
A comparison between two representatives of a
Set of Graphs: Median vs Barycenter Graph

Abstract. In this paper we consider two existing methods to generate
a representative of a given set of graphs, that satisfy the following two
conditions. On the one hand, that they are applicable to graphs with
any kind of labels in nodes and edges and on the other hand, that they
can handle relatively large amount of data. Namely, the approximated
algorithms to compute the Median Graph via graph embedding and a
new method to compute the Barycenter Graph. Our contribution is to
give a new algorithm for the barycenter computation and to compare
it to the median Graph. To compare these two representatives, we take
into account algorithmic considerations and experimental results on the
quality of the representative and its robustness, on several datasets.

1 Introduction

The straight advantages of the use of graphs for representation purposes appear
to be useless in some applications due to the lack of mathematical structure in the
graph domain. An illustrative example is the problem of finding a representative
of a set of graphs. While in vector spaces it is easy to compute representatives
such as medians and means with respect to a wide range of distances, in the
graph domain the analogy turns out to be a highly non–trivial task.

In the literature we can distinguish different methodologies to tackle this
problem, both probabilistic and deterministic. Random Graphs such as First-
Order Random Graphs (FORGs) [20], Function-Described Graphs (FDGs) [17,
18] and Second-Order Random Graphs (SORGs) [16]; a Maximally General Pro-
totype [4]; the Median Graph [9] and the Barycenter Graph [8] have been pro-
posed as representatives of a set of graphs, among others. Most of these methods
suffer from a prohibitive computation time or are limited to a restricted family
of graphs.

In this paper we aim to compare those algorithms that on the one hand
are applicable to graphs with any kind of labels in nodes and edges and on the
other can handle relatively large amount of data. Namely, the approximated al-
gorithms to compute the Median Graph via graph embedding and a new method
to compute the Barycenter Graph. It includes some algorithmical considerations
and experiments on several real–world and artificial datasets.

This paper is organized as follows. Some basic definitions are given in Section
2, the computation of the Median Graph is discussed in Section 3 and the pro-
posed computation for the barycenter graph is presented in Section 4. Section 5
is devoted to comparing the Median and Barycenter Graphs. Finally, in Section
6 we draw some conclusions.



2 Definitions

Throughout the paper, let S = {g1, g2, ..., gn} be a set of graphs and let L be
the set of labels of the nodes and edges of the graphs of S. Let U be the set of
all graphs that can be constructed using labels from L, and observe that S ⊆ U .
Also, let d : U × U → R be a distance over the set U .

Given a set of graphs S, the Set and Generalized Median Graphs [9] are
defined as follows.

Definition 1 The set Median Graph ĝ and the generalized Median Graph ḡ of
S are defined as:

ĝ = arg min
g∈S

∑

gi∈S

d(g, gi) and ḡ = arg min
g∈U

∑

gi∈S

d(g, gi).

The set Median Graph is a graph of the set S which minimizes the sum of
distances (SOD) to all the graphs in S. The generalized Median Graph ḡ, is also
a graph that minimizes the SOD to all the graphs in S, but the minimum is taken
over U . Thus, the generalized Median Graph does not necessarily belong to the
original set S. Since the minimum is taken over a larger set, the generalized
Median Graph is expected to be a better representative for the set S of graphs.
Notice that in general more than one set and generalized Median Graph may
exist for a given set S.

Note that the median graph is analogous to the concept of median vector
in a vector space. Similarly, the definition of Barycenter Graph is natural, by
adapting the definition of barycenter of a set of points in Rn.

Definition 2 The set Barycenter Graph b̂ and the generalized Barycenter Graph
(or just Barycenter Graph) b̄ of S are defined as:

b̂ = arg min
g∈S

∑

gi∈S

d(g, gi)
2 and b̄ = arg min

g∈U

∑

gi∈S

d(g, gi)
2.

That is, the Barycenter Graph is the graph in U minimizing the sum of
squared distances (SOSD) to all the graphs in S. The set barycenter is the
argument minimizing the SOSD, when the search is limited to the given set S.

Although definitions 1 and 2 apply for any distance, we let d be the well
known graph edit distance [15]. This choice makes it possible to apply the algo-
rithms below to sets of graphs of different sizes and with any kind of labels.

Finally, we introduce the notion of weighted mean, first presented in [3].

Definition 3 Let g, g′ be graphs. Let I = {h ∈ U | d(g, g′) = d(g, h) + d(h, g′)},
be the set of intermediate graphs. Given 0 ≤ a ≤ d(g, g′), the weighted mean of
g and g′ is a graph

g′′ = WM(g, g′, a) = argmin
h∈I

|d(g, h)− a|.



That is, given two graphs, g and g′, and a parameter a, the weighted mean is
an intermediate graph, not necessarily unique, whose distance to g is as similar
as possible to a. Consequently, its distance to g′ is also the closest to d(g, g′)−a.
Again, we let d be the graph edit distance.

Remark 1. Note that, the so called error, ε(a) = |d(g, g′′)− a|, is not necessarily
null. This fact, regardless of the exactness of the computation, depends on the
properties of the search space U .

3 Computation of the Median Graph

The most popular exact algorithm is called Multimatch [10], and was first pre-
sented by Münger and Bunke in 1995. This approach, as any exact Median Graph
computation, suffers from a high computational complexity, and its application
is very limited. The use of suboptimal methods is thus the unique feasible option
to extend the use of the Median Graph to more realistic sets of graphs.

Approximate algorithms developed so far include a genetic based strategy [9,
10] and one greedy-based algorithm [7]. Both solutions generally apply some kind
of heuristics in order to reduce both the cost of the graph distance computation
and the size of the search space. Finally, the most recent approach, which is
based on the proposal by Riesen et al [14], consists on embedding the graphs
into an auxiliary Euclidean space. Let us give a more thorough explanation of
this last technique, since the algorithms that we have used in the experiments
presented in this paper follow it.

3.1 Median Graph via Graph Embedding

The general embedding procedure is composed of three main steps, detailed in
the following.

– Step I: Graph Embedding in a Vector Space: Each graph in the set S is
embedded into an n-dimensional vector space. The vector representation pi
of a graph gi of the set is obtained by computing its distance to all the graphs
in the set. More precisely, the j-th coordinate of the vector corresponds to
the distance to the j-th graph of the set.

– Step II: Median Vector Computation: This step consists in computing
the median vector p̄ of the points obtained in the first step. Although the
Euclidean Median cannot be calculated in a straightforward way [1], an ap-
proximation, as good as desired, can be obtained by means of the Weiszfeld’s
algorithm [19]. It is an iterative procedure that converges to the solution.

– Step III: Going Back to the Graph Domain: The last step consists in
going back to the graph domain converting the median vector into a graph
g̃. This graph is taken as the Median Graph of the set. Different options on
how to perform this last step have been proposed.



Linear Interpolation Procedure. In this algorithm from [6], once the median
vector p̄, is computed, the two closest points, p1 and p2 without lost of generality,
are used to obtain the approximate median. The approximate generalizedMedian
Graph, g̃, is then the weighted mean of g1 and g2, with a = 1

2d(g1, g2). We will
refer to this algorithm as linear embedding (MLE).

Triangulation Procedure. In this case, the three closest points to p̄ are selected
for the approximated generalized Median Graph computation. This computation
consists on generating an intermediate weighted mean using two of the three
points followed by a second and definitive weighted mean which makes use of
the third point and the previous weighted mean. The procedure, referred to as
triangulation embedding (MTE), was proposed and explained in [6].

Recursive Procedure. A third option is to take into account all the points, this
is, all the graphs in the set S in Step III. That is what the authors propose in
[5]. We will refer to this algorithm as recursive embedding (MRE).

4 Computation of the Barycenter Graph

The algorithm that we propose to approximate the Barycenter Graph is based
on the following geometrical property of the barycenter in Euclidean spaces.

Lemma 4 Given a set P = {p1, p2, . . . , pm} of m points with pi ∈ Rn for
i = 1 . . .m, the barycenter

Bar(P ) = arg min
y∈Rn

m∑

i=1

||pi − y||2,

of the set P satisfies, for any 1 ≤ j ≤ m,

Bar(P ) =
1

m
pj +

m− 1

m
Bar(P \ {pj}). (1)

As it is deduced from equation (1), Bar(P ) lies in the segment with ends pj
and Bar(P \ {pj}) and

‖Bar(P \ {pj})−Bar(P )‖ = (m− 1)‖Bar(P )− pj‖,

where ‖ · ‖ denotes the Euclidean distance. Therefore, in Euclidean spaces, the
barycenter ofm points can be recursively computed by subtracting a point in the
set and computing the barycenter of the remaining ones. Then, the barycenter
is easy to compute because it belongs to a segment with known ends and the
distance to these ends is also known.



4.1 Algorithm

The procedure explained above can be easily adapted to the domain of graphs,
since the last step corresponds to the computation of the weighted mean. The
resulting algorithm, Algorithm 1, may be considered an extension to the al-
gorithm presented in [8]. The main contribution is that the graph edit distance,
instead of the geometrically restricted distance function required in [8], can be
used as the graph similarity measure of the graph domain.

Algorithm 1: Algorithm to approximate Barycenter Graph computation.

input : A set S = {g1, . . . , gn} of n graphs
output: b̃ = Approximate Barycenter Graph of S
begin

1 B2 = WM(g1, g2, d(g1, g2)/2)
2 for 3 ≤ m ≤ n do
3 Bm = WM(Bm−1, gm, d(Bm−1, gm)/m)

4 Return b̃ = Bn.

The output of Algorithm 1 is an approximation b̃ ≈ b̄ to the barycenter
graph. This inaccuracy is on the one hand due to the error ε(a), and a conse-
quence of the suboptimal computation of distances and weighted means, which
is unavoidable unless the number and size of the graphs of the set S is very
small. On the other hand, it cannot be theoretically proved than the algorithm
minimizes the SOSD. Nevertheless, the fact that our method gives results with
small SOSD is supported by experimental results.

It is important to remark that there is no need to transform the graphs into
vectors to apply our method. This means that the structural information of the
graphs is preserved at every step in the process.

4.2 Different sorting schemes

In Algorithm 1 the graphs are taken as they arrive, without any sorting. Then
the question whether the ordering of the input plays a non-negligible part in the
accuracy of the approximation arises. For this reason, we have developed and
implemented two methods, the Ascendent SOSD–based sorting (BSA) and the
Descendent SOSD–based sorting (BSD), to study the effect of the ordering.

In the BSA method the graphs of the input are ordered upwards, such that
the first graph, g1, is that with minimum SOSD: the set barycenter. In the BSD
method, the ordering of the graphs is the inverse.

The method explained in Section 4.1, without preprocessing the data, will
be referred to as unordered barycenter computation method (BN). We also
compute the set barycenter (SB).



5 Comparison Between Median and Barycenter Graphs

In this section we aim to compare the quality of the median and the Barycenter
Graphs, as representatives of a set of graph. To do so, we compare experimental
results on three real–data–based and five artificial datasets, some characteristics
of which are displayed in Table 1. The LetterLOW, LetterHIGH, Molecules,
Mutagenicity and Webpages datasets are from [12], where more information on
them is available. The Synthetic datasets were created by the authors.

Table 1. Some dataset characteristics: size, number of classes (#c) and the average
and maximum size of graphs.

Database Size # c ∅|g| max|g| Database Size # c ∅|g| max|g|
LetterLOW 2,250 15 4.7 8 Webpages 2,340 6 186.1 834
LetterHIGH 2,250 15 4.7 8 SyntheticSmall 2,000 10 10 13
Molecules 2,000 2 15.7 95 SyntheticMedium 2,000 10 50 62
Mutagenicity 4,337 2 30.3 417 SyntheticLarge 2,000 10 100 122

The exact computation of both the generalized Median Graph and the gen-
eralized Barycenter Graph is unaffordable for these data. To carry on the ex-
periments for this paper we have selected those suboptimal algorithms that can
handle graphs with thousands of nodes. Table 2 shows the methods used.

Table 2. Methods to Approximate the Median and Barycenter Graphs and number
of distances and weighted means that are computed for each of them, where n is the
number of graphs in the given set S.

Method Shortening #distances #WMs
Medians
Set Median SM O(n2) 0
Linear Interpolation Embedding MLE O(n2) 1
Triangulation Embedding MTE O(n2) 2
Recursive Embedding MRE O(n2) O(n)
Barycenters
Set Barycenter SB O(n2) 0
Unordered Barycenter Computation BN O(n) O(n)
Ascendent SOSD–Based Sorting BSA O(n2) O(n)
Descendent SOSD–Based Sorting BSD O(n2) O(n)

5.1 Algorithmical Considerations

Before showing the result of our experiments, we want to compare the different
algorithms in terms of time complexity. Table 2 shows the number of distances



and weighted means that need to be computed for each of the methods, where
n is the number of graphs in the given set S.

The embedding procedure has been shown to be the only method for the Gen-
eralized Median Graph computation potentially applicable to real world prob-
lems, due to its lower computational demand [6]. Still, the embedding step (Step
I) requires the computation of all the pairwise distances of the graphs in the
given set S. That means that the number of distances computed is quadratic on
the number n of graphs. In terms of computation time Step II is negligible, and
Step III does not depend on n if MLE or MTE are used. The MRE procedure
computes a linear, on n, number of weighted means.

In all the barycenter computation algorithms from Table 2, a linear number
of weighted means must be computed. In the case of BSA and BSD, the compu-
tation of a quadratic number of distances is also needed. The number of distance
computations that requires the unsorted algorithm BN, is linear on n, instead.

In this paper, we have chosen to follow [11] and [13] for the graph edit distance
computation and [3] to compute the weighted mean. This makes the graph edit
distance computation more time demanding than the weighted mean, and the
BN method the fastest one.

It is important to remark, then, that BN may be an interesting choice from
the computational point of view. At sight of conclusions drawn in [2], the loss of
quality of the approximation in comparison with other barycenter computations
is small when special robustness against outliers is not needed. Finally, let us
note that the BN method is incremental, making it unnecessary to store all the
information to be processed. The rest of the algorithms are not.

5.2 Stability

Some of the methods that we are considering, namely MRE, BSA and BSD
compute n − 1 intermediate approximations, being the last one taken as the
definitive one. In this section we study, experimentally, the evolution of the
quality of the approximation along these n − 1 steps. Recall that the Median
Graph aims to minimize the SOD while the Barycenter Graph approximates
the graph with minimum SOSD. For this reason, SOD and SOSD will be our
reference values.

In this experiments we compute the Median Graph of several graph sets for
letter, molecule, mutagenicity and web databases. More precisely, we compute
the median and the barycenter of sets of 50 and 100 randomly chosen graphs
belonging to the same class, and we do so for all the classes in each database
and using each of the methods we want to evaluate. Each of these experiments
is repeated 10 times.

As an example, Figure 1 shows the evolution of the SOD and SOSD, cor-
respondingly, for the different methods in the experiments carried out with the
Webpages dataset with sets of 50 graphs. We want to remark that the meth-
ods to compute the barycenter show a convergent tendency, while the evolution
of the recursive embedding method is more irregular. Similar result concerning
other datasets are skipped due to space constraints.
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Fig. 1. Mean of the evolution of the SOD of the Median (left) and the SOSD of the
Barycenter (right) for the Web dataset

5.3 Distance to prototype

In this section we present a second experiment, devoted to comparing the median
and the barycenter as representatives of a given set of graphs. To this end,
we have performed experiments with LetterLOW, LetterHIGH and the three
Synthetic databases. All this datasets have been created by distorting initial
prototypes. This allows us to compare the medians and barycenters provided by
the different methods, to the original prototype. Under the assumption that the
best possible representative is the prototype itself, we consider that the smaller
the distance to the prototype, the better the representative is.

For each of the datasets, we have computed the representative of sets of
different sizes (50 and 100 for letters and 10, 50 and 100 for Synthetics) using
each of the methods displayed in Table 2. In each database, 20 sets of graphs
are considered for each class. Figure 2 shows the mean distance of the resulting
approximation to the prototype, taken over all the classes and all the repetitions.

In the LetterLOW and LetterHIGH datasets we observe that the set median,
followed by the set barycenter is the closest representative to the prototype.
Recall that, by definition, the generalized Median Graph has lower or equal
SOD than the set median and similarly, the generalized barycenter has lower or
equal SOSD than the set barycenter. This means that the set median and the
set barycenter are expected to be worse representatives. In other words, they are
the dummy approximations to beat.

We conclude that for the letter datasets, the approximated algorithms used
for median and barycenter computation, although they have been experimen-
tally validated [5, 6], fail to give satisfactory results. Let us remark that these
databases suffer from a high level of distortion, potentiated by the fact that the
graphs have few nodes. The embedding technique for Median Graph computation
gives better representatives than the barycenter techniques. We may conclude
that the Median Graph shows a higher robustness against large distortion. That
it behaves better in difficult datasets, in other words.

In the Synthetic databases, the set median and the set barycenter are out-
performed by all the algorithms to compute the generalized barycenter. Three
facts are to be underlined. First, that the Barycenter Graphs give representa-
tives closer to the prototype than the Median Graphs computed via embedding.
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Fig. 2. Mean distance to prototype of several approximations to the barycenter and
the median graphs, performed on letterLOW, letterHIGH, SyntheticSmall, Synthet-
icMedium and SyntheticLarge datasets.

Secondly, that the BSD gives the closest representatives to the prototype in the
three Synthetic datasets. Thirdly, that the BN method, which as we said before
is faster to compute than the rest of the methods, gives similar results to the
rest of the barycenter methods.

6 Conclusions

In the present paper we have compared two representatives of a set of graphs,
the median graph and the barycenter graph. Since their exact computation is
unaffordable, this comparison is carried out by means of several algorithms that
provide approximate medians and barycenters.

By comparing these algorithms we have concluded that an approximation to
the barycenter can be computed faster than an approximation to the median.
Also, we have noted that the algorithms for barycenters show a high level of
convergence in the process of computing intermediate solutions, the last of which
is the definitive approximation.

Finally, we have designed an experiment to discuss whether, among the me-
dian and the barycenter graph, one is better that the other as a representative.
We have observed that results are not uniform for different datasets, which makes
us conclude than none of them can be said to be better than the other. Nev-
ertheless, we remark that, for datasets for which the grade of distorsion is not
very high, barycenters give better representatives.
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