
the expected value of the function, GP also provide its vari-
ance, what allows to quantify the uncertainty of the predicted
value. As pointed out in [Engel et al., 2005], this informa-
tion may be very useful to direct the exploration in RL. Sim-
ilarly, [Agostini and Celaya, 2010] use a Gaussian Mixture
Model (GMM) to represent the sample density in the joint
input-output space of the function, from which the expected
values and their variances can be also obtained. This algo-
rithm, which is not of the fitted value iteration class, uses an
on-line Expectation-Maximization algorithm that makes the
approach incremental, and tries to solve the biased sampling
and the local non-stationarity problems by making the effect
of each update sufficiently local.
A more drastic way of keeping the updating local, is that

of variable resolution techniques [Moore, 1991], in which the
domain is partitioned into regions that are updated indepen-

dently of each other, and may be further subdivided when
their resolution proves to be insufficient. Main drawbacks of
this approach are the sometimes unnecessary proliferation of
small regions, and the lack of generalization between nearby
regions once they have been partitioned.
In this work, we propose the use of many competing func-

tion approximators in parallel, each one with a restricted do-
main, but in which, unlike variable resolution, their domains
may overlap in different ways, so that each point is covered
by multiple approximators. Trying different approximators in
parallel increases the chances of having a good approxima-
tor among the competing ones, avoiding the need of adjust-
ing a global approximator complex enough to represent the
function in the whole domain. Having approximators with
domains of different sizes increases the opportunities to end
with the right granularity for generalization, so that the ef-
fect of an update reaches distant enough related points, while
keeping far away unrelated regions unaffected. An impor-
tant aspect of this approach is the selection of the competi-
tor that will be used to determine the function value at each
point of the domain. For this, a relevance function is com-
puted for each competitor, taking into account its expected
accuracy and confidence at each point. The competitor that
has the highest relevance in a given point is used to provide
the value at this point. Using this approach for Q-learning
would require, in principle, the estimation of three functions
for each competitor: one for the q-value, one for the accuracy,
and a third one for the confidence at each state-action point.
Fortunately, we can obtain estimations of all these functions
from a unique probability density function in the joint space
of states, actions, and values. Thus, from the joint probabil-
ity density, we can obtain the q-value function simply as the
mean of the q-value conditioned to a given state-action; the
accuracy will be obtained using the conditioned variance of
this q-value; and the confidence will be obtained using the
sample density in the state-action space. According to this,
we will approximate a single joint density function for each
competitor by means of a GMM, for which an efficient up-
dating EM algorithm can be used. In the next Section we for-
mally define the competitor system and the relevance func-
tion. In Section 3, the implementation of the system using
Gaussian Mixture Models is presented, and in Section 4 its
application to Q-learning is explained. Section 5 describes
the experiments carried out to demonstrate the validity of the
approach, and Section 6 closes the paper with some conclu-
sions.

2 Competitive Function Approximation
This section presents the formalization of a function repre-
sentation using a competitive strategy that will be used for
the approximation of an arbitrary target function.
We define a competitor function, Φi(x, ξi), as a paramet-

ric function with parameters ξi, defined on values x of a D-
dimensional continuous domain Xi. Associated with each
competitor Φi, there is a relevance function, Γi(x, νi), which
is a parametric function with parameters νi, also defined in
the domainXi.
Given a set of competitors Φ =

{
Φ1, Φ2, . . . , Φ|Φ|

}

and the set of their corresponding relevance functions
Γ =

{
Γ1, Γ2, . . . , Γ|Φ|

}
, we consider the function, y =

F(x,Φ,Γ), for x ∈ X =
|Φ|⋃
i=1

Xi, defined as follows: First, a

winner competitor, Φw, is selected such that

w = argmax
i∈Ix

Γi(x, νi), (1)

where Ix = {i|x ∈ Xi} references the set of active competi-
tors for x, Φx = {Φi|x ∈ Xi}. Then the value y is obtained
as,

y = F(x,Φ,Γ)
= Φw(x, ξw). (2)

Now, assume that there is an arbitrary unknown target func-
tion f(x) defined inX that should be approximated, but from
which we can only observe its values at particular points ob-
tained sequentially, (xt, yt), with yt = f(xt), where t ac-
counts for the t-th time step. Our aim is to devise an on-
line (i.e., incremental), memory-free function approximation
method using a function F(x,Φ,Γ) as defined before. To
this end we need to specify the functions that will be used
as competitors Φi(x, ξi), their respective relevance functions
Γi(x, νi), and the method that will be used to update the pa-
rameters ξi and νi in order to get a good approximation of the
target function, so that:

f(x) ≈ F(x,Φ,Γ). (3)

We call a method for function approximation that uses a func-
tion F(x,Φ,Γ) a competitive function approximation (CFA)
method.
For the competitorsΦi(x, ξi) of a CFA system, we can use

any set of arbitrarily complex parametric functions and, in
principle, they do not need to be all the same. However, in
the following, we will assume that all competitors implement
the same function of its parameters: Φi(x, ξi) = Φ(x, ξi). It
will be convenient to choose as Φ(x, ξi) some function for
which an efficient incremental updating method for function
approximation is available, so that we can use it for updating
the parameters ξi. The type of function selected and the ex-
tension of the domains of each competitor will influence the
possibilities of generalization of the CFA. However, if the rel-
evance function is not able to provide a correct distinction be-
tween good and bad approximations, the performance of the
CFA system will be poor, no matter what competitor function
is used. Hence, a right definition of the relevance function
is crucial for the good performance of the CFA system. The
next section is focused on this aspect.

2.1 Relevance Function
Tomake the exposition clear we assume first that the competi-
tor and the relevance functions are constant-valued functions
of x. They can be seen as uniparametric functions where the
parameter ξi corresponds to the constant value assigned by
the function. In this case, the sample mean of the observed
values in each domain is a clear choice for the parameter of
the corresponding approximator,

Φi(x, ξi) = ξi = Ȳi =
1
ni

ni∑
j=1

yj, (4)

where ni is the total number of samples observed so far inXi.
To define the relevance function, note that the variance of f
inXi, σ2

i = EXi

[
(f(x) − EXi [f(x)])2

]
, is a good indicator

of how well EXi [f(x)] (≈ Ȳi) approximates f in x. Hence,
the inverse of the variance σ2

i would be a good value for the
relevance. However, as we only have a limited amount of
samples of f(x), its variance can not be determined precisely
and should be estimated. We estimate the variance using the
(unbiased) sample variance S2

i :

S2
i =

1
ni − 1

ni∑
j=1

(
yj − Ȳi

)2
. (5)

The uncertainty of this estimation depends on the number of
samples ni and to take into account this uncertainty we use
the upper bound of the confidence interval for the variance
[Blom, 1989]:

(ni − 1)S2
i

χ2
α (ni − 1)

, (6)

where χ2
α (ni − 1) is the α-quantile of a χ2 distribution, with

ni − 1 degrees of freedom. This upper bound represents
the highest possible value (with α confidence) of the actual
unknown variance given the current uncertainties in the es-
timation. Less confident estimations will have higher upper
bounds for the variance. The value (6) provides a measure of
the quality in the approximation that balances the estimation
accuracy and the confidence in that estimation. Hence, we
can adopt the inverse of the upper bound of the confidence
interval for the variance as the relevance of a competitor Φi:

Γi(x, νi) =
χ2

α (ni − 1)
(ni − 1)S2

i

. (7)

This definition of the relevance prevents competitors with es-
timations obtained from a few samples, but showing low vari-
ances, to be favoured in front of those with slightly higher
variances but with much more confident estimations.
Until now, we have assumed constant-valued estimations

for the competitor and the relevance functions but, in general,
they will depend on x. For the relevance to be x-dependent,
the estimation of the variance and its confidence must also
be x-dependent. Thus, assuming that the sample variance is
approximated by some parametric function S2

i (x, τi), we can
estimate the sample variance S̃2

i for samples experienced in a
region X̃i ⊂ Xi as

S̃2
i ≈

∫
X̃i

S2
i (x, τi) pi(x, ςi)dx∫
X̃i

pi(x, ςi)dx
, (8)

where pi(x, ςi) is a parametric estimation of the sample prob-
ability density function in Xi. In a similar way, we can esti-
mate the number of samples in X̃i as:

ñi ≈ ni

∫
X̃i

pi(x, ςi)dx. (9)

Now, replacing the sample variance and the number of sam-
ples in Xi in (7) by their respective counterparts in X̃i, we

can express the relevance function of competitor i in a point
x ∈ X̃i as

Γi(x, νi) =
χ2

α (ñi − 1)
(ñi − 1) S̃2

i

. (10)

With this relevance formula we can regulate the precision of
the relevance of a competitor at a point x by adjusting the
size of the region X̃i to an appropriate value depending on
the nature of the generalization performed and the regularity
of the variance function. In order to simplify the calculations
of the integrals in (8) and (9), we assume that the region X̃i is
small enough for the values for the probability density func-
tion pi(x, ςi) and the variance function S2

i (x, τi) to be nearly
constant, which permits to estimate the relevance (10) as

Γi(x, νi) ≈
χ2

α

(
Ṽi ni pi(x, ςi) − 1

)
(
Ṽi ni pi(x, ςi) − 1

)
S2

i (x, τi)
(11)

where Ṽi is the volume of X̃i. In practice, the volume Ṽi is
defined empirically for each particular problem.

3 Competitive Function Approximation with
Gaussian Mixture Models

In this section we present the specific instantiation of the
method for CFA that we will use for generalization in RL.
We need to specify the competitor functionsΦi(x, ξi), as well
as the variance functions S2

i (x, τi), and the density functions
pi(x, ςi) needed to calculate the relevance (11). In addition,
we also need to provide the mechanisms to update all the pa-
rameters involved. Next, we just give a general description of
the approach. A more detailed explanation can be found in
[Agostini and Celaya, 2010].
For the instantiation of each competitor function we will

use a Gaussian Mixture Model (GMM) defined in the input-
output joint space,

p(z;Θ) =
K∑

j=1

αiN (z; μj,Σj), (12)

where z = (x, y) is the input-output variable; K is the num-
ber of Gaussians of the mixture; αj , usually denoted as the
mixing parameter, is the prior probability, P (j), of Gaus-
sian j to generate a sample; N (z; μj ,Σj) is the multidimen-
sional Gaussian function with mean vector μj and covariance
matrix Σj ; and Θ = {{α1, μ1,Σ1}, ..., {αK , μK ,ΣK}} is
the whole set of parameters of the mixture. This representa-
tion has the virtue of providing an approximation of the value
function as well as all the quantities required in (11) from a
single density model. Thus, by embedding a probability den-
sity model pi(z;Θi) at each competitorΦi, we can easily de-
rive, through the conditional probabilities, a point-dependent
estimation of the sample mean,

Φi(x, ξi) = μi(y|x;Θi), (13)

as well as a point-dependent estimation of the sample vari-
ance,

S2
i (x, τi) = σ2

i (y|x;Θi). (14)

In addition, from the density model we can estimate the num-
ber of samples involved in the estimation of the mean and
variance at each point,

ñi ≈ Ṽi ni pi(x;Θi), (15)

where pi(x;Θi) is the probability density estimation in the
input space. The parameters Θi are updated from each in-
coming experience (xt, yt), using the incremental version of
the Expectation-Maximization algorithm proposed in [Agos-
tini and Celaya, 2010].

3.1 Competitor Management
The set of competitors of a CFA must be defined so that their
domains Xi form a covering of the whole domain X . Since
it is not possible, in general, to determine beforehand the best
way to define the number and sizes of the Xi’s, we start with
an initial covering with a relatively small number of competi-
tors and, in the course of learning, new competitors are gen-
erated as required by the need of a better approximation. This
makes the approach non-parametric and, in principle, able to
approach any arbitrary function. We would like to note that
it is also possible to make the approach non-parametric by
changing not only the number of competitors but also the
number of Gaussians at each competitor. However, we will
keep the number of Gaussians fixed, varying only the number
of competitors.
Our criteria for competitor generation involves two user-

defined thresholds: ng , which sets the minimum number of
samples that should be collected by a competitor before its
estimations can be considered confident, and eg, which sets
the maximum error allowed in the approximation. New com-
petitors will be generated when, after observing a new sample
(x, y), the approximation error is too large,

(f(x) −F(x,Φ,Γ))2 = (y − μw(y|x))2 > eg, (16)

and all the active competitors for x have reached the mini-
mum confidence threshold:

ni ≥ ng, ∀i |x ∈ Xi. (17)

This last condition is necessary to avoid the generation of
further competitors in a region where one has already been
generated but has not yet been updated enough to adjust its
parameters.
When these two criteria are fulfilled, a new competitor do-

main is generated by intersecting that of the winner competi-
tor at x, Xw, with the domain of the competitor that showed
the least prediction error at the sampled point. If this domain
is different from all the already existingXi, a new competitor
is generated with it. In the case that a competitor with such
domain already exists, it makes no sense to generate it again,
so that, in this case, new domains are built by splitting that of
the winner, Xw, in three overlapping subdomains, each one
of half the size of Xw. Each subdomain is obtained by ap-
propriately cutting Xw along the dimension d along which
the dispersion of samples of Xw is the largest (i.e., the di-
mension whose marginal variance is maximum for the winner
competitor). Generation via splitting complements the gener-
ation via intersection of existing domains, since it permits to

increase the resolution indefinitely, which is not possible by
intersections alone.
Each new competitor is initialized with a Gaussian Mixture

Model with K Gaussians with initial mean vectors (x, y) =
(xr , Φw(xr , ξw)), where the input points xr are selected at
random from the domain of the competitor. The covari-
ance matrices are initialized to diag{d2

1, ..., d
2
D, S2

w(xr, τw)},
where dj is a fixed percentage of the length of the domain in
the j dimension, andD is the dimension of the input space. In
the cases in which the new domain contains the experienced
input xt, it is taken as one of the xr, and the sample point
(xt, yt) is taken as the mean of the corresponding Gaussian.

Elimination of Competitors
The competitors that become less useful for the system can be
eliminated. We remove those competitors that are redundant
with others. We say that a competitor Φi is redundant with a
competitor Φj when

Xi ∩ Xj = Xi, (18)

and the normalized differences in their values and relevances
are both below some thresholds for all x ∈ Xi:

|Φi(x) − Φj(x)|
max(|Φi(x)| , |Φj(x)|) < thrv, (19)

and |Γi(x) − Γj(x)|
max(|Γi(x)| , |Γj(x)|) < thrr. (20)

In practice, these conditions are tested only in a finite number
of points of Xi. These tests are performed between overlap-
ping competitors once every fixed number of samples.

4 Q-Learning with a CFA
Next, we explain how the CFA just described can be used
with Q-learning in continuous state and action spaces. The
function to be approximated is the utility function Q(s, a).
The input points x correspond to state-action pairs (s, a), and
the function values y will be the current estimation q(s, a) of
the real Q(s, a) function, obtained from the sampled version
of the Bellman equation:

q(s, a) = r(s, a) + γ max
a′

(Q̂(s′, a′)), (21)

where r(s, a) is the immediate reward obtained after exe-
cuting action a in state s; s′ is the state observed after the
action execution; and Q̂(s′, a′) is the approximation of the
action-value function at (s′, a′) provided by the CFA system:
Q̂(s′, a′) = F((s, a),Φ,Γ)) = Φw(s′, a′).
To compute the value q(s, a) we need to solve the max-

imization problem max
a′

(Q̂(s′, a′)). We adopt the strategy

of computing the values Q̂(s′, a′) for a finite number of ac-
tions, and then taking the value of the action that provides the
largest Q as the approximated maximum.
For action exploration we follow the strategy proposed in

[Agostini and Celaya, 2010], assigning to each (s, a) to be
evaluated a value calculated randomly as,

Qrnd(s, a) = Q̂(s, a) + ΔQ(σ2(q|s, a)), (22)

where ΔQ(σ2(q|s, a)) is a value taken at random from a
normal probability distribution with 0 mean and variance
σ2(q|s, a) = S2

w((s, a), τw). Once a Qrnd(s, a) value has
been assigned for every evaluation (s, a), the action to be ex-
ecuted is selected using the greedy policy as,

a = argmax
a′

Q̂rnd(s, a′). (23)

5 Experiments
To demonstrate the performance of the CFA in Q-Learning
we use two different benchmarks: the pendulum swing-up
and stabilization [Doya, 2000], and the cart-pole balancing
[Sutton and Barto, 1998]. The first task consists in swinging
the pendulumuntil reaching the upright position and then stay
there indefinitely. The pendulum model is the same used in
[Doya, 2000] with a reward given by the height of the pendu-
lum. Training and test episodes consist in 50 seconds of sim-
ulated time, with an action interval of 0.1 seconds. The sec-
ond task, the cart-pole balancing, consists in a pole mounted
on cart that has to be stabilized inside an acceptable region
by the motions of the cart. The cart is free to move in an
acceptable range within a 1-dimensional bounded track, and
the pole moves in the vertical plane parallel to this track.
The cart-pole benchmark is of interest since it involves a 5-
dimensional state-action space, two more than the inverted
pendulum, and serves to illustrate the scalability of the al-
gorithm. The set-up for the experiment is the same used in
[Peters and Schaal, 2008], with a reward function that varies
linearly from 0 at the bound of the acceptable angle for the
pole, to 1 at the vertical position. Reward is -1 when either
the pole or the cart leave their acceptable regions.
For both benchmarks, we give results using three differ-

ent function approximation techniques: the GMM with vari-
able number of Gaussians of [Agostini and Celaya, 2010],
the CFA introduced here, and Variable Resolution, to provide
a general reference. Table 1 shows the parameters for CFA
used in both benchmarks.

Parameter pendulum cart-pole
initial competitors 10 16
Gs. per competitor 10 20
Ṽ 1 50
eg 0.5 0.2
ng 200 50
thrv 0.2 0.2
thrr 0.2 0.2

Table 1: Parameters for the experiments with CFA

5.1 Results
Figures 1 and 2 show the results of the experiments, that in
all cases are the average of 15 independent runs of each algo-
rithm. In both benchmarks, the GMM and CFA approaches
are clearly superior to Variable Resolution. For the pendulum
swing-up task, we show the performance of the GMM ap-
proach with two different initializations: One with 10 Gaus-
sians, that reported the best results in [Agostini and Celaya,

0 10 20 30 40 50 60 70
−400

−300

−200

−100

0

100

200

300

400

500

episodes

C
um

ul
at

iv
e

re
w

ar
d

CFA
GMM with K

ini
=10

GMM with K
ini

=100

VR

Figure 1: Comparison of the performance of the CFA, GMM,
and VR methods in the inverted pendulum task. The curves
show the sum of rewards obtained in test episodes, performed
after each training episode, starting from the hang-down po-
sition.

2010], and another with 100 Gaussians, what corresponds to
the same total number of initial Gaussians of our approach
with CFA. Figure 1 shows that CFA has a faster and more
stable convergence than both instantiations of the GMM. For
the case of 10 initial Gaussians, GMM reaches a stable value
in about 45 episodes, while CFA does the same in about 23.
For the GMM with 100 initial Gaussians the performance is
worst, likely due to the fact that the system must simulta-
neously balance a large number of parameters (in fact, 100
Gaussians is more than required, since the GMM with 10 ini-
tial Gaussians reaches convergence with an average of about
45 Gaussians). Increasing the number of competitors, and
therefore the total number of Gaussains, has not the same ef-
fect in CFA, since each competitor must only balance their
own parameters, independently of those of other competitors
(convergence is achieved with 185 competitors in average).
To give a comparison of these results with the state of the art
on this benchmark, we recall the results given by [Riedmiller,
2005] for this task, where, using a batch NFQ algorithm, re-
ports convergence after 100.000 × D updates (D = number
of samples), while GMM takes about 45 × 500 = 22.500
updates, and CFA only 23 × 500 = 11.500.
In the case of the cart-pole, the different performance be-

tween the three approaches is even larger, as shown in figure
2. We attribute the superiority of GMM and CFA over VR to
their better generalization capabilities, which become more
important as the dimensionality of the state-space increases.
To interpret the much better performance of CFA over GMM
in this benchmark, we note that GMM required, in average,
a final amount of 190 Gaussians to reach convergence, while
CFA required, in average, about 445 competitors with only 20
Gaussians each. Thus, even if the total number of Gaussians
in CFA is much larger, many competitors are updated in par-
allel at each iteration, and each of them has to adjust a much
smaller set of parameters. To compare these results with the

state of the art, we observe that CFA reaches a good perfor-
mance after about 3 minutes of simulated time and converges
in less that 5 minutes, while [Peters and Schaal, 2008], using
a Natural Actor-Critic approach, reported convergence after
10 minutes.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Minutes

C
um

ul
at

iv
e

R
ew

ar
d

max reward

CFA
GMM
VR

Figure 2: Comparison of the performance of the CFA, GMM,
and VR methods in the cart-pole balancing task. The curves
show the sum of rewards obtained in test episodes performed
every 10 seconds of simulated time. Each test episode con-
sists in averaging the sum of rewards obtained during 5 sec-
onds of simulated time, starting at four different positions of
the pole: −10 ◦,−5 ◦, 5 ◦, 10 ◦, with the cart centred on the
track.

6 Conclusions
The results obtained in this work support our claim that it
is advantageous to use a collection of function approxima-
tors defined on overlapping regions of the whole domain that
compete between them to provide the best estimation at each
point, instead of using a single global approximator of arbi-
trary complexity. There are several reasons that may explain
this. One is locality: since each approximator is only updated
with those samples that fall in its domain, it is not influenced
by farther away samples, thus avoiding most of the overfitting
problems caused by the biased sampling usually found in re-
inforcement learning. Another reason is that covering the do-
main with regions of different sizes, it is possible to find the
right one where the complexity of the target function matches
the approximation capabilities of the competitors. An optimal
match between the complexity of the target function and the
approximator gives rise to a maximally efficient learning and
accurate generalization. Being able to choose the more plau-
sible (or relevant) competitor at each point makes possible to
keep inaccurate competitors in the system without distorting
the accuracy of the actual approximation.
Still another reason that makes the competitive approach

attractive in reinforcement learning is its capability to deal
with non-stationary target functions: when a drastic change
of the target function occurs at some point of the domain, it
is not necessary that the formerly winner competitor at this

point completely reshape its approximation before the output
becomes accurate; instead, a different competitor that man-
aged to be more accurate at that point will provide the output
as soon as its relevance gets larger there.
As expected, the computational cost of the CFA method

is higher than that of the single global GMM method. How-
ever, in the presented experiments, the increase in computa-
tion time is less than one order of magnitude.

Acknowledgments
This research was partially supported by Consolider Ingenio
2010, project CSD2007-00018.

References
[Agostini and Celaya, 2010] A. Agostini and E. Celaya. Re-
inforcement learning with a Gaussian mixture model. In
Proc. Int. Joint Conf. on Neural Networks (IJCNN’10).
(Barcelona, Spain), pages 3485–3492, 2010.

[Blom, 1989] G. Blom. Probability and statistics: theory
and applications. Springer-Verlag, 1989.

[Boyan and Moore, 1995] J. Boyan and A.W. Moore. Gener-
alization in reinforcement learning: Safely approximating
the value function. Advances in neural information pro-
cessing systems, pages 369–376, 1995.

[Deisenroth et al., 2009] M.P. Deisenroth, C.E. Rasmussen,
and J. Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7-9):1508–1524, 2009.

[Doya, 2000] K. Doya. Reinforcement learning in contin-
uous time and space. Neural Comput., 12(1):219–245,
2000.

[Engel et al., 2005] Y. Engel, S. Mannor, and R. Meir. Re-
inforcement learning with Gaussian processes. In Proc. of
the 22nd Int. Conf. on Machine learning, pages 201–208,
2005.

[Gordon, 1995] G.J. Gordon. Stable Function Approxima-
tion in Dynamic Programming. Technical Report CS-95-
130, CMU, 1995.

[Moore, 1991] A.W. Moore. Variable resolution dynamic
programming: Efficiently learning action maps in multi-
variate real-valued state-spaces. In Proc. of the Eighth Int.
Workshop on Machine Learning, pages 333–337, 1991.

[Peters and Schaal, 2008] J. Peters and S. Schaal. Natural
actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

[Riedmiller, 2005] M. Riedmiller. Neural Reinforcement
Learning to Swing-up and Balance a Real Pole. In Proc. of
the Int. Conf. on Systems, Man and Cybernetics, volume 4,
pages 3191–3196, 2005.

[Rottmann and Burgard, 2009] A. Rottmann and W. Bur-
gard. Adaptive autonomous control using online value it-
eration with Gaussian processes. In Proc. of the Int. Conf.
on Robotics and Automation, pages 3033–3038, 2009.

[Sutton and Barto, 1998] R. Sutton and A. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

