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Abstract—A key issue in distributed MPC control of Large 
Scale Systems (LSS) is how shared variables among the 
different MPC controller in charge of controlling each system 
partition (subsystems) are handled. When these connections 
represent control variables, the distributed control has to be 
consistent for both subsystems and the optimal value of these 
variables will have to accomplish a common goal.  
   In order to achieve this, the present work combines ideas 
from Distributed Artificial Intelligence (DAI), Reinforcement 
Learning (RL) and Model Predictive Control (MPC) in order 
to provide an approach based on negotiation, cooperation and 
learning techniques. 
   Results of the application of this approach to a small drinking 
water network show that the resulting trajectories of the levels 
in tanks (control variables) can be acceptable compared to the 
centralized solution. The application to a real network (the 
Barcelona case) is currently under development. 
 
Key Words: Cooperative systems, Distributed control, Model 
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Reinforcement Learning. 

I. INTRODUCTION 

Large Scale Systems (LSS) are complex dynamical 
systems at service of everyone and in charge of industry, 
governments, and enterprises. The applications are wide. 
Examples of applications of LSS in continuous domains are: 
power networks, sewer networks, water networks, canal and 
river networks for agriculture, etc. Other examples of 
applications of LSS in discrete domain are traffic control, 
railway control, manufacturing industry, etc. 

Model Predictive Control (MPC), also known as receding 
horizon control, is a control technique widely used in 
industry (see [1]) well suited for the control of continuous 
LSS. The theory of MPC is well developed; most aspects, 
such as stability, nonlinearity, and robustness, have been 
discussed in the literature (see [2]). 

In MPC, the control input is obtained by solving a 
discrete-time optimal control problem over a given horizon, 
producing an optimal open-loop control input sequence. The 
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first control in that sequence is applied. At the next sampling 
instant, a new optimal control problem is formulated and 
solved based on the new measurements.  

Typically, MPC is implemented in a centralized way. The 
complete system is modeled, and all the control inputs are 
computed in one optimization problem. However, the 
increase of automation of LSS renders problems with a 
noticeable increase in complexity. Such complexity is due to 
the size of the system to be controlled and the huge number 
of sensors and actuators needed to carry out the control. 
Additionally, LSS are composed of many interacting 
subsystems. Thus, LSS control is difficult to be 
implemented using a centralized control structure because of 
robustness and reliability problems and due to 
communication limitations. For all these reasons, distributed 
and decentralized MPC control schemes have been 
developed and applied over the last years. 

In decentralized systems the resulting subsystems are 
independent from each other. But the high level of 
connections and interdependence of LSS is the reason why, 
in most cases, they cannot be modeled as decentralized 
systems. In distributed systems, the resulting subsystems can 
have physical dependences between them and therefore 
communication among them.  

One of the main problems of distributed control of LSS is 
how these dependence relations between subsystems are 
preserved. These relations could be, for example, pipes that 
connect two different control zones of a decentralized water 
transport network, or any other kind of connection between 
different control zones.  When these connections represent 
control variables, the distributed control has to be consistent 
for both zones and the optimal value of these variables will 
have to accomplish a common goal. 

The goal of the research described in this paper is to 
exploit the attractive features of MPC (meaningful objective 
functions and constraints) in a distributed implementation 
combining learning techniques to perform the negotiation of 
these variables in a cooperative Multi Agent environment 
and over a Multi Agent platform. 

II. THE PROBLEM 

In order to control an LSS in a distributed way, some 
assumptions have to be made on its dynamics, i.e. on the 
way the system behaves. Assume first that the system can be 
divided into n subsystems, where each subsystem consists of 
a set of nodes and the interconnections between them. The 
problem of determining the partitions of the network is not 
addressed in this paper; instead the reader is referred to [3]. 
The set of partitions should be complete. This means that all 
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system state and control variables should be included at least 
in one of the partitions. 
Definition 1. System partitions. P is the set of system 
partitions and is denoted by  
 
 },,,{ 21 nppppP   (1) 

 
where each system partition (subsystem) pi is described by a 
deterministic linear time-invariant model that is expressed in 
discrete-time as follows 
 

 
)()()()(

)()()()1(

,,

,,

kkkk

kkkk

iidiiuiii

iidiiuiii

dDuDxCy

dBuBxAx



  (2) 

 
Variables x, y, u and d are the state, output, input and 
disturbance vectors, respectively; A, C, B and D are the 
state, output, input and direct matrix, respectively. 
Subindices u and d refer to the type of inputs the matrix 
model, either control inputs or disturbances. Control 
variables are classified as internal or shared. 
Definition 2. Internal Variables. Internal variables are 
control variables that appear in the model of only one 
subsystem in the problem. The set of internal variables of 
one partition is defined by 
 
 },,,{ 21 nuuuuU   (3) 

 
Definition 3. Shared Variables. Shared variables are 
control variables that appear in the model of at least two 
subsystems in the problem. Their values should be 
consistent in the subsystems they appear, so they are also 
called negotiated variables. V is the set of negotiated 
variables defined by 
  
 },,,{ 21 nvvvvV   (4) 

 
Each subsystem i is controlled by an MPC controller using:  

 the model of the dynamics of subsystem i given by 
equation (2); 

 the measured state xi(k) of subsystem i; 
 the exogenous inputs di(k+1) of  subsystem i over 

a specific horizon of time; 
As a result each MPC controller determines the values 

ui(k) of subsystem i. The internal control variables are 
obtained directly by the MPC controller of this subsystem 
while the shared variables are proposed to be negotiated 
with the MPC controllers of the corresponding subsystem.  

In distributed control the set of shared variables is not 
empty. The problem addressed in this paper is an agent 
based distributed control. There is one agent in charge of 
each system partition and its duties are to negotiate the 
shared variables with other agents and to calculate the 
control actions from the MPC formulation of its partition. 

 

 

Figure 1: The problem of distributed control 

Figure 1, on the left, shows a sample system divided into 
three partitions. There are three overlapping sets that contain 
four shared variables. The relations that represent those 
variables are shown on the right as lines. The problem 
consists in optimizing the manipulated variables of the 
global system in a distributed approach, i.e. with three local 
control agents that must preserve consistency between the 
shared variables. 

III. DISTRIBUTED MPC 

In distributed control schemes, local control inputs are 
computed using local measurements and reduced-order 
models of the local dynamics [4]. 

Distributed MPC algorithms are classified into iterative 
and non-iterative and further sub classified into independent 
or cooperative algorithms. 

In iterative algorithms information is bi-directionally 
transmitted among local regulators many times within the 
sampling time. In non-iterative algorithms information is bi-
directionally transmitted among local regulators only once 
within each sampling time. [4] gives a review of distributed 
control architectures for LSS. 

The aim of independent (non-cooperative) algorithms is 
to get better results than the other controllers, which are seen 
as opponents. They have also been applied in MPC 
distributed control strategies (see, e.g., [5]). 

Contrarily, cooperative algorithms intend to find a 
compromise for shared variables in order to maximize the 
performance of the complete system, worsening if necessary 
the performance of individual partitions. [6] and [7] are two 
recent examples of the application of cooperative 
algorithms, the first one is non-iterative and the second one 
is iterative. 

The proposed distributed architecture is non-iterative and 
cooperative and it uses learning techniques to provide a 
more accurate result. It is cooperative because although 
every subsystem has its local goal they all share a common 
one, so they need to cooperate to achieve it. The solution 
sought here is to achieve the Pareto optimal solution (like 
cooperative algorithms) provided by an ideal centralized 
control structure rather than letting each local regulator tend 
towards a Nash equilibrium (like independent algorithms). 



  

Therefore, there is a compromise between local goals and 
the common goal. The proposed Architecture uses 
reinforcement learned negotiation to balance this situation.   

IV. REINFORCEMENT LEARNING. 

Learning techniques are powerful tools used mainly in 
large and complex systems in dynamical environments. For 
the problem of negotiation in cooperative environments 
described above the application of RL is a good option.  

In [8] the two most important distinguishing features of 
RL are given: the trial-and-error search and delayed reward. 
The learner is not told which actions to take, as in most 
forms of machine learning, but instead must discover which 
actions yield the most reward by trying them. In the most 
interesting and challenging cases, actions may affect not 
only the immediate reward but also the next situation and, 
through that, all subsequent rewards. 
 Reinforcement learning is based on past experience, 
which is used to reduce the need of iterative methods. It is a 
well known and formally studied family of learning 
techniques. Moreover, depending on the formulation of the 
problem and the richness of experience data, the possibilities 
of convergence are high. 

Although the applications of RL are typically static, many 
control applications have been developed for dynamical 
environments [4], [10]. Even more, there are some works 
that relate MPC and RL, as in [11], where they are seen as 
complementary frameworks. 

V. NEGOTIATION IN COOPERATIVE ENVIRONMENTS USING 

MPC 

Negotiation between distributed controllers in LSS is an 
open issue. Conventional negotiation techniques are not 
suitable for many reasons: calculation time, problems 
handling multiple restrictions and multiple objectives and 
the impossibility to ensure convergence are the most 
common reasons.  Although there are successful results, 
there is a need of a methodology that can be used for all 
kinds of continuous LSS.  

One of the most accepted techniques is the augmented 
Lagrangian method. The seminal Tamura coordination 
method was discussed in the book [12] even before MPC 
was first introduced. This method is based on using 
augmented Lagrangian technique to negotiate values on 
overlapping sub-networks in distributed large scale systems.  
Recent works have applied this method [13], [14], [6]. The 
main  problems with this method are calculation time and 
the impossibility to ensure convergence.  
   Another negotiation approach is presented in [7], where an 
iterative, cooperating method for linear discrete-time 
systems is presented. In particular, the proposed approach 
guarantees the attainment of the global (Pareto) optimum 
when the iterative procedure converges, but still ensures 
closed-loop stability and feasibility if the procedure is 
stopped at any intermediate iteration. [4]. The main problem 
of this approach is again the calculation time. 

   In [15], an alternative approach to solve the same problem 
was discussed. The novelty of that approach involves 
maintaining the distributed structure of all the local 
controllers, but changing the objective functions so that the 
local agents cooperate. The main problem with this approach 
is that there is no systematic method to adjust the objective 
functions. 

VI. PHILOSOPHY OF THE NEGOTIATIOR AGENT ALGORITHM  

All the ideas and the proposed algorithm presented here 
are integrated in the MAMPC Architecture described in 
[16]. This architecture also provides a methodology that 
helps in the development process of the distributed MPC 
controller.  

The main elements of the MAMPC architecture are MPC 
Agents and Negotiator Agents.  

 
Definition 4. MPC Agent. An MPC Agent is the entity that 
is in charge of controlling one specific partition of the 
system.  
There is one MPC Agent for each system partition. The 
MPC Agent solves an MPC control problem considering the 
internal variables of the partition and cooperating with one 
or more Negotiator Agents to determine the optimum value 
of the shared variables.  
 
Definition 5. Negotiator Agent. A Negotiator Agent is the 
entity that is in charge of determining the value of one or 
more shared variables between two MPC Agents.  
A negotiator Agent exists for every pair of MPC Agents that 
have one or more shared variables in common. Each MPC 
Agent is arranged to cooperate so that the negotiator agent 
solves the optimization of a common goal by means of a 
Reinforcement Learning algorithm. This algoritm is based 
on the Q-learning algorithm, and adapted to be applied in 
dynamical environments. 
 
   For the partitioning of the network purposes, in the 
distributed model the shared control variables have to be 
duplicated. This is done in order to provide each MPC-
Agent involved in the relation with an internal 
representation of the shared variable.  
   The Negotiator Agent seeks to restore the connections 
broken in the distribution problem,  connecting what was 
divided  unifiying this dupplicate variables in just one as in 
the original model. Therefore, for the Negotiator Agent, this 
two control variables are taken as just one.  
   The philosophy of the negotiation algorithm proposed is to 
consider the shared variables not has a two diferent 
problems with conflicting goals but as one problem with just 
one goal, like in the centralized approach. The Negotiator 
Agent solves the optimization problem for these variable 
and communicate the result to the MPC-Agents at each 
sampling time. Since the MPC-Agents are able to cooperate,  
the MPC- Agents will take the value, set it as a hard 
contraint in its respective internal control variables and 
recalculate the multivariable control problem. 



  

   The optimization of the Negotiator Agent algorithm is 
based on its experience and in maximizing the 
reinforcements received of every action taken in the past on 
similar situations. 
   This algoritm is based on Q-learning algorithm, and 
adapted to be applied in dynamical environments. Next, the 
formulation of the algorithm is detailed.  

A. Formulation of the negotiation-learning problem 

Each shared variable constitutes an optimization problem 
that is assigned to a Negotiator Agent The internal 
architecture of the Negotiator comprises the following 
elements: Q-tables, a communication protocol and a 
negotiation algorithm. Next, these elements are described in 
further detail. 

Q-table: the Q-table represents the knowledge base of the 
agent, which has a Q-table for each shared variable because 
each one can have diferent behaviour and even different 
goals. 

Q-tables maintain the reinforcement gained for each 
possible state and action. A state represents the global state 
of each sub-problem, which is established in terms of the 
error of the output with respect to the goal. The definition of 
the error that MPC Agents use is: 
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where εi is the error, gi  is the goal and yi is the output of 
variable i.  

The state value is determined by: 
 

 
2

21 iis
 

  (6) 

 
where εi1 is the error of the variable i of first agent, and εi2 of 
the corresponding variable in the second agent. This state is 
updated every sampling time. 

Actions (a) are all the possible values that the shared 
variable can take. 

Since states and actions are continuous, they have to be  
discretized for the application of the RL algorithm. 

The reward function determines the reward of every 
action taken by the agent. In this case, the reward function 
is: 
 
 sr    (7) 

 
where ρ is a positive constant offset larger than the largest s. 

Communication protocol: MPC Agents start the 
comunication by transmitting to the Negotiator Agent the 
relevant information of the current step: output vector, yi(k), 
control actions vector, ui(k), the absolute error with respect 
to the goal of the shared variable, εi(k), and the sampling 
time k. Then, the algorithm of the Negotiator Agent is 
executed. When it finishes, it communicates the resulting 
value of the shared variable to the MPC Agents. In order to 

solve their MPC control problem they take those values as 
restrictions. After that, the procces starts again. 

Negotiation algorithm: This algorithm is divided in two 
phases: the training phase and the exploitation phase. In both 
cases, the rule for updating Q-table values is: 
 
 )),((),( asQrasQ    (8) 

 
Where ]1,0[  weighs past experience importance. 

The training phase creates a new Q-table off-line using 
stored data obtained, for instance, from the control actions 
determined by the centralized approach. 

Once the Q-table is initialized, the exploitation phase can 
start. The main difference here is that next step actions are 
chosen according to 
 
 )),((max' asQa

a
  (9) 

in order to select the value of the action (negotiated variable) 
with maximum reward for the next time instant. 

VII. APPLICATION EXAMPLE 

A small drinking water network is used to exemplify the 
proposed algorithm and its integration in the MAMPC 
architecture. The example was proposed in [17] where a 
centralized and a decentralized solution was studied and 
compared. This hypothetical water distribution network has 
8 states (tanks) and 11 control variables (valves), see 
Figure 2. It can be divided into two subsystems. Two MPC 
Agents are used to determine the internal control variables 
of each subsystem. On the other hand, one Negotiator Agent 
is responsible of negotiating the values of the two shared 
control variables between the two MPC agents. 

The control goal of the application presented in Figure 2 
is to keep a volume in tanks around 3m3. The control 
objective of the centralized MPC is formulated as follows: 
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The system is decomposed in two partitions: 
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Figure 2: Case study and its partitioning 

The plant is defined by all its state and input variables 
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An important step is to check that the partinioning of the 

plant leads to a complete set of partitions. This is 
accomplished verifying the following relation: 
  
 VUPPlant   (17) 

 
which can be easily checked here. Thus, the partition is a 

complete set of partitions. The control objective of each 
partition is the following: 
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The MAMPC Architecture for this problem is comprised 

of two MPC Agents, one for each partition, and one 
Negotiator Agent.  

The maximum volume in tanks is 20m3, the control value 
of the measured variables is from 0.0 to 0.4 except for u2 
that is from 0.0 to 0.1. The sampling time is 1 hour and the 
prediction horizon is 24 hours. The demands are considered 
as measured perturbations. They typically present a 
sinusoidal-like behaviour throghout the day.  

The core of the MPC agent is an MPC controller. This 
controller solves the multivariable problem of one partition 
of the plant based on a model. This model contains the set ux 
of the agent. Another important part of the MPC Agent is 
the communication block. MPC Agents can communicate in 
a sophisticated way because they are implemented using the 
Agent Oriented Paradigm. This paradigm provides methods, 
standards and tools that allow good communication skills.    
An off-line training using the RL algorithm presented in 
Section VI was carried out in order to provide this 
experience to the Negotiatior Agent. As in any RL 
algorithm, the proposed architecture is based on the agent 
experience and the expected reinforcements. The richer the 
agent experience has been, the more efficient the 
optimization algorithm will be. Thus, as a good starting 
point for the agent training process, control actions 

determined from a 48 hours scenario of a centralized MPC 
were used as initialization values. From this point, the 
training continued taking random actions. The reward was 
calculated for all actions.  

In the RL exploitation phase, the knowledge acquired in 
the training phase is used to solve the MPC distributed 
problem through the MAS. 

 

Figure 3: Distributed MAMPC solution (solid -) against centralized 
MPC solution (dashed --). Reference (-.-). (a) Tank 1; (b) tank 2; 
(c) tank 3; (d) tank 4; (e) tank 5 ; (f) tank 6; (g) tank 7; (h) tank 8. 

The results obtained using the proposed MAMPC 
Architecture are shown in Figure 3. Each graph presents a 
48 hour scenario, showing the trajectory of the output (water 
volumes in tanks). The results are contrasted with the 
centralized MPC solution (dashed line) for each tank. The 
following table presents the optimal objective function value 
obtained using the proposed distributed MPC solution 
against the centralized. 

 
Jcentralized 13.3712 
Jdistributed 14.7201 

 
The objective function for the distributed solution is 

larger than the centralized one. However, the graphs show 



  

that, in some cases (tanks 1, 2 and 8, Figure 3a, 3b and 3h, 
respectively), the error of the distributed MAMPC 
Architecture solution is lower almost during all the scenario. 
It is important to note that the volume of tanks 1, and 8 
depends directly on the value of the negotiated variables (u10 
and u11). 

VIII. CONCLUSIONS 

The results obtained suggest that the use of MAMPC 
architecture based on RL negotiation can converge to the 
centralized MPC solution with an acceptable degree of 
approximation but taking advantage from the MAS 
properties and the tools that the Agent Oriented Paradigm 
(AOP) provides for development and implementation. Even 
more, the application of learning techniques can provide the 
Negotiator Agent the ability of prediction. Training of the 
negotiator can be made directly from a centralized MPC or 
from human operator driven control. In order to achieve 
optimization, no model is needed by the negotiator. Data 
from centralized MPC is advisable but non essential. The 
type and quality of the training is a very important issue in 
order to obtain an efficient optimization. Also the 
compromise between exploration and exploitation can be 
implemented on-line to enable the system not just adaptation 
to the problem but adaptation to changes in time. In this 
paper, this capability is not addressed in training but in 
exploring during the optimization. Communication protocols 
and coordination methods for MAS have to be studied and 
tested in a more complex case of study in which many 
agents interact. 

IX. FURTHER RESEARCH 

The MAMPC architecture presented in this work is currently 
being tested on the Barcelona water transport network in the 
context of the European Project Decentralized and Wireless 
Control of Large Scale Systems, WIDE. The Barcelona 
water network is comprised of 200 sectors with 
approximately 400 control points. At present, the Barcelona 
information system receives, in real time, data from 200 
control points, mainly through flow meters and a few 
pressure sensors. This network has been used as a LSS case 
of study to test several LSS control approaches, see [12] and  
[18], [19]. As starting point for the application of the 
MAMPC Architecture, recent work on centralized [20] and 
decentralized MPC [21] applied to the  Barcelona network is 
being used, as well as, the partitioning algorithm developed 
by [17]. 
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