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SUMMARY

In this paper, an actuator fault-tolerant control (FTC) strategy based on set separation is presented. The proposed scheme
employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur
in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches
the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module
is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control
laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term
and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed
scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output
estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of
the FDI module and for fault tolerant closed-loop stability are given, and the effectiveness of the approach is illustrated by
means of a numerical example. q
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1. INTRODUCTION

Modern automatic control industrial systems can have their reliability degraded due to the huge number of compo-
nents and their increasing number of possible faults (understood as a deviation from a specified mode of behaviour).
It is known that those abnormal situations due to instrument or component failure can prevent or endanger continuous
operation. It is, thus, of utmost importance to endow control systems with fault-tolerance capabilities. A compre-
hensive treatment of fault-tolerant control (FTC) systems can be found in [1]. In this study, attention is focused on
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severe actuator faults (i.e. total loss of some actuators). Therefore, the presence of a fault diagnosis and isolation
(FDI) module is required to detect and identify the fault. In addition, an active FTC strategy is necessary to ensure,
in presence of a fault, the highest possible performance of the controlled system. As soon as the FTC unit receives
the signal from the FDI module identifying the type of the fault, an appropriate decision must be made in order to
maintain the system properties, namely stability, and performance.

The actuator FTC strategy proposed in this paper is based on an invariant set computation (see e.g. [2]). The
proposed scheme consists of a bank of observers (see e.g. [3]), which match different fault situations that can
occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when the
observer matches the current fault situation in the plant. With this information from each observer, an FDI module
is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed
control laws, each of them consisting of a state feedback gain and an exogenous reference signal related to the
considered fault models. The FDI module also selects the appropriate state estimate in order to build a feedback
signal consisting of the selected feedback gain multiplying the difference between the state estimate provided by
the matching observer and the selected exogenous reference signal. The decision criteria of the FDI is based on
the computation of sets towards which the estimation errors converge. These sets are computed for each considered
fault scenario, for each observer, and for each control configuration.

A key property for the correct fault diagnosis in the proposed scheme is the separation of the sets that characterise
healthy operation from the ones that characterise faulty operation. The inherent component redundancy that is
required for an actuator FTC scheme provides, in many applications, enough flexibility to achieve the aforementioned
set separation. In addition, the proposed technique is particularly well suited for reference tracking problems when
the reference signal contains an offset component. In those cases, the reference signal provides an additional
mechanism to achieve the desired set separation. Conditions for the design of the FDI module, and for achieving
the required set separation are discussed in this paper. Under those conditions, fault-tolerant closed-loop stability
of the proposed scheme can be guaranteed.

The main contributions of this paper are, first, that stability of the proposed scheme can be guaranteed under an
easily checkable set of conditions. Moreover, design choices so as to achieve the proper set of conditions for closed-
loop stability are discussed in detail. Second, a remarkable feature is the simplicity of the FDI mechanism. In effect,
once the required set of conditions is satisfied by design (this set of conditions—set separation—can be checked
off-line), then the design of the FDI is simple since its complexity depends linearly on the number of fault situations
that are taken into account. In contrast with other schemes (see e.g. [4, 5]), which use stochastic arguments for
fault detection and control reconfiguration, the approach followed here is purely deterministic and does not require
any statistical description neither for noises, disturbances nor fault occurrences. Finally, our approach considers a
generalisation of the observers proposed in [3], relaxing the condition of the full state measurement, situation that is
not always possible. This relaxation allows us to consider a more realistic problem under some assumptions related
to disturbances that affect the system.

The work presented in this paper was inspired by previous results by the authors on fault-tolerant multisensor
switching control, see [6]. However, the actuator fault-tolerant problem poses a different set of challenges with
respect to its sensor fault-tolerant counterpart, since the plant mixes the effects of actuator malfunctions as observed
from the system output. For a preliminary version of this paper, where full state measurement was required, see [7].
See also [8] for a related discrete-time implementaton of the proposed scheme.

The remainder of this paper is organised as follows: In Section 2, the actuator fault-tolerant detection and
reconfiguration scheme is presented and its main parts are explained. In Section 3, the dynamic equations of the
closed-loop system are derived. Section 4 contains the main results of this paper; namely, the computation of the
sets, the conditions needed for their adequate separation, and the proof of closed-loop stability of the scheme when
set separation is achieved. In Section 5, the effectiveness of the proposed approach is illustrated using an application
example. Finally, conclusions are provided in Section 6.
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ACTUATOR FAULT-TOLERANT CONTROL

Notation

In the sequel, let R and R+ denote the set of real numbers and the set of non-negative real numbers, respectively.
A given system variable v(t) is expressed as vki, j (t), where the subindex i denotes its dependence on the fault
mode of the plant (fault scenario), the subindex j is related to the control configuration, and the superindex k is
related to the observer. |M| and Re(M) denote the elementwise magnitude and real part, respectively, of a (possibly
complex) matrix M and x�y (x<y) denotes the set of elementwise (strict) inequalities between the components
of the real vectors x and y. The set Br ⊂Rp is a closed ball of radius r centred at the origin of Rp , that is,
Br�{x ∈Rp : ‖x‖2�r}, where ‖x‖2 denotes the Euclidean 2-norm of the vector x .

2. ACTUATOR FAULT DETECTION AND RECONFIGURATION SCHEME

In this section, the proposed actuator fault detection and reconfiguration scheme is described. The schematic of the
whole system is depicted in Figure 1 and its constitutive parts are explained in the following subsections.

Figure 1. Proposed fault detection and reconfiguration scheme.t q
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2.1. Nominal plant and fault models

We consider an LTI perturbed system described by

ẋ(t)= Ax(t)+B ′u(t)+Ed(t), (1a)

y(t)=Cx(t), (1b)

with B ′�BL , where x(t)∈Rn is the system state, u(t)∈Rm is the control input, d(t)∈Rp is an unknown disturbance
assumed to be bounded according to the following assumption.

Assumption 2.1
|d(t)|�dmax, where dmax∈Rp is a known vector with non-negative components.

Remark 2.1
Note that the system disturbances can be considered as random variables but we do not assume knowledge of their
statistical properties; all we require is knowledge of their bounds. Hence, disturbances with uniform distribution or
any truncated distribution, for example, are within the scope of our analysis.

Vector y(t)∈Rq is the system output and A, B, C , and E are constant matrices of suitable dimensions. Matrix L
is used to model the occurrence of actuator faults. It is defined as

L�diag[l1 l2 . . . lm], lh ∈{0,1} for h=1, . . .,m. (2)

As mentioned in the introduction, this paper is focused on severe (outage) actuator faults. Accordingly, the case
lh =1 represents no fault in the h-th actuator; whereas, lh =0 models an outage in the h-th actuator. In the nominal
case, i.e. no faults, L is the identity matrix. In this paper, it is considered, for simplicity of exposition, that only
one actuator can fail at the time. That is, the matrix L in (2) can take m+1 different values L= Li , where

L0 = I,

Li = diag[1 . . .

i
↓
0 . . . 1], i =1, . . .,m.

(3)

Next, an actuator redundancy assumption is imposed, which is inherent to the actuator FTC scheme.

Assumption 2.2
The system (1)–(2) is stabilizable for all possible values of L= Li , with i =0, . . .,m, as defined in (3).

We remark that, provided the system continues to be stabilizable, outage of more than one actuator at the same
time can also be contemplated within the framework of this paper.

In the proposed scheme, the control u(t) can take m+1 possible forms u(t)=u j(t), for j=0, . . .,m, each form
designed for a particular value of the matrix L= Li given in (3), as explained in Section 2.5 below. The FDI module
decides which control to use at each time according to its evaluation of the current fault situation of the system. In
order to emphasise the current system fault situation (determined by matrix L= Li ) and the current control in use
(u(t)=u j(t)), in the sequel we will add subindexes i and j to the state variable x and output variable y in (1) and
we will employ the following notation for the system dynamics:

ẋi, j (t)= Axi, j(t)+BLiu j (t)+Ed(t), (4a)

yi, j (t)=Cxi, j(t). (4b)

q
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2.2. Exogenous system for reference tracking

The exogenous system for reference tracking module (called in the sequel exosystem) generates input and state
reference trajectories, uref, j (t), and xref, j (t), to be used under each possible fault situation, that is, for each possible
value of the matrix Li in (3). These reference trajectories satisfy

ẋref, j(t)= Axref, j(t)+BL j uref, j (t), (5a)

yref, j (t)=Cxref, j (t), (5b)

with j =0, . . .,m, where xref, j (t), and uref, j(t) are bounded signals. Notice that this is always possible by using an
auxiliary control loop inside the exosystem, since the exosystem model (5) mimics the plant model and, hence, also
satisfies Assumption 2.2. Moreover, it is assumed that uref, j(t), for j =0, . . .,m, satisfy the following assumption.

Assumption 2.3
The reference inputs uref, j (t), for j=0, . . .,m, are assumed to be bounded and expressible as uref, j (t)= ūref, j +
ũref, j (t), where ūref, j ∈Rm are constant offset levels and ũref, j(t) are variations around the respective offsets, whose
amplitudes are bounded as |ũref, j(t)|�ũmax

ref, j , for all t , where ũ
max
ref, j ∈Rm are known vectors containing non-negative

components.

The exosystem (5) is designed such that its output yref, j (t) exponentially tracks an external signal y∗(t), that is

lim
t→∞[ yref, j (t)− y∗(t) ]=0. (6)

The signal y∗(t) is an output reference trajectory that we ultimately wish the plant output yi, j(t) in (4b) to track
under all possible fault situations. To guarantee the latter objective, stabilizing state feedback gains are designed (see
Section 2.5 below) which ensure that, in the absence of disturbances, the system state xi, j (t) in (4a) asymptotically
tracks the exosystem reference states xref, j(t) in (5a) for each possible fault situation.

Note that the exosystem, as a module containing the reference model, can be obtained using any control design
method which might be as complex as we decide. This fact adds extra flexibility to the overall system design that
complements the computation of suitable feedback gains K (see Section 2.5 below) in fulfilling the desired control
objective (6).

2.3. Plant state observers

We propose to perform actuator fault detection using a bank of observers inspired in the unknown input observer
(UIO) proposed in [3]. The difference lies in that we allow for the output matrix C in (4b) to have rank q<n, that
is, we do not require full state measurement, as was the case in [3].

We require the following assumption.

Assumption 2.4
System (4) is detectable.

The equations that characterise the proposed observers are

ẇk
i, j (t)= Fwk

i, j(t)+GBLku j (t)+Myi, j (t), (7a)

x̂ ki, j (t)=wk
i, j(t)+Hyi, j(t), (7b)

with k=0, . . .,m, where x̂ ki, j(t)∈Rn is the state estimate, wk
i, j (t)∈Rn is the observer state, u j (t) is the control

input applied to the plant (see (4a)), yi, j (t) is the plant output (see (4b)), and Lk are as defined in (3). Note that

q
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there is a total of m+1 observers, indexed by the superscript k; the subindexes i and j simply reflect the current
fault situation, and the current control in use (see (4) and its preceding paragraph). Following [3], the matrices F ,
G, H, and M are chosen, such that

G= I−HC, (8a)

F=GA−M1C, (8b)

M2= FH, (8c)

M=M1+M2, (8d)

with F, a Hurwitz matrix. Note that the choice H =0 corresponds to the standard Luenberger-type observer. Thus,
Assumption 2.4 guarantees that (8) always have a solution such that F is Hurwitz.

2.4. State estimate selector

The state estimate selector (SES) module selects a certain state estimate from the set of all state estimates provided
by the bank of observers. The selection is done according to the decision made by the FDI module. This FDI
module (described below in Section 2.6) decides the index j ∈{0, . . .,m} that corresponds to the evaluated fault
situation and passes the corresponding state estimate (7b) to implement the feedback control law u j (t) (see (10)

below). The selected state estimate corresponds to the output of the observer k= j , i.e. x̂ j
i, j (t).

2.5. Feedback control laws

This part of the scheme consists of a set of state feedback gains which are computed off-line for the nominal case
(no faults), and for each possible fault scenario. These gains are represented by the block K j in Figure 1.

In combination with the exosystem module described in Section 2.2 and the SES module described in Section 2.4,
these gains guarantee the desired tracking objective that the system output y(t) in (1b) asymptotically tracks the
output reference trajectory y∗(t) in the absence of disturbances and when the control law corresponds to the model
that matches the current fault situation of the system. In order to achieve this objective for the nominal and each
possible fault scenario, let us define the tracking error for the selected state estimate as

ẑi, j (t)�x̂ j
i, j (t)−xref, j (t), (9)

for i =0, . . .,m and j =0, . . .,m. The control input for each scenario takes the form

u j (t)�K j ẑi, j (t)+uref, j(t). (10)

Notice that the state estimate used to implement the control law corresponds to the one obtained from the observer
k= j according to the selection done by the FDI module at the SES (as explained in Section 2.4). In this way,
the FDI module (described in Section 2.6 below) decides the index j ∈{0, . . .,m} that corresponds to the evaluated
fault situation and passes the corresponding control input (10) to the plant (4).

2.6. Fault diagnosis and isolation module

The FDI module receives the plant output (4b) and the state estimates (7b), obtained from the observers described
in Section 2.3. As shown in Figure 1, this module is formed by two subsystems. The first subsystem is the error
computation module, which computes the output estimation errors eki, j (t), defined as

eki, j (t)�yi, j (t)− ŷki, j(t), (11)

q
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for k=0, . . .,m, where

ŷki, j (t)�Cx̂ki, j (t). (12)

The second subsystem is the decision module, which implements the FDI algorithm described in Section 4 below.
Once the fault is detected and isolated using the computed output estimation errors, the FDI module selects the
appropriate index j ∈{1, . . .,m} for the feedback control law, the exosystem and the SES, and this index is used to
implement the control input (10).

3. CLOSED-LOOP DYNAMICS

In this section, we derive closed-loop dynamic equations for the scheme of Figure 1 that are valid for fixed values
of i and j , that is, while the fault situation of the plant (which defines i according to (3)) and the decision of the
FDI module (which defines j and the associated control input (10)) remain unchanged. In particular, let us define
the state tracking and estimation errors

zi, j (t)�xi, j (t)−xref, j (t) (state tracking error) (13)

x̃ ki, j (t)�xi, j (t)− x̂ ki, j(t) (state estimation error) (14)

and study their dynamics when the control input (10) is applied.
Using (13) and (14), and after some manipulations, the control input (10) can be rewritten as

u j (t)=K jzi, j (t)−K j�i, j (t)+uref, j (t), (15)

where

�i, j (t)�x̃ j
i, j (t) (16)

is the state estimation error corresponding to the state estimate selected by the SES (i.e. the state estimate from the
observer k= j ).

Considering the closed-loop system with (15), and using (4a) and (5a), the dynamics of the state tracking error
zi, j (t), for i =0, . . .,m, j =0, . . .,m, can be written as

żi, j (t) = ẋi, j (t)− ẋref, j (t)

= Axi, j (t)+BLi [K j zi, j (t)−K j�i, j (t)+uref, j(t)]+Ed(t)−Axref, j(t)−BL juref, j (t)

= (A+BLi K j )zi, j (t)−BLi K j�i, j (t)+B(Li −L j )uref, j (t)+Ed(t). (17)

Similarly, using (4), (7), (8), and (15), the dynamics of the state estimation error in (14) for the case k= j , i.e.
�i, j (t), i =0, . . .,m, j =0, . . .,m (see (16)), can be written as

�̇i, j (t) = ẋi, j (t)− ˙̂x j
i, j (t)

= ẋi, j (t)−ẇ
j
i, j(t)−HCẋi, j (t)

= Gẋi, j (t)−ẇ
j
i, j(t)

q
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= GAxi, j (t)+GBLiu j (t)+GEd(t)−Fw
j
i, j(t)−GBL ju j (t)−MCxi, j(t)

= [GA−M1C−M2C+FHC]xi, j (t)+GB(Li −L j )u j (t)+GEd(t)−Fx̂ j
i, j(t)

= F�i, j (t)+GB(Li −L j )[K j zi, j (t)−K j�i, j (t)+uref, j(t)]+GEd(t)

= [F−GB(Li −L j )K j ]�i, j (t)+GB(Li −L j )K j zi, j (t)+GB(Li −L j )uref, j(t)+GEd(t). (18)

Hence, combining (17), and (18), and using the definitions

Ai, j�
[

A+BLi K j −BLi K j

GB(Li −L j )K j F−GB(Li −L j )K j

]
, (19a)

Bi, j�
[

B(Li −L j ) E

GB(Li −L j ) GE

]
, (19b)

� j (t)�
[
uref, j (t)

d(t)

]
, (19c)

the following subsystems are obtained:[
żi, j (t)

�̇i, j (t)

]
= Ai, j

[
zi, j (t)

�i, j (t)

]
+Bi, j� j (t), i =0, . . .,m, j =0, . . .,m. (20)

In order to ensure internal closed-loop stability of the proposed scheme, we make the following assumption.

Assumption 3.1
The feedback control gains K j and matrices H and M1 (and hence G and F) in (8) are such that the closed-loop
matrices Ai, j in (19a), for i=0, . . .,m, and j =0, . . .,m, are Hurwitz.

Remark 3.1
In practise, one would typically design the estimator matrices (8) using some standard procedure (e.g. Kalman filter
design) and, independantly, the feedback gain K j , for j=0, . . .,m such that the closed-loop system associated with
the matrix A+BL j K j is asymptotically stable and, in addition, satisfies some desirable performance criteria (e.g. is
optimal in some sense). Then, one would verify that Assumption 3.1 is satisfied by testing the stability of matrices
Ai, j in (19a), for i=0, . . .,m and j =0, . . .,m. This is the approach taken in the example of Section 5.
Alternatively, using fixed values of K j (obtained, for instance, by some optimal design procedure, as discussed

above), one recognises, using Lyapunov arguments, that Assumption 3.1 is equivalent to the existence of matrices
H and M1 (and hence G and F) in (8) and symmetric matrices Pi, j ∈R2n×2n satisfying[

AT
i, j Pi, j +Pi, j Ai, j 0

0 −Pi, j

]
<0 for i =0, . . .,m, j =0, . . .,m. (21)

It can be checked using (8) and (19a) that, for fixed values of i ∈{0, . . .,m}, and j ∈{0, . . .,m}, the expression in (21)
is a bilinear matrix inequality (BMI) [9] due to the products of Pi, j and the design matrices H and M1, which
appear in the expressions for matrices F and G (see (8)). Therefore, BMI solvers (e.g. PENBMI over Tomlab�

[10]) may be used to find values of the design matrices H and M1 (and hence F and G) that satisfy the BMI (21).

q
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We next consider the state estimation errors, defined in (14), for the case k 
= j . Using (4), (7), (8), and (15), the
dynamics of the state estimation error x̃ ki, j (t), for i=0, . . .,m, j=0, . . .,m, k=0, . . .,m, and k 
= j , can be written as

˙̃xki, j (t) = ẋi, j (t)− ˙̂xki, j (t)
= ẋi, j (t)−ẇk

i, j(t)−HCẋi, j (t)

= Gẋi, j (t)−ẇk
i, j(t)

=GAxi, j (t)+GBLiu j (t)+GEd(t)−Fwk
i, j(t)−GBLku j (t)−MCxi, j (t)

= Fx̃ki, j (t)+GB(Li −Lk)[K j zi, j (t)−K j�i, j (t)+uref, j (t)]+GEd(t)

= Fx̃ki, j (t)+GB(Li −Lk)K j zi, j (t)−GB(Li −Lk)K j�i, j (t)+GB(Li −Lk)uref, j (t)+GEd(t). (22)

Defining

Nk
i, j � [GB(Li −Lk)K j −GB(Li −Lk)K j GB(Li −Lk) GE],

�i, j (t) � [zi, j (t)T �i, j (t)
T uref, j (t)

T d(t)T]T,
(23)

the dynamics of x̃ ki, j (t) can now be rewritten as

˙̃xki, j (t)= Fx̃ki, j(t)+Nk
i, j�i, j (t), i=0, . . .,m, j =0, . . .,m, k=0, . . .,m, k 
= j. (24)

Notice the difference between state estimation errors �i, j (t)�x̃ j
i, j (t) and x̃ ki, j (t) for k 
= j , with dynamics given by

(18) and (24), respectively. �i, j (t) corresponds to the selection done by the FDI module at the SES, whereas x̃ ki, j (t)
for k 
= j is related to each one of the remaining m observers. Then, due to the feedback loop, �i, j (t) will appear
in the control signal (see (15)) and thus it will be part of the input driving the dynamics of x̃ ki, j(t) in (23)–(24).

Also notice that, under Assumption 3.1 for fixed i and j and since F is a Hurwitz matrix (see Section 2.3),
(20) and (24) define stable systems excited by bounded inputs, and hence their state trajectories will converge to
invariant sets that will be computed in Section 4.1 below.

Remark 3.2
Notice that the plant model (1) only considers the disturbance d(t) affecting the state equation (1a). However, we
can also consider within the same framework the inclusion of measurement noise in the output equation of the
plant, i.e.,

y(t)=Cx(t)+�(t), (25)

where �(t)∈Rq denotes a vector whose components correspond to bounded measurement noise for each output.
In this case, and due to the particular structure of the considered observers (see Section 2.3), it is convenient to
select H =0 in order to avoid terms including the noise time derivative, �̇(t), that would appear in the dynamics of
the state estimation errors (see (18) and (22)). Alternatively, one can assume the knowledge of bounds for both the
measurement disturbance and its derivative, in which case the analysis of this paper applies with minor modifications
to account for the terms added by these bounded signals.

q
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4. DETERMINISTIC ACTUATOR FAULT DIAGNOSIS

4.1. Set computation

The computation of ultimate bound sets for the state trajectories of the closed-loop system described in Section 3
is explained in this section.

First, ultimate bounds for zi, j (t) and �i, j (t) are computed, whose dynamics obey (20) with inputs uref, j(t)=
ūref, j + ũref, j (t), and d(t) (which are bounded signals, see Assumptions 2.1 and 2.3). These variables can be
expressed, respectively, as zi, j (t)= z̄i, j+ z̃i, j (t), and �i, j (t)= �̄i, j + �̃i, j (t), where z̄i, j and �̄i, j are constant offset

levels while z̃i, j (t) and �̃i, j (t) are variations around their respective offsets. The offset levels can be computed from

(20) in steady state with constant input �̄ j =
[
ūref, j
0

]
, and are given by

[
z̄i, j

�̄i, j

]
=−Ai, j

−1Bi, j �̄ j . (26)

Performing the change of coordinates

ũref, j (t)=uref, j (t)− ūref, j , z̃i, j (t)= zi, j(t)− z̄i, j and �̃i, j (t)=�i, j (t)− �̄i, j ,

Equation (20) can be expressed as ⎡
⎣ ˙̃zi, j (t)

˙̃�i, j (t)

⎤
⎦= Ai, j

[
z̃i, j (t)

�̃i, j (t)

]
+Bi, j �̃ j (t), (27)

where �̃ j (t)=
[
ũref, j (t)
d(t)

]
.

According to Assumption 3.1, matrix Ai, j in (27) is the Hurwitz for all i =0, . . .,m and
for all j =0, . . .,m. Moreover, by Assumptions 2.1 and 2.3, the inputs in (27) are bounded as |ũref, j (t)|�ũmax

ref, j ,

and |d(t)|�dmax. Therefore, (a minor modification of) Theorem 1 in [2] can be used in order to compute ultimate

bounds on the elements of

[
z̃i, j (t)

�̃i, j (t)

]
as

∣∣∣∣∣
[
z̃i, j (t)

�̃i, j (t)

]∣∣∣∣∣�
⎡
⎣ z̃max

i, j

�̃
max
i, j

⎤
⎦ , (28)

where [
z̃max
i, j

�̃
max
i, j

]
=|Vi, j ||(Re(�i, j ))

−1||V−1
i, j Bi, j |

[
ũmax
ref, j

dmax

]
, (29)

and (�i, j ,Vi, j ) are the matrices of the Jordan decomposition Ai, j =Vi, j�i, j V
−1
i, j . Thus, if the closed-loop dynamics

(27) were to hold indefinitely (that is, without changes in the fault situation i and in the FDI decision j ), the state
estimation error �i, j (t)�x̃ j

i, j (t), corresponding to the observer selected by the FDI (i.e. k= j ), would ultimately

q
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converge to the set

S
j
i, j�{�i, j ∈Rn : |�i, j − �̄i, j |��̃

max
i, j }, i=0, . . .,m, j =0, . . .,m, (30)

where �̄i, j and �̃
max
i, j are defined in (26) and (29), respectively.

Following similar steps, we compute invariant sets for the state estimation errors x̃ ki, j (t) in (24), for i =0, . . .,m,

j =0, . . .,m, k=0, . . .,m, k 
= j . The latter errors can be expressed as x̃ ki, j (t)= �̄ki, j + �̃ki, j (t), where the offset levels
are computed from (24) as

�̄ki, j =−F−1Nk
i, j �̄i, j , (31)

with Nk
i, j as in (23) and

�̄i, j =[z̄Ti, j �̄
T
i, j ūTref, j 0]T. (32)

In addition, the dynamics for the variations of the state estimation error around its offset level are given by

˙̃�ki, j (t)= F �̃ki, j (t)+Nk
i, j �̃i, j (t), (33)

with �̃i, j (t)=[z̃i, j(t)T �̃i, j (t)
T ũref, j (t)T d(t)T]T. Using again Theorem 1 in [2], with F=V�V−1, invariant sets

for the variations of the state estimation errors around the offset levels (31) can be computed as

S̃
k
i, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�̃ki, j ∈Rn : |V−1�̃ki, j |�|(Re(�))−1||V−1Nk
i, j |

⎡
⎢⎢⎢⎢⎢⎣

z̃max
i, j

�̃
max
i, j

ũmax
ref, j

dmax

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (34)

where z̃max
i, j and �̃

max
i, j were previously computed in (29). Noting that x̃ ki, j (t)=�̄ki, j+�̃ki, j (t), then an invariant set for

the state estimation error, Sk
i, j , when k 
= j , can be computed as the Minkowski sum of the set S̃

k
i, j in (34) and the

singleton {�̄ki, j } whose value is given in (31). Thus, we have

Sk
i, j =S̃

k
i, j ⊕{�̄ki, j }, i =0, . . .,m, j =0, . . .,m, k=0, . . .,m, k 
= j. (35)

It should be noted that the sets in (35) are invariant and attractive for the state estimation error trajectories, see [2].
That is, trajectories starting inside the set will remain inside the set, whereas trajectories starting outside will
converge towards the set.‡

Substituting (4b) and (12) in (11), and using (14), the output estimation error eki, j (t) can be written as

eki, j (t) =Cxi, j (t)−Cx̂ki, j(t),

=Cx̃ki, j (t). (36)

‡To be rigorous, the right-hand side of the inequalities defining the sets in (29) and (34) have to be expanded by a vector of arbitrarily
small positive components in order to guarantee convergence to the sets in finite time.
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Thus, sets where the output estimation errors eki, j (t) will lie whenever x̃ ki, j (t) belong to Sk
i, j , can be computed

using (30), (35), and (36) as

Ek
i, j �CSk

i, j

=
{
eki, j ∈Rn :eki, j =Cx̃ki, j , x̃

k
i, j ∈Sk

i, j

}
, (37)

for i =0, . . .,m, j =0, . . .,m, k=0, . . .,m.

Remark 4.1
The sets defined when i = j=k in (30) and i =k 
= j in (35) deserve special attention. In the case k= i= j , the
dynamics of the state estimation error �i, j (t)�x̃ j

i, j(t) in (19)–(20), for j =0, . . .,m, are given by

�̇ j, j(t)= F� j, j(t)+GEd(t). (38)

Similarly, when k= i 
= j , the dynamics of the state estimation errors x̃ ki, j (t) in (23)–(24), for j =0, . . .,m, k=
0, . . .,m, k 
= j , becomes

˙̃xkk, j (t)= Fx̃kk, j(t)+GEd(t). (39)

Thus, for all observers k=0, . . .,m (including the one selected by the FDI to implement the control law, k= j ), an
invariant set for the state estimation error dynamics when Lk = Li (see (3)) is given by

Sk
k, j ={�̃kk, j ∈Rn : |V−1�̃kk, j |�|(Re(�))−1||V−1GE |dmax}. (40)

That is, when the kth observer (7a) has matrix Lk that matches the current fault situation of the plant, represented by
Li in (4), the state estimation error dynamics converge to the set Sk

k, j defined in (40), independantly of the control

law in use, and therefore the corresponding output estimation error dynamics tends to Ek
k, j�CSk

k, j . Notice that

d(t) is assumed to have no offset level and then these sets Ek
k, j will be centred at the origin of the output estimation

error space. Also note from (40) that these sets are independant of the index j selected by the FDI module, and
will be hence denoted as

Ek
k,∗�CSk

k, j , (41)

with Sk
k, j defined in (40).

4.2. Fault detection criterion

A key property that the proposed fault-tolerant scheme requires is that the sets Ek
i, j in (37), for all i =0, . . .,m,

j =0, . . .,m, i 
=k (i.e. when the kth observer does not match the current fault situation of the plant), do not intersect
the sets Ek

k,∗ in (41) for the output estimation error corresponding to each observer with index k=0, . . .,m. That is

Ek
i, j ∩Ek

k,∗ =∅, for i =0, . . .,m, j =0, . . .,m, k=0, . . .,m, i 
=k. (42)

To simplify the FDI mechanism, we will assume that the sets in (42) can be separated by balls centred around the
origin, so that the following condition is satisfied:

min

{
‖eki, j‖2 :eki, j ∈

m⋃
i=0,i 
=k

m⋃
j=0

Ek
i, j

}
>max{‖eki, j‖2 :eki, j ∈Ek

k,∗}, (43)
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for each k=0, . . .,m. In Section 4.3 below, mechanisms to achieve this set separation will be discussed, but for the
moment, it will be assumed that condition (43) holds. Recall also that when i =k (i.e. when the kth observer matches
the current fault situation) the output estimation error trajectories converge to Ek

k,∗ as explained in Remark 4.1.
The FDI approach proposed in this paper considers balls Brk centred around the origin of the output estimation

error space for each observer. The radii of these balls, denoted by rk , are determined in such a way that the kth ball
contains the set Ek

k,∗, and it does not overlap with any of the sets Ek
i, j computed from (37), when i 
=k. Then, the

condition for selecting a control configuration depends on whether the output estimation error trajectory remains
inside the ball corresponding to one and only one of the observers at a given time. However, this condition is
related to the time of convergence of the state estimation error trajectories. We will denote by tc an upper bound for
the convergence time of trajectories starting in any set Sk

i, j and ending up in any other set Sk
l,h (when driven by the

dynamics related to the latter set), for all i, j, l,h∈{0, . . .,m} and each k=0, . . .,m, including i=k. Note that the
time tc should be computed based on the sets Sk

i, j instead of sets Ek
i, j , since the latter sets are not invariant and

therefore an output estimation error trajectory which enters to a set Ek
i, j does not necessarily remain inside that set.

The FDI decision module is constantly checking for trajectories which are inside the corresponding ball Brk for
each output estimation error space. If a fault occurs, the trajectories will either change between sets or stay in them.
In particular, the fault will be detected when the (only) output estimation error trajectory that was inside its associated
ball leaves the ball. In order to avoid abrupt changes in situations when, due to transient behaviour, there are two
or more trajectories inside their corresponding balls Brk , or when a different trajectory from the one that should
converge to the set Ek

k,∗ for the current fault scenario crosses its ball Brk during a transient, the algorithm waits a
time tc in order to ensure that all trajectories have converged to the new sets. After this time tc, the whole system is
again checked and only one of the trajectories of eki, j (t)—the one related to the observer which matches the plant
behaviour—will be inside the corresponding ball Brk . This determines the new FDI decision index j ∈{0, . . .,m}.
Note that, the feature of waiting a time tc before changing the FDI decision prevents from undesired oscillations in
the FDI decisions and in the closed-loop behaviour. Summarizing, the fault detection criterion implemented by the
FDI can be outlined as follows:

Algorithm 4.1 (FDI criterion)

1. While eki, j (t), for some k∈{0, . . .,m}, is inside the corresponding ball Brk , keep control law K j in place, with
j=k;

2. If eki, j (t) leaves the corresponding ball Brk , wait for tc units of time;

3. Check all trajectories eki, j (t), t�tc, for k=0, . . .,m. Choose the control law K j̃ , with j̃ = k̃, corresponding to

the trajectory ek̃
i, j̃

(t) that is inside the corresponding ball Brk̃
.

As a result of the implementation of Algorithm 4.1, the index j is obtained by the FDI module, which will
fix the corresponding feedback control gain K j , the signals from the exosystem, xref, j (t) and uref, j (t), and the

corresponding state estimate x̂ j
i, j(t) at the SES.

Remark 4.2
The convergence time tc can be estimated in a number of ways, for example, using a slight modification of
Theorem 7.3 in [11].

The operation of the fault detection scheme is illustrated in Figure 2. In the figure, the output estimation error
spaces of three observers (k=0,1,2) have been conceptually depicted.§ Consider two fault modes in the plant, for

§With some abuse of notation, the vector components in the estimation error spaces are denoted by e1 and e2.
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Figure 2. Conceptual scheme of the set approach: (a) sets for observer 0; (b) sets for observer 1; and (c) sets for observer 2.

i =0, and i =1. The initial fault situation of the plant, i =0, is such that Li in (4) is matched by the observer k=0.
Consequently, the trajectories of observer 0 are in the set E0

0,∗, depicted in Figure 2(a) as the little square centred at

the origin (Lk = Li , for k= i=0), whereas the trajectories of observers 1 and 2 lie in their corresponding sets E1
0, j

and E2
0, j , depicted in Figure 2(a) as the two groups of three sets away from the origin (since Lk 
= Li for k=1,2

and i =0). At some point in time, a new fault situation in the plant (fault mode i =1) changes Li in (3) so that now
it is matched by observer 1 (Lk = Li , for k=1 and i =1). Therefore, according to Remark 4.1, the trajectories of
observer 1 will converge to the set E1

1,∗, centred at the origin, and the trajectories of observers 0 and 2 will converge

to the corresponding sets E0
1, j and E2

1, j , respectively, outside the balls Brk , k=0,2 (since Lk 
= Li for k=0,2, and
i =1). All the transitions between sets illustrated in Figure 2 will take a time less than the upper bound tc, hence by
the time the FDI makes a new decision (new index j ), all trajectories will have converged to their respective sets,
reflecting the new fault situation in the plant. When the FDI switches to the configuration that corresponds to the
new fault situation that has been correctly identified, all the trajectories away from the corresponding set centred at
the origin will experience a new transient towards the sets related to the new control configuration. This situation
is illustrated in Figure 2(a) for the case of observer 0 and Figure 2(c) for the case of observer 2. However, the
trajectory of observer 1 in Figure 2(b) will remain in the set E1

1,∗, centred at the origin, according to Remark 4.1
(since Lk = Li for k=1, and i =1).

q
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4.3. Conditions for correct fault diagnosis

As mentioned above, and illustrated in Figure 2, the separation condition condition (43) is a key feature that is
required for correct fault diagnosis based on the FDI criterion presented in Section 4.2. Some design mechanisms
for the overall reference tracking control system will be discussed in this section, which can be used in order to
achieve the required set separation.

Three aspects play an important role in the separation of the sets. First of all, an offset value for the reference
signal y∗(t), to be followed by the exosystem (and in turn by the plant), will imply an offset value, ūref, j , for the
reference input. The latter offset also implies an offset in the corresponding sets Ek

i, j (see (26), (30), (31), and (35)).
In order to achieve the desired set separation, the reference offset value ūref, j should be ‘large enough’ with respect
to the disturbance bound dmax.

Second, the condition given in Assumption 2.2 implies that, in the presence of a fault—as evaluated by the
FDI—in a particular actuator j ∈{1, . . .,m}, according to (3), the j th component of the input vector u j (t)∈Rm

related to the faulty actuator constitutes a degree of freedom, which can be varied conveniently so as to achieve
the desired set separation. Notice that this j th component of the input vector will not be seen by the plant when
the FDI decision matches the fault situation due to the type of fault model considered in this paper (total outage).
Therefore, an offset term can be introduced by redefining the control reference from the exosystem corresponding
to a fault in the j th component as

u′
ref, j(t)�uref, j (t)+udf, j , (44)

where

udf, j =

⎧⎪⎨
⎪⎩�[0 · · ·

j
↓
1 · · ·0]T for fault situation,

[0 · · ·0]T for nominal situation

(45)

denotes the degree of freedom added to the j th element of the input vector. Diagonal matrix � contains the values
of the added offset levels for each component of the input vector according to the actuator. Notice that, in the
nominal case, i.e. no faults, there is no degree of freedom and then udf, j is a column vector of m zeros. Thus, the
control signal (15) can be now written as

u j (t)�K j zi, j (t)−K j�i, j (t)+u′
ref, j (t). (46)

Several signals within the scheme of Figure 1 would be affected by the addition of this offset levels. The main
influence of udf, j can be seen in the offset levels of the state tracking and estimation errors. For instance, matrices
Bi, j and �̄ j in (26) (from (19)) are now redefined as

Bi, j�
[

B(Li −L j ) E B(Li −L j )

GB(Li −L j ) GE GB(Li −L j )

]
, �̄ j�

⎡
⎢⎣
ūref, j

0

udf, j

⎤
⎥⎦ ,

the right-hand side bound in (29) is now written as ⎡
⎢⎢⎣
ũmax
ref, j

dmax

0

⎤
⎥⎥⎦ ,
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and matrices Nk
i, j and �̄i, j in (31) (from (23)) are redefined as

Nk
i, j =[GB(Li −Lk)K j −GB(Li −Lk)K j GB(Li −Lk) GE GB(Li −Lk)], (47a)

�̄i, j =[z̄Ti, j �̄
T
i, j ūTref, j 0 uTdf, j ]T. (47b)

Notice that the offset level of the output estimation error trajectories can be computed from (31) and (36) as

ēki, j � C �̄ki, j ,

= −CF−1Nk
i, j �̄i, j , (48)

where Nk
i, j and �̄i, j are given in (47).

Finally, and related to the previous situation, since the j th input channel is not seen by the plant, there is flexibility
in the design of the j th row of the feedback control gain K j which, again, will influence the offset levels of the
output estimation error trajectories according to (47) and (48). However, the use of this mechanism to achieve set
separation is subject to the satisfaction of Assumption 3.1. Note that, when a row of K j is conveniently changed
in order to achieve the set separation, the resulting K j does not necessarily stabilize the closed-loop. Therefore,
Assumption 3.1 must be verified when modifying K j .

4.4. Closed-loop stability

The proof of stability is based on the following assumptions related to the fault scenario that the scheme can handle
and the set separation condition.

Assumption 4.1
Condition (43) holds.

Assumption 4.2
The minimum time interval between any change in fault scenario is greater than 2tc, where tc is an upper bound
for the convergence time of the trajectories of x̃ ki, j (t) starting in any set Sk

i, j and ending up in any other set Sk
l,h ,

for all i, j, l,h∈{0, . . .,m}, and each k=0, . . .,m.

We then have the following result.

Theorem 4.1
Under the conditions stated in Assumptions 2.1–2.4, 3.1, and 4.1. the system (4), in closed loop with control law
(10) reconfigured by the FDI criterion of Algorithm 4.1, is closed-loop stable and, in the absence of disturbances,
the output yi, j (t) follows the reference trajectory y∗(t) for any fault scenario that satisfies Assumption 4.2.

Proof
From Assumption 4.2, if Li1 has been the matrix associated with the system condition for a sufficiently long time
(greater than 2tc), then it follows that before the occurrence of a new fault scenario, all the output estimation
error trajectories for the observers for which Lk1 
= Li1 are inside their corresponding sets and outside the ball
Brk1

(Assumption 4.1). Moreover, the trajectory corresponding to the observer for which i1=k1 remains within

the set Ek1
k1,∗ centred at the origin (Remark 4.1) and inside the ball Brk1

. When the next fault scenario i2 occurs,
there will be only one new observer that matches the new fault mode (Lk2 = Li2 , k2 
=k1) whose trajectory will
converge towards the set Ek2

k2,∗ (see Remark 4.1). All the output estimation error trajectories will migrate to their new
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corresponding sets, in particular the trajectory previously confined to the set Ek1
k1,∗ corresponding to the observer

that no longer matches the current fault situation. When the trajectory of the latter observer leaves the corresponding
ball Brk1

centred at the origin, the FDI detects the presence of the new fault situation in the plant. By design, the
FDI will not make a new decision until a time tc has elapsed (Algorithm 4.1). This implies, since tc is an upper
bound for all convergence times between sets, that all output estimation error trajectories will have settled down
in their new sets by the time the FDI makes the decision j2= i2, guaranteeing the correctness of the decision. The
reconfiguration of the whole fault-tolerant scheme caused by the FDI decision will imply that all trajectories will
once more move towards new sets, attractive for the new control configuration according to (20) and (24). However,
the output estimation error trajectories of the matched observer (Lk2 = Li2) will continue to remain inside the set
E
k2
k2,∗. Assumption 4.2 guarantees that all the previously described transients occur before the appearance of a new

fault scenario, which ensures the correct operation of the fault detection and reconfiguration scheme and, hence,
the boundedness of all closed-loop trajectories at all times.

Moreover, from Assumption 3.1, Ai, j with i = j= i2 is Hurwitz. It then follows from (20) and the previous
discussion that, since the FDI effectively identifies the fault, the closed-loop tracking error in (13) will converge
towards zero in steady state (before the occurrence of the new fault situation) in the absence of disturbances. Finally,
(5b) and (6) imply that, in the absence of disturbances, the plant output yi, j (t)=Cxi, j(t) follows the reference
trajectory y∗(t). �

5. NUMERICAL EXAMPLE

This section presents an example based on an electric circuit, where the fault-tolerant approach proposed in this
paper is used when a set of preestablished fault scenarios are considered. The sets computed for each case were
plotted using the multi-parametric toolbox (MPT) for Matlab� [12].

Consider the electric circuit shown in Figure 3, whose equations in state-space representation can be written as
in (4), with the following system matrices:

A =

⎡
⎢⎢⎢⎢⎣

− 1

ReqCp

R1

ReqCp

1

L

(
R2

Req
−1

)
− 1

L

(
R1R2

Req
−R3

)
⎤
⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

1

ReqCp
0

− R2

LReq

1

L

⎤
⎥⎥⎥⎥⎦ and E=

⎡
⎢⎢⎢⎣

�1
ReqCp

1

L

(
�2− R2

Req
�1

)
⎤
⎥⎥⎥⎦ ,

where R1= R3=20�, R2=1K�, L=80mH, Cp =50�F, and Req= R1+R2. The state variables correspond to
the capacitor voltage, vC(t), and the inductor current, iL(t). In Figure 3, the signal d(t) represents a disturbance
introduced to the circuit by inductive coupling with an external circuit (not represented in the figure). This effect
has been modelled using dependant linear voltage sources with proportionality constants �1 and �2, whose values
are �1=�2=1. This external disturbance signal is bounded as |d(t)|�dmax, with dmax=1.5.
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Figure 3. Electrical circuit used as a case study for FTC.

The capacitor voltage is required to track a reference signal of the form

y∗(t)=a+b sin�t,

where �=20	, a=50V, and b=1.5V.
The fault scenarios considered are:

• SCENARIO 0: Both voltage sources, V1 and V2, are operational. This scenario is modelled by Li = L0, where

L0=
[
1 0

0 1

]
.

• SCENARIO 1: Voltage source V1 is short-circuited, that is V1(t)=0, and V2 is operational. This fault scenario is
modelled by Li = L1, where

L1=
[
0 0

0 1

]
.

• SCENARIO 2: Voltage source V2 is short-circuited, that is V2(t)=0, and V1 is operational. This fault scenario is
modelled by Li = L2, where

L2=
[
1 0

0 0

]
.

We assume that the capacitor voltage, vC(t), and the voltage in resistor R3, i.e. vR3(t)= R3iL (t), are measured
(this is assumed only for better visualisation of the different sets in the output estimation error space but similar
analyses can be carried out if only one of the state variables is measured). Therefore, the output matrix in (4b) is
written as:

C=
[
1 0

0 R3

]
.

The state observers are designed as described in Section 2.3, with H =diag[−2 −0.2], and
M1=diag[250 −1]. The feedback control gains K j used for the control signal in (46) are designed using the LQR
methodology. They are computed from the algebraic Riccati equation

P= ATPA+Q−K T
j (R+(BL j )

TPBL j )K j , (49a)

K j = (R+(BL j )
TPBL j )

−1(BL j )
TPA, (49b)
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with L j as in (3), for i =0,1,2, according to the corresponding fault scenarios described above. The weighting
matrices used in (49) are R=0.1I and Q= I , where I corresponds to the identity matrix of suitable dimensions.
It was verified by direct calculation that Assumption 3.1 holds for this example. The reference signals used for
the simulations satisfy uref, j (t)= ūref, j + ũref, j (t), where ūref,0=[55,45]T, ūref,1=[0,100]T, ūref,2=[100,0]T, and
|ũref,0(t)|�[35,25]T, |ũref,1(t)|�[0,11]T, |ũref,2(t)|�[11,0]T. The values used for the degree of freedom in the
control signal were set as udf,0=[0,0]T, udf,1=[100,0]T, and udf,2=[0,100]T.

Figure 4 shows the sequence of fault scenarios considered (top graph), and the FDI decision output, according
to Algorithm 4.1 with tc=0.004 s. In this figure, values 0, 1 and 2 are related to SCENARIO 0, SCENARIO 1, and
SCENARIO 2, respectively, as described above. Although the simultaneous commutation between two faulty scenarios
is unlikely, this situation has been contemplated in this simulations at times t=0.3 s, and t=2.1 s, in order to test
the operation of the FDI scheme. Note from the simulations that the FDI module makes, in all cases, the right
decision after a time tc.

Figure 5 shows the system performance under the proposed scheme when the sequence of fault scenarios in
Figure 4 (top graph) is considered. Notice that both the measured and estimated capacitor voltage tend to follow

Figure 4. Sequence of simulated fault scenarios (top graphic) and the corresponding FDI decision (bottom graphic).

Figure 5. Voltage signals. Continuous line: reference y∗(t), dashed line: estimated capacitor voltage v̂C (t) (at the output of
the SES), dotted line: measured capacitor voltage vC (t).
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(a) (b)

(c)

Figure 6. Sets for the observers of the electric circuit example. Also shown are the balls Brk around the origin
upon which the FDI decisions are based: (a) sets related to the observer k=0; (b) sets related to the observer

k=1; and (c) sets related to the observer k=2.

the system reference after the fault occurrence showing that the closed-loop performance is recovered after the
corresponding transient by the fault-tolerant strategy, and the control objective is achieved.

The sets Ek
i, j for the output estimation errors corresponding to each of the k observers, k=0,1,2, each of the

possible fault scenarios, i =0,1,2, and each of the feedback control gains K j , j =0,1,2, are computed using (30),
(31), (35), and (37). These sets are depicted in Figure 6, together with the balls Brk , around the origin for k=0,1,2,
upon which the FDI decisions are based¶ (see Algorithm 4.1). Notice that the output estimation error trajectories in
Figure 6(c) cross the corresponding ball Br2 when the commutation between SCENARIO 0 and SCENARIO 1 occurs. In
this case, without the inclusion of a waiting time tc in the FDI criterion, the FDI module could diagnose, erroneously,
SCENARIO 2 because the output estimation error trajectories related to observer k=2 could be the only trajectories
inside a ball at some time instant. However, the FDI criterion avoids these transients by means of the waiting time
tc and the fault diagnosis is done properly. Finally, we remark that the overall operation of the fault-tolerant scheme
satisfies the desired control objectives; namely, it maintains closed-loop stability and achieves reference tracking
under all fault scenarios contemplated.

¶Note that the balls Brk appear as ellipses in Figure 6 due to the scales used.
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6. CONCLUSIONS

This paper has proposed an actuator FTC scheme based on the computation of estimation errors from a bank of
observers. Each observer is designed to match, with a distinctive behaviour, the different fault situations that can
occur in the plant. The main novelty of the scheme resides in the computation of invariant sets where the output
estimation errors corresponding to each fault situation lie, and the appropriate use of information concerning the
separation of these sets by a fault diagnosis and isolation (FDI) module in the selection of a matching controller from
a bank of precomputed stabilising controllers. More importantly, conditions for guaranteeing the correct decision of
the FDI, and hence stability and fault tolerance of the scheme, are given under a set of assumptions. The effectiveness
of the approach has been illustrated by using an example based on an electric circuit. Future work is focused on
relaxing the set of assumptions this approach is based on, in order to generalise the family of systems to which
the FDI strategy is suitable. Also, further research includes the use of different feedback stabilising control laws
within the proposed scheme and the consideration of disturbances whose values are not centred around zero, which
modifies the position of sets Ek

k,∗ in the output estimation error space.
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