



Abstract—A key issue in distributed MPC control of Large
Scale Systems (LSS) is how shared variables among the
different MPC controller in charge of controlling each system
partition (subsystems) are handled. When these connections
represent control variables, the distributed control has to be
consistent for both subsystems and the optimal value of these
variables will have to accomplish a common goal.
 In order to achieve this, the present work combines ideas
from Distributed Artificial Intelligence (DAI), Reinforcement
Learning (RL) and Model Predictive Control (MPC) in order
to provide an approach based on negotiation, cooperation and
learning techniques.
 Results of the application of this approach to a small drinking
water network show that the resulting trajectories of the levels
in tanks (control variables) can be acceptable compared to the
centralized solution. The application to a real network (the
Barcelona case) is currently under development.

Key Words: Cooperative systems, Distributed control, Model
Predictive Control, Multi agent Systems, Negotiation,
Reinforcement Learning.

I. INTRODUCTION

Large Scale Systems (LSS) are complex dynamical
systems at service of everyone and in charge of industry,
governments, and enterprises. The applications are wide.
Examples of applications of LSS in continuous domains are:
power networks, sewer networks, water networks, canal and
river networks for agriculture, etc. Other examples of
applications of LSS in discrete domain are traffic control,
railway control, manufacturing industry, etc.

Model Predictive Control (MPC), also known as receding
horizon control, is a control technique widely used in
industry (see [1]) well suited for the control of continuous
LSS. The theory of MPC is well developed; most aspects,
such as stability, nonlinearity, and robustness, have been
discussed in the literature (see [2]).

In MPC, the control input is obtained by solving a
discrete-time optimal control problem over a given horizon,
producing an optimal open-loop control input sequence. The

This work was supported in part by the WIDE - 224168 - FP7-ICT-

2007-2 project and by WATMAN ref. DPI2009-13744.
Valeria Javalera and Vicenç Puig are with the Institut de Robòtica I

Informàtica Industrial (CSIC-UPC). Llorens i Artigas 4-6. 08028, Barcelona
Spain. phone: 93 4015805; fax: 934015750; e-mail: vjavalera@iri.upc.edu.
She is also supported by the Consejo Nacional de Ciencia y Tecnología
(CoNACYT) México, D.F. and the Instituto Tecnológico Superior de
Cajeme (ITESCA), Cd Obregón Son., México.

Bernardo Morcego and Vicenç Puig are with Universitat Politècnica de
Catalunya. They belong to the Advanced Control Systems research group.;
Rbla. Sant Nebridi 10, 08222 Terrassa (Barcelona), Spain; (e-mail:
bernardo.morcego@upc.edu, vicenc.puig@upc.edu).

first control in that sequence is applied. At the next sampling
instant, a new optimal control problem is formulated and
solved based on the new measurements.

Typically, MPC is implemented in a centralized way. The
complete system is modeled, and all the control inputs are
computed in one optimization problem. However, the
increase of automation of LSS renders problems with a
noticeable increase in complexity. Such complexity is due to
the size of the system to be controlled and the huge number
of sensors and actuators needed to carry out the control.
Additionally, LSS are composed of many interacting
subsystems. Thus, LSS control is difficult to be
implemented using a centralized control structure because of
robustness and reliability problems and due to
communication limitations. For all these reasons, distributed
and decentralized MPC control schemes have been
developed and applied over the last years.

In decentralized systems the resulting subsystems are
independent from each other. But the high level of
connections and interdependence of LSS is the reason why,
in most cases, they cannot be modeled as decentralized
systems. In distributed systems, the resulting subsystems can
have physical dependences between them and therefore
communication among them.

One of the main problems of distributed control of LSS is
how these dependence relations between subsystems are
preserved. These relations could be, for example, pipes that
connect two different control zones of a decentralized water
transport network, or any other kind of connection between
different control zones. When these connections represent
control variables, the distributed control has to be consistent
for both zones and the optimal value of these variables will
have to accomplish a common goal.

The goal of the research described in this paper is to
exploit the attractive features of MPC (meaningful objective
functions and constraints) in a distributed implementation
combining learning techniques to perform the negotiation of
these variables in a cooperative Multi Agent environment
and over a Multi Agent platform.

II. THE PROBLEM

In order to control an LSS in a distributed way, some
assumptions have to be made on its dynamics, i.e. on the
way the system behaves. Assume first that the system can be
divided into n subsystems, where each subsystem consists of
a set of nodes and the interconnections between them. The
problem of determining the partitions of the network is not
addressed in this paper; instead the reader is referred to [3].
The set of partitions should be complete. This means that all

Negotiation and Learning in Distributed MPC of Large Scale
Systems

Valeria Javalera, Bernardo Morcego, Vicenç Puig

system state and control variables should be included at least
in one of the partitions.
Definition 1. System partitions. P is the set of system
partitions and is denoted by

 },,,{ 21 nppppP  (1)

where each system partition (subsystem) pi is described by a
deterministic linear time-invariant model that is expressed in
discrete-time as follows

)()()()(

)()()()1(

,,

,,

kkkk

kkkk

iidiiuiii

iidiiuiii

dDuDxCy

dBuBxAx



 (2)

Variables x, y, u and d are the state, output, input and
disturbance vectors, respectively; A, C, B and D are the
state, output, input and direct matrix, respectively.
Subindices u and d refer to the type of inputs the matrix
model, either control inputs or disturbances. Control
variables are classified as internal or shared.
Definition 2. Internal Variables. Internal variables are
control variables that appear in the model of only one
subsystem in the problem. The set of internal variables of
one partition is defined by

 },,,{ 21 nuuuuU  (3)

Definition 3. Shared Variables. Shared variables are
control variables that appear in the model of at least two
subsystems in the problem. Their values should be
consistent in the subsystems they appear, so they are also
called negotiated variables. V is the set of negotiated
variables defined by

 },,,{ 21 nvvvvV  (4)

Each subsystem i is controlled by an MPC controller using:

 the model of the dynamics of subsystem i given by
equation (2);

 the measured state xi(k) of subsystem i;
 the exogenous inputs di(k+1) of subsystem i over

a specific horizon of time;
As a result each MPC controller determines the values

ui(k) of subsystem i. The internal control variables are
obtained directly by the MPC controller of this subsystem
while the shared variables are proposed to be negotiated
with the MPC controllers of the corresponding subsystem.

In distributed control the set of shared variables is not
empty. The problem addressed in this paper is an agent
based distributed control. There is one agent in charge of
each system partition and its duties are to negotiate the
shared variables with other agents and to calculate the
control actions from the MPC formulation of its partition.

Figure 1: The problem of distributed control

Figure 1, on the left, shows a sample system divided into
three partitions. There are three overlapping sets that contain
four shared variables. The relations that represent those
variables are shown on the right as lines. The problem
consists in optimizing the manipulated variables of the
global system in a distributed approach, i.e. with three local
control agents that must preserve consistency between the
shared variables.

III. DISTRIBUTED MPC

In distributed control schemes, local control inputs are
computed using local measurements and reduced-order
models of the local dynamics [4].

Distributed MPC algorithms are classified into iterative
and non-iterative and further sub classified into independent
or cooperative algorithms.

In iterative algorithms information is bi-directionally
transmitted among local regulators many times within the
sampling time. In non-iterative algorithms information is bi-
directionally transmitted among local regulators only once
within each sampling time. [4] gives a review of distributed
control architectures for LSS.

The aim of independent (non-cooperative) algorithms is
to get better results than the other controllers, which are seen
as opponents. They have also been applied in MPC
distributed control strategies (see, e.g., [5]).

Contrarily, cooperative algorithms intend to find a
compromise for shared variables in order to maximize the
performance of the complete system, worsening if necessary
the performance of individual partitions. [6] and [7] are two
recent examples of the application of cooperative
algorithms, the first one is non-iterative and the second one
is iterative.

The proposed distributed architecture is non-iterative and
cooperative and it uses learning techniques to provide a
more accurate result. It is cooperative because although
every subsystem has its local goal they all share a common
one, so they need to cooperate to achieve it. The solution
sought here is to achieve the Pareto optimal solution (like
cooperative algorithms) provided by an ideal centralized
control structure rather than letting each local regulator tend
towards a Nash equilibrium (like independent algorithms).

Therefore, there is a compromise between local goals and
the common goal. The proposed Architecture uses
reinforcement learned negotiation to balance this situation.

IV. REINFORCEMENT LEARNING.

Learning techniques are powerful tools used mainly in
large and complex systems in dynamical environments. For
the problem of negotiation in cooperative environments
described above the application of RL is a good option.

In [8] the two most important distinguishing features of
RL are given: the trial-and-error search and delayed reward.
The learner is not told which actions to take, as in most
forms of machine learning, but instead must discover which
actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not
only the immediate reward but also the next situation and,
through that, all subsequent rewards.
 Reinforcement learning is based on past experience,
which is used to reduce the need of iterative methods. It is a
well known and formally studied family of learning
techniques. Moreover, depending on the formulation of the
problem and the richness of experience data, the possibilities
of convergence are high.

Although the applications of RL are typically static, many
control applications have been developed for dynamical
environments [4], [10]. Even more, there are some works
that relate MPC and RL, as in [11], where they are seen as
complementary frameworks.

V. NEGOTIATION IN COOPERATIVE ENVIRONMENTS USING

MPC

Negotiation between distributed controllers in LSS is an
open issue. Conventional negotiation techniques are not
suitable for many reasons: calculation time, problems
handling multiple restrictions and multiple objectives and
the impossibility to ensure convergence are the most
common reasons. Although there are successful results,
there is a need of a methodology that can be used for all
kinds of continuous LSS.

One of the most accepted techniques is the augmented
Lagrangian method. The seminal Tamura coordination
method was discussed in the book [12] even before MPC
was first introduced. This method is based on using
augmented Lagrangian technique to negotiate values on
overlapping sub-networks in distributed large scale systems.
Recent works have applied this method [13], [14], [6]. The
main problems with this method are calculation time and
the impossibility to ensure convergence.
 Another negotiation approach is presented in [7], where an
iterative, cooperating method for linear discrete-time
systems is presented. In particular, the proposed approach
guarantees the attainment of the global (Pareto) optimum
when the iterative procedure converges, but still ensures
closed-loop stability and feasibility if the procedure is
stopped at any intermediate iteration. [4]. The main problem
of this approach is again the calculation time.

 In [15], an alternative approach to solve the same problem
was discussed. The novelty of that approach involves
maintaining the distributed structure of all the local
controllers, but changing the objective functions so that the
local agents cooperate. The main problem with this approach
is that there is no systematic method to adjust the objective
functions.

VI. PHILOSOPHY OF THE NEGOTIATIOR AGENT ALGORITHM

All the ideas and the proposed algorithm presented here
are integrated in the MAMPC Architecture described in
[16]. This architecture also provides a methodology that
helps in the development process of the distributed MPC
controller.

The main elements of the MAMPC architecture are MPC
Agents and Negotiator Agents.

Definition 4. MPC Agent. An MPC Agent is the entity that
is in charge of controlling one specific partition of the
system.
There is one MPC Agent for each system partition. The
MPC Agent solves an MPC control problem considering the
internal variables of the partition and cooperating with one
or more Negotiator Agents to determine the optimum value
of the shared variables.

Definition 5. Negotiator Agent. A Negotiator Agent is the
entity that is in charge of determining the value of one or
more shared variables between two MPC Agents.
A negotiator Agent exists for every pair of MPC Agents that
have one or more shared variables in common. Each MPC
Agent is arranged to cooperate so that the negotiator agent
solves the optimization of a common goal by means of a
Reinforcement Learning algorithm. This algoritm is based
on the Q-learning algorithm, and adapted to be applied in
dynamical environments.

 For the partitioning of the network purposes, in the
distributed model the shared control variables have to be
duplicated. This is done in order to provide each MPC-
Agent involved in the relation with an internal
representation of the shared variable.
 The Negotiator Agent seeks to restore the connections
broken in the distribution problem, connecting what was
divided unifiying this dupplicate variables in just one as in
the original model. Therefore, for the Negotiator Agent, this
two control variables are taken as just one.
 The philosophy of the negotiation algorithm proposed is to
consider the shared variables not has a two diferent
problems with conflicting goals but as one problem with just
one goal, like in the centralized approach. The Negotiator
Agent solves the optimization problem for these variable
and communicate the result to the MPC-Agents at each
sampling time. Since the MPC-Agents are able to cooperate,
the MPC- Agents will take the value, set it as a hard
contraint in its respective internal control variables and
recalculate the multivariable control problem.

 The optimization of the Negotiator Agent algorithm is
based on its experience and in maximizing the
reinforcements received of every action taken in the past on
similar situations.
 This algoritm is based on Q-learning algorithm, and
adapted to be applied in dynamical environments. Next, the
formulation of the algorithm is detailed.

A. Formulation of the negotiation-learning problem

Each shared variable constitutes an optimization problem
that is assigned to a Negotiator Agent The internal
architecture of the Negotiator comprises the following
elements: Q-tables, a communication protocol and a
negotiation algorithm. Next, these elements are described in
further detail.

Q-table: the Q-table represents the knowledge base of the
agent, which has a Q-table for each shared variable because
each one can have diferent behaviour and even different
goals.

Q-tables maintain the reinforcement gained for each
possible state and action. A state represents the global state
of each sub-problem, which is established in terms of the
error of the output with respect to the goal. The definition of
the error that MPC Agents use is:

iii yg  (5)

where εi is the error, gi is the goal and yi is the output of
variable i.

The state value is determined by:

2

21 iis
 

 (6)

where εi1 is the error of the variable i of first agent, and εi2 of
the corresponding variable in the second agent. This state is
updated every sampling time.

Actions (a) are all the possible values that the shared
variable can take.

Since states and actions are continuous, they have to be
discretized for the application of the RL algorithm.

The reward function determines the reward of every
action taken by the agent. In this case, the reward function
is:

 sr   (7)

where ρ is a positive constant offset larger than the largest s.

Communication protocol: MPC Agents start the
comunication by transmitting to the Negotiator Agent the
relevant information of the current step: output vector, yi(k),
control actions vector, ui(k), the absolute error with respect
to the goal of the shared variable, εi(k), and the sampling
time k. Then, the algorithm of the Negotiator Agent is
executed. When it finishes, it communicates the resulting
value of the shared variable to the MPC Agents. In order to

solve their MPC control problem they take those values as
restrictions. After that, the procces starts again.

Negotiation algorithm: This algorithm is divided in two
phases: the training phase and the exploitation phase. In both
cases, the rule for updating Q-table values is:

)),((),(asQrasQ   (8)

Where]1,0[ weighs past experience importance.

The training phase creates a new Q-table off-line using
stored data obtained, for instance, from the control actions
determined by the centralized approach.

Once the Q-table is initialized, the exploitation phase can
start. The main difference here is that next step actions are
chosen according to

)),((max' asQa

a
 (9)

in order to select the value of the action (negotiated variable)
with maximum reward for the next time instant.

VII. APPLICATION EXAMPLE

A small drinking water network is used to exemplify the
proposed algorithm and its integration in the MAMPC
architecture. The example was proposed in [17] where a
centralized and a decentralized solution was studied and
compared. This hypothetical water distribution network has
8 states (tanks) and 11 control variables (valves), see
Figure 2. It can be divided into two subsystems. Two MPC
Agents are used to determine the internal control variables
of each subsystem. On the other hand, one Negotiator Agent
is responsible of negotiating the values of the two shared
control variables between the two MPC agents.

The control goal of the application presented in Figure 2
is to keep a volume in tanks around 3m3. The control
objective of the centralized MPC is formulated as follows:

8

2

1 1

min (())
p

x

x

H

n ref
k n

J x k x
 

 
  
 
 

  (10)

The system is decomposed in two partitions:

 },,,,{ 654211 xxxxxp  (11)

 },,{ 8732 xxxp  (12)

 },{ 1110 uuV  (13)

 },,,,,{ 9876211 uuuuuuU  (14)

 },,{ 5432 uuuU  (15)

Figure 2: Case study and its partitioning

The plant is defined by all its state and input variables

},,,,,,,,

,,,,,,,,,,{

11109876543

2187654321

uuuuuuuuu

uuxxxxxxxxPlant  (16)

An important step is to check that the partinioning of the

plant leads to a complete set of partitions. This is
accomplished verifying the following relation:

 VUPPlant  (17)

which can be easily checked here. Thus, the partition is a

complete set of partitions. The control objective of each
partition is the following:

2

1

min (())
p

x i

H

i nx ref
k n p

J x k x
 

 
  
 
 

  (18)

The MAMPC Architecture for this problem is comprised

of two MPC Agents, one for each partition, and one
Negotiator Agent.

The maximum volume in tanks is 20m3, the control value
of the measured variables is from 0.0 to 0.4 except for u2
that is from 0.0 to 0.1. The sampling time is 1 hour and the
prediction horizon is 24 hours. The demands are considered
as measured perturbations. They typically present a
sinusoidal-like behaviour throghout the day.

The core of the MPC agent is an MPC controller. This
controller solves the multivariable problem of one partition
of the plant based on a model. This model contains the set ux
of the agent. Another important part of the MPC Agent is
the communication block. MPC Agents can communicate in
a sophisticated way because they are implemented using the
Agent Oriented Paradigm. This paradigm provides methods,
standards and tools that allow good communication skills.
An off-line training using the RL algorithm presented in
Section VI was carried out in order to provide this
experience to the Negotiatior Agent. As in any RL
algorithm, the proposed architecture is based on the agent
experience and the expected reinforcements. The richer the
agent experience has been, the more efficient the
optimization algorithm will be. Thus, as a good starting
point for the agent training process, control actions

determined from a 48 hours scenario of a centralized MPC
were used as initialization values. From this point, the
training continued taking random actions. The reward was
calculated for all actions.

In the RL exploitation phase, the knowledge acquired in
the training phase is used to solve the MPC distributed
problem through the MAS.

Figure 3: Distributed MAMPC solution (solid -) against centralized
MPC solution (dashed --). Reference (-.-). (a) Tank 1; (b) tank 2;
(c) tank 3; (d) tank 4; (e) tank 5 ; (f) tank 6; (g) tank 7; (h) tank 8.

The results obtained using the proposed MAMPC
Architecture are shown in Figure 3. Each graph presents a
48 hour scenario, showing the trajectory of the output (water
volumes in tanks). The results are contrasted with the
centralized MPC solution (dashed line) for each tank. The
following table presents the optimal objective function value
obtained using the proposed distributed MPC solution
against the centralized.

Jcentralized 13.3712
Jdistributed 14.7201

The objective function for the distributed solution is

larger than the centralized one. However, the graphs show

that, in some cases (tanks 1, 2 and 8, Figure 3a, 3b and 3h,
respectively), the error of the distributed MAMPC
Architecture solution is lower almost during all the scenario.
It is important to note that the volume of tanks 1, and 8
depends directly on the value of the negotiated variables (u10
and u11).

VIII. CONCLUSIONS

The results obtained suggest that the use of MAMPC
architecture based on RL negotiation can converge to the
centralized MPC solution with an acceptable degree of
approximation but taking advantage from the MAS
properties and the tools that the Agent Oriented Paradigm
(AOP) provides for development and implementation. Even
more, the application of learning techniques can provide the
Negotiator Agent the ability of prediction. Training of the
negotiator can be made directly from a centralized MPC or
from human operator driven control. In order to achieve
optimization, no model is needed by the negotiator. Data
from centralized MPC is advisable but non essential. The
type and quality of the training is a very important issue in
order to obtain an efficient optimization. Also the
compromise between exploration and exploitation can be
implemented on-line to enable the system not just adaptation
to the problem but adaptation to changes in time. In this
paper, this capability is not addressed in training but in
exploring during the optimization. Communication protocols
and coordination methods for MAS have to be studied and
tested in a more complex case of study in which many
agents interact.

IX. FURTHER RESEARCH

The MAMPC architecture presented in this work is currently
being tested on the Barcelona water transport network in the
context of the European Project Decentralized and Wireless
Control of Large Scale Systems, WIDE. The Barcelona
water network is comprised of 200 sectors with
approximately 400 control points. At present, the Barcelona
information system receives, in real time, data from 200
control points, mainly through flow meters and a few
pressure sensors. This network has been used as a LSS case
of study to test several LSS control approaches, see [12] and
[18], [19]. As starting point for the application of the
MAMPC Architecture, recent work on centralized [20] and
decentralized MPC [21] applied to the Barcelona network is
being used, as well as, the partitioning algorithm developed
by [17].

REFERENCES

[1] Qin, S. J., & Badwell, T. A. (2003). A survey of industrial Model

Predictive Control Technology. Control Engineering Practice, 11,
pp. 733–764.

 [2] Bemporad, A. and Morari, M. “Robust model predictive control:
A survey,” in Robustness in Identification and Control (Lecture

Notes in Control and Information Sciences), vol. 245. New York:
Springer-Verlag, 1999, pp. 207-226.

[3] Siljack, D.D. (1991). Decentralized Control of Complex Systems,
Academic Press, New York.

[4] Scattolini, R. (2009). Architectures for distributed and hiearical
Model Predictive Control- A Review. Journal of Process Control
, 723-731.

 [5] Camponogara, E., Jia, D., Krogh, B. H., & Talukdar, S.
(2002, Feb). Distributed Model Predictive Control. IEEE Control
Systems Megazine , 44-52

[6] Negenborn, R. R. (2008). Multi-Agent Model Predictive Control
with applications to power networks. Engineering Applications
of Artificial Intelligence , 21, 353-366.

[7] Venkat, A. N., Rawlings, J. B., & Wrigth, S. J. (2005). Stability
and Optimality of distributed Model Predictive Control. IEEE
Conference on Decision and Control / IEE European.

[8] Sutton, & Barto. (1998). Reinforcement Learning, An
introduction. London, England: MIT Press Cambridge
Massachussetts.

[9] Agostini, A., & Celaya, E. Feasible control of complex systems
using automatic learning. in Proc. ICINCO (Barcelona) 2005.

[10] Tesauro, G. (2003). Extending Q- Learning to General Adaptive
Multi-gent System. In Advances in Neural Information
Processing Systems . MIT Press.

[11] Ernst, D., Glavic, M., Capitanescu, F., & Wehenkel, L. (2006).
Model Predictive Control and Reinforcement Learning as a two
complementary frameworks.vii Proceedings of the 13th IFAC
Workshop on Control Applications of Optimisation, (p. 6).

[12] Brdys, M. A., & Ulanicki, B. (1994). Operational control of water
systems, Structures, Algorithms and Applications. Great Britain:
Prentice Hall International.

[13] El Fawal, H., Georges, D., & Bornard, G. (1998). Optimal
control of complex irrigation systems via descomposition-
coordination and the use of augmented lagrangian. In IEEE (Ed.),
in Proc. IEEE Int. conference Systems, man and cybernetics, 4,
pp. 3874-3879. San Diego. CA.

[14] Gómez, M., Rodellar, J., Vea, F., Mantecon, J., & Cardona, J.
(1998). Decentralized adaptive control for water distribution.
Proceedings of the 1998 IEEE International on systems, man and
cybernetics, (pp. 1411-1416). San diego Califoirnia. USA.

[15] Rawlings, J. B., & Stewart, B. (2008). Coordinating multiple
optimization-Based controllers: New opportunities and
challenges. Journal of process control (18), 839-845.

[16] Javalera, V., Morcego, B., Puig, V., (2010). Distributed MPC for
Large Scale Systems using Agent-Based Reinforcement
Learning. Proceedings of the IFAC 12th LSS Symposium Large
Scale Systems: Theory and Applications.

[17] Barcelli, D. (2008). Optimal decomposition of Barcelona´s water
distribution network system for applying dsitribuited Model
Predictive Control. Master thesis . Universitat Politècnica de
Cataluña-IRI-Universitá degli Study di Siena.

[18] Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J.,
& Martí, J. (2004). Optimal control of urban drainage systems. A
case of study. Control Engineering Practice (12), 1-9.

[19] Cembrano, G., Wells, G., Quevedo, J., Pérez, R., & Argelaguet,
R. (2000). Optimal Control of a water distribution network in a
supervisory control system. Control of Engineering Practice (8),
1177-1188.

[20] Caini, E., Puig, V., & Cembrano, G. (2009). Development of a
simulation environmet for water drinking networks: Application
to the validation of a centralized MPC controller for the
Barcelona Case of study. Barcelona, Spain: IRI-CSIC-UPC.

[21] Fambrini, V., & Ocampo Martinez, C. (2009). Modelling a
decentralized Model Predictive Control of drinking water
network. Barcelona, Spain: IRI-CSIC-UPC.

