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Abstract— In this paper, a decentralized model predictive
control (DMPC) strategy for drinking water networks (DWN)
is proposed. The DWN is partitioned in a set of subnetworks
using a partitioning algorithm that makes use of the topology
of the network, the information about the actuator usage and
heuristics. A suboptimal DMPC strategy was derived that
allows the hierarchical solution of the set of MPC controllers
used to control each partition. A comparative study between the
centralized MPC (CMPC) and DMPC approaches is developed
on the case study, which consists in an aggregate version of the
Barcelona DWN. Results have shown the effectiveness of the
proposed DMPC approach in terms of the computation time
while an admissible level of suboptimality is obtained in all the
considered scenarios.

I. INTRODUCTION

Optimization of drinking water networks (DWN) has

gained much attention in the past few decades since water

management in urban areas is a subject of increasing concern

as cities grow. Limited water supplies, conservation and

sustainability policies, infrastructure complexity as well as

the satisfaction of water supply to the network users by

appropriate flow, pressure and quality levels make water

management a challenging control problem. Decision sup-

port systems provide useful guidance for human operators

in complex networks, where resources management “best”

actions are not intuitive. Optimization and optimal/predictive

control techniques provide an important contribution to a

smart management strategy computation for DWNs, see [1],

[2], [3], among others.

Research in this field is spurred by the complexities

associated with the connection management of multiple

interconnected reservoirs in the case of large-scale networks,

which still exceeds the capabilities of existing optimization

tools in finding optimal actions in an appropriate com-

putational time. Mathematical programming techniques are

one of the many available tools and most widely used.

Their main objective consists in generating control strategies

ahead in time, using techniques such as model predictive

control (MPC), to guarantee a competent network service

and a certain degree of reliability in probability, while si-

multaneously achieving certain objectives as minimization of
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supply and pumping costs, maximisation of water quality and

leak prevention, among others. This optimization problem

is usually large and non-linear, because of pump, pipeline

pressure and performances index characteristics. So far, the

aforementioned control methods for water systems based on

MPC have been implemented in a centralized manner over

SCADA systems using a traditional hierarchical management

architecture placed above the process instrumentation and

basic regulatory control layers. However, such a centralized

architecture leads to implementation problems because of

dimensionality, multi-time scales and spatial distribution of

DWNs. Complexity of the underlying optimization problem

is not the only reason. The main hurdle for plant-wide

centralized control is that it is not scalable: it requires a

huge model, which needs to be rebuilt on every change

of topological configuration. Subsequently, a model change

would require re-tuning the complex controller. It can be seen

that the cost of setting up and maintaining this monolithic

solution is prohibitive. Moreover, any maintenance operation

over even a single controlled element, which of course

implies to turn of that element, would change the complex

centralized scheme. Then, the possible choices are to use

a control action who ignores the absence of the element

under maintenance (or simply that is temporary unavailable),

with all consequential implications, or to switch the whole

control system considering the availability of several control

configurations.

A way of circumventing these issues is to look into decen-

tralized model predictive control (DMPC) techniques, where

networked local MPC controllers are in charge of controlling

the actuators related to a part of the whole network. In

this line, this paper proposes a DMPC strategy for DWNs

based on a hierarchical structure. DMPC control is still in

its first infancy. References [4] and [5] present a review of

the research in this topic. Some recent DMPC references are

[6], [7] and [8], among others. The main contribution of this

paper relies on the computation time reduction for finding

the proper control actions when the proposed DMPC design

is used, maintaining a convenient level of sub-optimality

of the computed solutions with respect to a given set of

control objectives associated to a centralized MPC (CMPC)

controller design.

The paper is structured as follows. In Section II the mod-

elling principles for DWNs are presented. Section III presents

the basic ideas of the MPC strategy for the management

of such networks. Section IV describes the algorithm for

DWN partitioning as well as discusses the main issues of

the hierarchical and decentralized control strategy proposed
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in this paper. Section V describes the case study of the paper,

discusses the implementation of the proposed hierarchical

DMPC in that case study and presents the most relevant

results. Finally, the main conclusions and further work close

the paper in Section VI.

II. DWN CONTROL-ORIENTED MODELLING PRINCIPLES

Control-oriented modelling principles for DWNs have

been widely presented in the literature, see [2], [9]. In

order to obtain a control-oriented model of the DWN, the

constitutive network elements as well as their basic rela-

tionships should be discussed. The reader is referred to the

aforementioned references and to [10] for further details of

DWN modelling and specific insights related to the case

study of this paper.

Let us consider the main physical constraints of a DWN

system given by the variables related to the tank volumes

and manipulated flows. For the case of tank volumes, the

physical constraint related to the range of volume capacities

for the i-th tank is expressed as

xmin
i ≤ xi(k) ≤ xmax

i , (1)

where xmin
i and xmax

i denote the minimum and the maximum

volume capacity, respectively, given in m3. On the other

hand, the physical constraints related to manipulated flows

through the system actuators are expressed as

umin
i ≤ ui(k) ≤ umax

i , (2)

where umin
i and umax

i denote the minimum and the maximum

flow capacity, respectively, given in m3/s.

By considering the mass balance in the tanks, the control-

oriented model of a DWN in discrete-time state-space form

can be written as

x(k + 1) = Ax(k) + B u(k) + Bp d(k), (3)

where x ∈ R
n is the state vector corresponding to the

water volumes of the n tanks, u ∈ R
m represents the vector

of manipulated flows through the m actuators (pumps and

valves), and d ∈ R
p corresponds to the vector of the p water

demands (sectors of consume). A, B, and Bp are system

matrices of suitable dimensions. Since the demands can be

forecasted and they are assumed to be known, d is a known

vector containing the measured disturbances affecting the

system. By also including static relations at network nodes,

model (3) can be further rewritten as

x(k + 1) = Ax(k) + Γ υ(k), (4a)

E1 υ(k) = E2, (4b)

where Γ = [B Bp], υ(k) = [u(k)T d(k)T ]T , and E1, E2

are matrices of suitable dimensions dictated by the network

topology.

III. MPC APPLIED TO DWN

Along the last few years, MPC has shown to be one

of the most effective and accepted control strategies for

large-scale complex systems [11]. The objective of using

this technique for controlling DWNs is to compute, in

a predictive way, the proper input actions in order to

achieve the optimal performance of the network according

to a given set of control objectives. MPC strategies have

some important features to deal with complex systems (i.e.,

DWNs) such as the amenability to including disturbance

(demand) prediction, physical constraints and multi-variable

system dynamics and objectives in a relatively simple way.

This section describes the main ideas of the DWN control

within the MPC framework, in accordance with the following

operational objectives:

1) Minimizing water production and transport cost:

The main economic costs associated with drinking water

production (treatment) are due to chemicals, legal canons and

electricity costs. Delivering this drinking water to appropriate

pressure levels through the water transport network involves

important electricity costs in pumping stations. For this study,

this control objective is described by the expression

f1(k) = Wα (α1u(k) + α2(k)) u(k), (5)

where α1 corresponds to a known vector related to the

economic costs of the water according to the selected source

(treatment plant, dwell, etc.) and α2(k) is a vector of suitable

dimensions associated to the economic cost of the flow

through certain actuators (pumps only) and their control cost

(pumping). Note the k-dependence of α2 since the pumping

effort has different values according to the moment within

the day (electricity costs). Weight matrix Wα penalizes the

control objective related to economic costs in the optimiza-

tion problem behind the MPC controller design.

2) Safety storage term: The satisfaction of water demands

should be fulfilled at any time instant. However, some risk

prevention mechanisms should be introduced in the tank

management so that, additionally, the stored volume is prefer-

ably maintained around a given safety value for eventual

emergency needs and to guarantee future water availability.

A quadratic expression for this goal is used and written as

follows:

f2(k) = (x(k) − β xmax)T Wx (x(k) − β xmax), (6)

where β is a term which determines the security volume to be

considered for the control law computation and matrix Wx

defines the weight of the objective in the cost function. This

term might appear as unnecessary because of the guarantees

of the MPC design but, since a trade off between the other

costs and the volumes is present, the controller would tend

to keep the lowest possible the tanks water volumes. This

would reduce the robustness to demands forecasts miss-

predictions, hence maintaining a security volume makes

sense considering such issue.

3) Smoothness of the control actions: Pumping stations

must, in general, avoid excessive switching: valves should

operate smoothly in order to avoid big transients in the

pressurized pipes which can lead to poor pipe condition. Sim-

ilarly, water flows requested from treatment plants must have

a smooth profile due to the plants operational constraints.
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Moreover, the proposed approach do not deal with pressure

issues, hence a lower level controller to keep the the desired

flow is supposed. The use of a smooth reference surely

helps the controller performance. To obtain such smoothing

effect, the proposed MPC controller design includes a third

term in the objective function to penalize control signal

variation between consecutive time intervals, i.e., ∆u(k) =
u(k) − u(k − 1). This term is expressed as

f3(k) = ∆u(k)T Wu ∆u(k), (7)

where Wu corresponds to a weight matrix of suitable di-

mensions. Therefore, the multi-objective performance func-

tion J(k), merging the aforementioned control objectives is

defined as

J(k) =

Hu−1
∑

i=0

f1(k+i)+

Hp
∑

i=1

f2(k+i)+

Hu−1
∑

i=0

f3(k+i), (8)

where Hp and Hu correspond to the prediction and control

horizons, respectively. In (8), index k represents the current

time instant while index i represents the predicted time along

the horizons. The highest priority objective is the economic

cost, which should be minimized while obtaining acceptable

satisfaction of security and control signals smoothness ob-

jectives.

Collecting the parts described in previous subsections, the

MPC design follows the traditional procedures presented

for instance in [11], consisting in an optimization problem

where a cost function (8) is minimized subject to (1), (2)

and (4). Once the minimization is performed, a vector of

control actions over a given horizon is obtained. Only the

first component of that vector is considered and applied over

the plant. The procedure is repeated for the next time instant

taking into account the feedback measurements coming from

the system.

IV. DWN PARTITIONING AND HIERARCHICAL DMPC

APPROACH

The main idea of the DMPC is that the on-line opti-

mization behind the MPC design for large-scale systems

can be converted into a small-scale MPC controller, each

one involving less computationally demanding optimization

problems. The fact to apply any DMPC scheme requires

partitioning the DWN in some way.

A. DWN Partitioning

In this paper, the partitioning of the DWN is carried

out in two steps. First, the sensitivity-based partitioning

algorithm is applied over the system [12], and then, in

order to improve the resultant partitions, heuristic procedures

are used. The partitioning algorithm needs the information

explained below.

The topology of the network: Collected in the matrices

Asp =

[

A 0
0 0

]

and Bsp =

[

B
E

]

,

where A, B are the system matrices in (3), subscript sp
identifies the matrices employed for the system decomposi-

tion, and E , [E1 E2] is the matrix related to the equality

constraints (4b).

The usage level of each actuator: This is an optional

parameter but it is very useful since it can provide a

more accurate partition. Unfortunately, despite its utility, this

parameter has a drawback related to the requirement of a

previously computed set of control signals. In this case study,

to calculate the usage of the actuators, a previous simulation

using a CMPC is needed, what allows to obtain the total

amount of water flow through each actuator. This information

offers the algorithm a criteria to evaluate how important is a

single actuator.

A threshold of the actuator flow magnitude: This parame-

ter, together with the actuator usage level, is used to neglect

some actuators that have less effect in the entire system

behaviour.

Once all the input parameters are provided to the al-

gorithm, a trial and error heuristic procedure is started,

changing the threshold value of the actuator flow magnitude

in order to find a reasonable amount of partitions for the

considered DWN. In order to improve the quality of the parti-

tions, some other indicators might be taken in to account. For

further details regarding an automatic partitioning algorithm

applied to DWNs, see [12].

B. Hierarchical DMPC Approach

In case that the obtained partitions do not have shared

control variables (independent partitions), the DMPC ap-

proach proposed in [13] could be implemented. However,

compositional elements in a DWN are in general highly

cross-related, then interactions between the resultant sub-

networks are always present. So, in order to control each

one of the network partitions, a hierarchical DMPC control

approach is proposed, which implies solving the MPC prob-

lems associated to the DWN partitions with a preestablished

order.

The hierarchical-based approach consists in defining sets

of shared variables (control inputs) depending on their

connection direction, i.e., if the control flow goes from a

Partition A to a Partition B or vice versa. Once these sets

are defined, it is necessary to determine the partition with

the higher amount of incoming and outcoming connections.

This fact locates that partition at the top of the hierarchical

pyramid. Next, other partitions with less connections with

respect to this latter are defined and the criterion is again

applied for the following partition. Notice that, from now

on, two or more partitions can be located below the one in

the top, fact that defines the hierarchical pyramid.

Figure 1 depicts a particular case where a DWN has

been partitioned in three sub-networks. Here, Subsystem

A is considered the most important in the hierarchy as

well as Subsystems B and C have the same ranking below

Subsystem A. Further, ua, ub and uc determine three sets

of control variables which are shared between the mentioned

subsystems. As uc corresponds to a vector of outcoming

variables from Subsystem A, those variables are considered

in time instant k as demands (measured disturbances) for the
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MPC controller related to that partition. Their initial values

are computed in the optimization problem solved in k − 1
behind the MPC controller associated to Subsystem C since

uc is a set of incoming variables for this subsystem. Over

a horizon Hp, the values of uc are set as constants for the

MPC of Subsystem A.

SUBSYSTEM B

SUBSYSTEM A

SUBSYSTEM C

ua

ub
uc

Fig. 1. Conceptual scheme for a DNW partitioned in three sub-networks.

On the other hand, sets of control variables ua and ub are

taken as optimization variables in the optimization problem

of the MPC for Subsystem A since they are incoming

variables for that subsystem. This fact leads to consider that

ua and ub are demands in time k for Subsystems A and C,

respectively. Notice that the values of ua and ub determined

by the MPC controller of Subsystem A are only optimal for

that subsystem. Thus, it induces suboptimal performances in

Subsystems B and C. Also notice that for the first iteration

of the control scheme, the values of uc are not defined.

In this case, the corresponding values obtained from the

implementation of a CMPC are used. An alternative way

to solve this would be the computation of a set of feasible

solution for the optimization problem related to Subsystem

C defined in the first iteration and then building the initial

vector uc.

V. APPLICATION DESCRIPTION AND RESULTS

A. Case-study Description

The water transport network of Barcelona is used as the

case study of this paper. This network covers a territorial

extension of 425 km2, with a total pipe length of 4470 km.

Every year, it supplies 237,7 hm3 of drinking water to a

population over 2,8 millions of inhabitants. The network has

a centralized telecontrol system, organized in a two-level

architecture. At the upper level, a supervisory control system

installed in the control centre of AGBAR1 is in charge of

managing the whole network by taking into account opera-

tional constraints and consumer demands. This upper level

provides the set-points for the lower-level control system.

The lower level optimizes the pressure profile to minimize

1AGBAR: Aguas de Barcelona, S.A. Company which manages the
Barcelona DWN.

losses due to leakage and to provide sufficient water pressure,

e.g., for high-rise buildings.

This paper considers an aggregate version of the Barcelona

DWN, which is a representative version of the entire network

developed cooperatively by the AGBAR Company and the

SAC research group. In the aggregate model, some consumer

demand sectors of the network are concentrated in a single

point. Similarly, some tanks are aggregated in a single

element and the respective actuators are considered as a

single pumping station or valve.

The control variables are required to compute the change

in the state of the network produced by a control action.

There, the model just considers the mass conservation law

related to water flows, so the equations that describe the

system dynamics are integrator-like, hence linear. A further

extension of the model would include, for instance, the non-

linear relations between flow and pressure.

A convenient description of the model of a DWN is

obtained by considering the set of flows through the actuator

elements as the vector of control variables and the set of

reservoir volumes as a vector of observable state variables.

The amount of water demand from the network users is

known at each time instant so it is considered as measured

disturbances. Nevertheless, at each time over the prediction

horizon this magnitude should be estimated, what implies

the employment of the appropriated demand forecasts to be

used with the prediction model of the system.

The aggregate network (Figure 2) is comprised of 17 tanks

(state variables), 61 actuators (26 pumping stations and 35

valves), 11 nodes and 25 main sectors of water demand

(model disturbances). The model has been simulated and

compared against real behaviour assessing its validity. The

detailed information about physical parameters and other

system values are reported in [10].

B. Simulation Scenarios and MPC Tuning

The model parameters and measured disturbances (de-

mands) have been supplied by AGBAR. Demands data

correspond to the consume of drinking water of the city

of Barcelona during the year 2007. Using this information,

some scenarios are considered by modifying some controller

parameters presented in Section III. They are the safety

volume, denoted as β, and the weight matrices in the cost

function (8). Regarding β, this parameter has been set to the

following values:

• the 80% of xmax, that is denoted as µ = 0.8 xmax. This

value is purely illustrative to show the effectiveness of

the MPC controller;

• the minimum tank volumes requested to satisfy the

demands (except for tanks x5, x6 and x8 in Figure 2,

since they are considered as sources due to their strate-

gical management requirements and network location).

This second vector of safety volumes, denoted as η,

is more convenient since it keeps the volumes of the

tanks as low as possible, satisfying the demands at each

time instant. These minimum volumes are taken from

previous studies reported in [14].
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Fig. 2. Aggregated case of the Barcelona Drinking Water Network

About the second set-up parameter, note that the MPC

controllers designed for the case study of this paper do not

consider the inclusion of the economic costs as a control

objective. This fact is mainly due to data availability when

this paper was prepared. However, this issue is currently

underway. Let (ωx, ω∆u) be the couple of weights associated

to the weight matrices Wx = ωx I and W∆u = ω∆u I used

in (6) and in (7), respectively. According to this, in this case

study are used two couple of weights that are (1, 1) and

(1, 0.1). These particular values of the weights are carefully

selected, according to a previous study based on trial and

error tuning procedure [14] and corresponding with two

difdferent prioritization scenarios of the control objectives

for the particular case study. Hence, the following scenarios

have been defined:

• Scenario 1: β = µ and (ωx, ω∆u) = (1, 1);
• Scenario 2: β = µ and (ωx, ω∆u) = (1, 0.1);
• Scenario 3: β = η and (ωx, ω∆u) = (1, 1);
• Scenario 4: β = η and (ωx, ω∆u) = (1, 0.1).

C. Barcelona DWN Partitioning

Using the partitioning algorithm presented in the pre-

vious section, the Barcelona DWN is partitioned in three

subsystems, as depicted in Figure 2 in different colours.

The partition follows the scheme shown in Figure 1. The

subsystems are defined by the following elements:

Subsystem 1: Composed by the tanks xi, i ∈ {1, 2}, inputs

uj , j ∈ {1 : 5}, demands dl, l ∈ {1, 2, 3}, and nodes nq,

q ∈ {1, 2}. It is represented in Figure 2 with red colour and

corresponds to Subsystem B in Figure 1.

Subsystem 2: Composed by the tanks xi, i ∈
{3, 4, 5, 12, 17}, inputs uj , j ∈ {7 : 16, 18, 19, 25, 26, 32, 34,
40, 41, 47, 48, 56, 60}, demands dl, l ∈ {4 : 7, 15, 18, 22},

and nodes nq, q ∈ {3, 4, 7}. It is represented in Figure 2 with

green colour and corresponds to Subsystem A in Figure 1.

Subsystem 3: Composed by the tanks xi, i ∈ {6 :
11, 13 : 16}, the inputs uj , j ∈ {6, 17, 20 : 24, 27 :
31, 33, 35 : 39, 42 : 46, 49 : 55, 57, 58, 59, 61}, demands

dl, l ∈ {8 : 14, 16, 17, 19, 20, 21, 23, 24, 25}, and nodes nq,

q ∈ {5, 6, 8 : 11}. It is represented in Figure 2 with blue

colour and corresponds to Subsystem C in Figure 1.

According also to the scheme in Figure 1, vectors ua, ub

and uc with the shared control variables are defined as

ua = u6, ub = [u20, u21]
T ,

uc = [u18, u32, u34, u40, u47, u56, u60]
T .

D. Application of the Hierarchical DMPC Approach

Since the obtained Barcelona DWN partitions share some

control variables, the hierarchical DMPC approach described

in previous section may be suitable. This approach implies

solving an MPC problem for each of the DWN partitions

with a pre-established order, which is given as follows:

MPC Subsystem 3: It needs the values for the shared ele-

ments u18, u32, u34, u40, u47, u56, u60, which are considered

as demands, values that in the next iterations will be provided
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TABLE I

COST RESULTS OBTAINED FOR THE CONSIDERED CONTROL OBJECTIVE

AND SCENARIOS

SCENARIO CENTRALIZED MPC DECENTRALIZED MPC
P

fi Cost
P

fi Cost
[e.u.] [e.u.]

SCENARIO 1 58.0787 220.08 59.9548 223.49 (1.55%)
SCENARIO 2 57.5404 219.73 59.1040 223.90 (1.90%)
SCENARIO 3 74.0044 197.85 76.1662 220.21 (11.30%)
SCENARIO 4 74.3957 199.12 78.4981 200.43 (0.66%)

by the optimal inputs calculated at Subsystem 2. For the first

step, these values are available from a previous simulation of

a CMPC. The MPC of this subsystem at each step generates

the optimal inputs that will represent the value of known

disturbances u20, u21, u6 for the Subsystems 1 and 2.

MPC Subsystem 2: It considers the elements u20, u21

as demands. At each step, the value of these elements are

provided by the previous execution of the MPC of the

Subsystem 3. Moreover, this MPC provides for the next step

the values for the actuators u18, u32, u34, u40, u47, u56, u60,

that are considered as demands in the Subsystem 3.

MPC Subsystem 1: It considers the element u6 as a

demand. At each step, the value of this element is provided

by previous computations from the MPC related to the

Subsystem 3.

E. Results Discussion

A hierarchical DMPC controller is compared with a

CMPC in the considered scenarios. The control objectives

values obtained using both controllers as well as the compu-

tational times are presented in Tables I and II. Moreover, the

economical cost has been evaluated even if both controllers

do not optimize this term. This cost has been evaluated

employing a water network simulation tool developed in

MATLAB/SIMULINKr [14]. Table I shows that the lost of

performance is not so big for all the scenarios. Moreover,

it can be noticed from Table II that the DMPC controller

requires half of computational time than the CMPC controller

to solve one iteration in the worst-case. Thus, despite the

DMPC approach inevitably leads to a small loss of perfor-

mance, the benefits in terms of time and computational load

are remarkable. It is important to notice that in Tables I and

II, the economical cost is given in economical units (e.u.

in tables) and not in the real values (in Euro) because of

confidentiality reasons.

VI. CONCLUDING REMARKS

In this paper, a DMPC strategy for DWN has been

proposed. The DWN is partitioned in a set of subnetworks

using a partitioning algorithm that makes use of the topology

of the network, the information about the actuator usage and

heuristics. A suboptimal DMPC strategy was derived that

allows the hierarchical solution of the set of MPC controllers

used to control each partition. The proposed DMPC approach

is compared against a CMPC controller in an aggregate

version of the Barcelona DWN. Results have shown the

TABLE II

TIME RESULTS OBTAINED FOR THE CONSIDERED CONTROL OBJECTIVE

AND SCENARIOS

SCENARIO CENTRALIZED MPC DECENTRALIZED MPC
Total time Max time Total time Max time

[s] [s] [s] [s]

SCENARIO 1 207.12 6.0866 128.2828 3.2086
SCENARIO 2 206.27 7.0348 130.888 3.3209
SCENARIO 3 210.57 4.9057 125.5362 4.7260
SCENARIO 4 211.18 5.5524 126.0275 2.8945

effectiveness of the proposed DMPC approach in terms of the

computation time while the lost of performance is small in all

the considered scenarios. As further work, an improvement of

the partitioning algorithm used in this paper should be done

using results from graph theory. Finally, particular issues

related to the the possibility of allowing the subsystems

overlapping will be deeply studied.
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